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As software systems grow to meet a variety of demands, programming languages should support a variety
of tools to facilitate the construction of multi-component software systems. Two useful tools are static and
dynamic type systems, both of which enable abstraction-safe program components. Other tools include
SAT solvers, proof assistants, and domain-speci�c languages. Developers often need to combine tools;
for instance, by writing typed code that interacts with a solver. But unless the tool designers speci�cally
planned for all possible interactions, there is a risk of unsound compositions in which one component
misinterprets the data sent by another. These soundness holes threaten correctness and security.

My research agenda is to develop methods for reasoning about multi-component systems,
speci�cally their formal guarantees, performance implications, and ergonomics. In short, I build
methods for three essential P’s: proofs, performance, and people.

A promising way forward is to identify useful combinations of tools and study their interactions in
depth. In this spirit, research on gradual typing has investigated combinations of static and dynamic type
systems. Static types impose compile-time constraints to predict the behavior of code. Dynamic types
insert run-time checks to form a safety net. Combining both has signi�cantly enriched our understand-
ing of the guarantees that compile-time checks can provide and of run-time methods for enforcing these
guarantees. I believe that systematic work on other combinations will improve the reliability of software
and open further research opportunities.

Dissertation Work

Over the past two decades, gradual typing has emerged as a promising solution to the dilemma between
typed and untyped (or, dynamically typed) programming languages. Researchers in the area have created
type systems that accommodate untyped code and runtime systems that monitor the interactions among
components. These ideas seemed to o�er the best of two worlds and generated a great deal of interest—so
much that industry teams at Google, Facebook, Microsoft, Adobe and Dropbox built their own gradual
languages. Today, there are at least twenty such languages available to programmers.

Gradual typing does not yet, however, live up to the “best of both worlds” promise. Each gradual
language represents a point in a complex design space where static type guarantees imply run-time costs.
Understanding and reducing these costs is a major challenge. The large number of languages demonstrates
that many strategies exist, but these points say little about how the strategies relate to one another. In short,
the area is lively but disorganized.

My research adds order to the gradual design space. I have built methods that enable scienti�c com-
parisons of gradual languages along two key dimensions: run-time performance and formal guarantees.
These methods have elevated the state of a�airs from vague claims about di�erent languages [8] to formal
arguments and rigorous data [7, 9, 11, 12].

• Performance [10, 14]. Gradual type systems allow any mix of typed and untyped code to run, but make
no guarantee about run-time overhead. In fact, performance can be arbitrarily bad. To understand
whether such costs are widespread and to motivate language improvements, I designed the �rst
comprehensive and scalable method to measure gradual typing performance, curated two
benchmark suites [1, 8], and measured several versions of two gradual typing systems [4, 7, 11].

• Formal Guarantees [2, 9]. The strategy that a gradual language uses to enforce types can change the
behavior of programs. A �rm understanding of these changes is essential, but di�cult to arrive at
because two languages may interpret similar-looking types in di�erent ways. I therefore developed
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the �rst formal account of type-enforcement strategies using a model that provides a common
ground and a tower of theorems to clarify their behavioral implications. The theorems intentionally
do not set criteria for what a “best” strategy ought to do. Rather, they give positive characterizations
of points in the design space.

At present, no single gradual language provides both strong guarantees and fast performance without
compromising expressiveness. Researchers have explored two approaches to close these gaps: building a
new language and building a new compiler. Neither is ideal because they impose a migration cost on pro-
grammers. It would be better if an existing language or compiler could be adapted. To this end, I extended
a gradual language with strong type guarantees to incorporate a semantics that explores a complementary
point in the design space [5, 6]. The result is the �rst language to support interoperability between
two sound gradual semantics. Performance bottlenecks are rare in this language; switching between
type enforcement strategies on a whole-sale basis addresses most pathologies. Fine-grained combinations
can further improve performance and let programmers deploy critical type guarantees as needed.

Ongoing Work

Despite our recent success in evaluating proofs and performance, the gradual typing community has largely
neglected the third crucial “p” of good programming languages research: people. I have conducted a �rst
study in this direction [15] and the community’s positive response indicates a willingness to heed the
results of further research. My ongoing work as a CIFellows 2020 postdoc at Brown is therefore focused
on human factors. In particular, I am collaborating with a team at Instagram to assess a language they
have created which imposes a coding discipline but in return achieves both soundness and performance.
The formalization has already found several bugs, including one that led to a segfault.

This postdoc appointment has also been an opportunity to broaden the scope of my research. In ad-
dition to gradual typing, I have studied misconceptions regarding Linear Temporal Logic (LTL) [3] and
type systems for tabular data [13]. The LTL work is a key step toward tools that assist developers in the
construction of secure and responsive systems. Types for tables are needed to bring the reliability of static
types to data science applications.

In the future, my goal is to leverage these experiences in human-factors research and address all 3 P’s
of language design questions (proofs, performance, and people) throughout my career—whether in gradual
typing or in other research topics.

Future Work

Within a few years, I predict that every modern language will be gradually typed. Dynamic languages
will add at least a syntax for type annotations and maintenance tools that leverage the types. Python and
JavaScript have already done so with unsound types. Static languages will follow C# and add a dynamic
type to express objects that originated in untyped components. Researchers can help language designers
by mapping the design space and recommending useful points. As practictioners apply gradual typing
to a full-�edged language and discover challenges, researchers can also explore solutions. Thus, gradual
typing will become increasingly important along these two research vectors: developing semantics and
supporting practical aspects of existing languages.

Other important future directions lie beyond the scope of typed/untyped combinations. Techniques
for sound and e�cient gradual types have implications for other multi-component systems. These include
both sibling-language systems that resemble the typed/untyped sitation and others that combine totally
di�erent languages. Concrete topics include the following:
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• Security. Multi-component systems are vulnerable to attacks that send unexpected data across a
boundary. A static analysis, e.g., via a type system for information �ow, can identify potentially-
unsafe boundaries and put a conservative bound on the code that an attack can reach. Such an
analysis must be aware that attacks can originate from un-analyzed components.

• Lifetime Analysis. The Rust programming language has shown that a static lifetime analysis can
detect aliasing bugs and create opportunities for concurrent execution. Other systems languages
would bene�t from a similar analysis so that programmers need not port their application to Rust
to prevent data races. The analysis may target a restrictive subset of the language as long as it can
recognize unsafe boundaries to legacy components.

• Probabilistic Extensions. Many probabilistic programming languages extend a general-purpose host
language with an API to a probabilistic model. The model can be used to solve machine learning
problems, but its interactions with the host language are error-prone. A gradual type system could
ensure that the host language sends sensible data to the model.

• Solver-Aided Programming. The Alloy modeling language lets programmers specify aspects of a soft-
ware system and uses a solver to �nd bugs in the speci�cation. Because the solver works at a lower
level of abstraction than the modeling language, users have to remember that it may not respect
“obvious” system invariants. Solver-aided languages would bene�t from a tool-assisted method for
conveying invariants to the solver, or for detecting when an important property has been violated.

Toward these goals, gradual typing contributes lessons about how to identify critical boundaries, how
to protect the data that crosses these boundaries, and how to e�ciently build the protection layer. My
expertise with proofs, performance, and people will inform methods that address the challenges.
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