
JFP 31, e14, 15 pages, 2021. c© The Author(s), 2021. Published by Cambridge University Press 1
doi:10.1017/S0956796821000149

PhD Abstracts

G R A H A M H U T T O N
University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish fourteen in this round and hope that JFP readers will find
many interesting dissertations in this collection that they may not otherwise have seen.
If a student or advisor would like to submit a dissertation abstract for publication in this
series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000149
mailto:graham.hutton@nottingham.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000149&domain=pdf
https://doi.org/10.1017/S0956796821000149


2 G. Hutton

Do-it-Yourself Module Systems:
Extending Dependently-Typed Languages to

Implement Module System Features In The Core Language

MUSA AL-HASSY
McMaster University, Canada

Date: April 2021; Advisor: Wolfram Kahl and Jacques Carette
URL: https://tinyurl.com/2cuntnb5

We show that contexts serve as a practical single-source of truth from which one may
extract other useful packaging constructs such as records, typeclasses, algebraic data-types,
and much more. Along the way we solve The Unbundling Problem.

Imagine you have a collection of physical folders, portfolios, of candidates to hire at
your workplace. You may be interested in only looking at their experience in the field
before looking at the rest of their portfolio, so you request a secretary to produce new fold-
ers that have the numeric year on the front and all other information within the folder. You
can now quickly discern which candidates are interesting to you. However, a colleague
may be interested in only looking at their publication count. Once again, the secretary will
construct an entire new set of portfolios, restructured to meet the needs of a new user. Yet
another hiring manager may be interested in only looking at their current residing location
and their school of study; and so the secretary is summoned yet again. The ability to expose
certain details of a candidate’s portfolio to the top cover of the folder is useful to narrow
focus to what is important to know first, before any further consideration. However, what
is ‘important’ is different to different people.

We show how to solve this exposing, “unbundling”, problem in dependently-typed lan-
guages with a pragmatic, usable, implementation in Agda —as well as a more powerful
implementation in Emacs Lisp, serving as an “editor extension”.

Put simply, the thesis is about making tedious and inexpressible patterns of program-
ming in dependently typed languages become mechanical and expressible. In particular,
we show how �, �, and W types can be obtained from contexts, using monadic
do-notation. As such, one avoids the repetitious and error-prone activity of forming sim-
ilar, related, grouping mechanisms —and their coercions— manually, on a case-by-case
basis. The monadic definition of contexts allows users to “extend” the system to allow for
unexpected interpretations of contexts —using the same concrete syntax.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/2cuntnb5
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 3

On the Foundations of Practical Language-Based Security

MAXIMILIAN ALGEHED
Chalmers University of Technology, Sweden

Date: June 2021; Advisor: Mary Sheeran and Koen Claessen
URL: https://tinyurl.com/543bfpc5

Language-based information flow control (IFC) promises to provide programming lan-
guages and tools that make it easy for developers to write secure code. Traditionally, one
builds a variant of a programming language or system that lets developers write code with
strong security guarantees. However, two developments challenge this paradigm. Firstly,
backwards-compatible security enforcement without false alarms promises to retrofit secu-
rity in code that was not written with this in mind. Secondly, library-based security
promises to do away with specialized IFC languages by factoring them into libraries.

This thesis makes contributions to both these developments that come in two parts; the
first concerns enforcing secure information flow without false alarms while the second
concerns the correctness of IFC libraries.

The first part makes the following contributions:

1. It unifies the existing literature on security enforcement without false alarms by
introducing Faceted Secure Multi-Execution.

2. It explores the unique optimisation challenges that appear in this setting.
3. It proves an exponential lower bound on black-box false-alarm-free enforcement

and new possibility results for false-alarm-free enforcement.
4. It classifies the special cases of enforcement that is not subject to the aforemen-

tioned exponential lower bound.

In short, the first part of the thesis unifies the existing literature on false-alarm-free
IFC enforcement and presents a number of results on the performance of enforcement
mechanisms of this kind.

The second part meanwhile makes the following contributions:

1. It reduces the complexity of security libraries by showing how to implement secure
effects on top of an already secure core.

2. It shows how to simplify DCC, the core language in the literature, without losing
expressiveness.

3. It proves that noninterference can be derived in a straightforward way from para-
metricity for both static and dynamic security libraries. This reduces the gap
between the security libraries that are used today and the proofs used to prove that
the libraries ensure noninterference.

In short, the second part of the thesis provides a new direction for thinking about
the correctness of security libraries by both reducing the amount of trusted code and by
introducing improved means of proving that a security library guarantees noninterference.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/543bfpc5
https://doi.org/10.1017/S0956796821000149


4 G. Hutton

Towards Efficient Gradual Typing
via Monotonic References and Coercions

DEYAAELDEEN ALMAHALLAWI
Indiana University Bloomington, USA

Date: June 2020; Advisor: Jeremy G. Siek
URL: https://tinyurl.com/udzbemk3

Integrating static and dynamic typing into a single programming language enables pro-
grammers to choose which discipline to use in each code region. Different approaches
for this integration have been studied and put into use at large scale, e.g. TypeScript for
JavaScript and adding the dynamic type to C#. Gradual typing is one approach to this inte-
gration that preserves type soundness by performing type-checking at run-time using casts.
For higher order values such as functions and mutable references, a cast typically wraps the
value in a proxy that performs type-checking when the value is used. This approach suffers
from two problems: (1) chains of proxies can grow and consume unbounded space, and (2)
statically typed code regions need to check whether values are proxied. Monotonic refer-
ences solve both problems for mutable references by directly casting the heap cell instead
of wrapping the reference in a proxy. In this dissertation, an integration is proposed of
monotonic references with the coercion-based solution to the problem of chains of proxies
for other values such as functions. Furthermore, the prior semantics for monotonic refer-
ences involved storing and evaluating cast expressions (not yet values) in the heap and it is
not obvious how to implement this behavior efficiently in a compiler and run-time system.
This dissertation proposes novel dynamic semantics where only values are written to the
heap, making the semantics straightforward to implement. The approach is implemented
in Grift, a compiler for a gradually typed programming language, and a few key optimiza-
tions are proposed. Finally, the proposed performance evaluation methodology shows that
the proposed approach eliminates all overheads associated with gradually typed references
in statically typed code regions without introducing significant average-case overhead.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/udzbemk3
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 5

Type Theories for Reactive Programming

CHRISTIAN ULDAL GRAULUND
IT University of Copenhagen, Denmark

Date: March 2021; Advisor: Rasmus Ejlers Møgelberg
URL: https://tinyurl.com/2fzwzea2

Functional reactive programming (FRP) is the application of techniques from functional
programming to the domain of reactive programming. In recent years, there has been a
growing interest in modal FRP. Here, modal types are added to languages for FRP with the
goal of allowing the type system to enforce properties particular to reactive programming.
These include causality, productivity and ruling out so-called space leaks.

The thesis is a collection of three previously published papers and an unpublished note.
The first paper presents Simply RaTT, a simply typed language with with two Fitch-style
modal type operators for reactive programming: one describing data available in the next
time step, and one describing stable data that can be safely stored for the next time step.
Recursion is introduced via a guarded fixed point operator. An operational semantics is
given which allows for causal and productive evaluation of all stream transducers written
in the language. Moreover, this evaluation is proved to be free of implicit space leaks. This
paper was previously published at ICFP, 2019. The thesis also contains an unpublished
note describing a denotational semantics for Simply RaTT in a presheaf category.

The second paper presents an extension of Lively RaTT, which allows one to also
encode liveness properties such as fairness in the type system. Such properties are usu-
ally considered incompatible with guarded recursion, but the paper shows how these can
be combined using a submodality of the step modality used in Simply RaTT. This paper
was published at POPL 2021.

The final paper presents the language λ-Widget, a language designed for programming
with widgets at the abstraction level of scene graphs, e.g., the DOM in a browser. This
language uses a model of asynchronous events, designed for an efficient implementation
strategy. The logical reading of λ-Widget combines linear temporal logic with linear logic.
This paper was published at FoSSaCS 2021.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/2fzwzea2
https://doi.org/10.1017/S0956796821000149


6 G. Hutton

Deep and Shallow Types

BEN GREENMAN
Northeastern University, USA

Date: December 2020; Advisor: Matthias Felleisen
URL: https://tinyurl.com/n6a84ex7

The design space of mixed-typed languages is lively but disorganized. On one hand,
researchers across academia and industry have contributed language designs that allow
typed code to interoperate with untyped code. These design efforts explore a range of goals;
some improve the expressiveness of a typed language, and others strengthen untyped code
with a tailor-made type system. On the other hand, experience with type-sound designs
has revealed major challenges. We do not know how to measure the performance costs
of sound interaction. Nor do we have criteria that distinguish “truly sound” mixed-typed
languages from others that enforce type obligations locally rather than globally.

In this dissertation, I introduce methods for assessing mixed-typed languages and
bring order to the design space. My first contribution is a performance-analysis method
that allows language implementors to systematically measure the cost of mixed-typed
interaction.

My second contribution is a design-analysis method that allows language designers
to understand implications of the type system. The method addresses two central ques-
tions: whether typed code can cope with untyped values, and whether untyped code can
trust static types. Further distinctions arise by asking whether error outputs can direct a
programmer to potentially-faulty interactions.

I apply the methods to several designs and discover limitations that motivate a syn-
thesis of two ideas from the literature: deep types and shallow types. Deep types offer
strong guarantees but impose a high interaction cost. Shallow types offer weak guaran-
tees and better worst-case costs. This dissertation proves that deep and shallow types can
interoperate and measures the benefits of a three-way mix.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/n6a84ex7
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 7

Efficiency Three Ways: Tested, Verified, and Formalised

MARTIN ADAM THOMAS HANDLEY
University of Nottingham, UK

Date: September 2020; Advisor: Graham Hutton
URL: https://tinyurl.com/53959u36

Two fundamental goals in programming are correctness and efficiency: we want our
programs to produce the right results, and to do so using as few resources as possible.
One of the key benefits of the functional programming paradigm is the ability to reason
about programs as if they are pure mathematical functions. In particular, programs can
often be proved correct with respect to a specification by exploiting simple algebraic prop-
erties akin to secondary school mathematics. On the other hand, program efficiency is not
immediately amenable to such algebraic methods used to explore program correctness.
This insight manifests as a reasoning gap between program correctness and efficiency, and
is a foundational problem in computer science. Furthermore, it is especially pronounced
in lazy functional programming languages such as Haskell, where the on-demand nature
of evaluation makes reasoning about efficiency even more challenging. To aid Haskell
programmers in their reasoning about program efficiency, the work in this thesis seeks
to partially bridge the reasoning gap using three different approaches: automated testing,
semi-formal verification, and formal verification.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/53959u36
https://doi.org/10.1017/S0956796821000149


8 G. Hutton

Formal Foundations for Provably Safe Web Components

MICHAEL HERZBERG
University of Sheffield, UK

Date: December 2019; Advisor: Achim D. Brucker
URL: https://tinyurl.com/tpusxam8

One of the cornerstones of modern software development that enables the creation of
sophisticated software systems is the concept of reusable software components. Especially
the fast-paced and business-driven web ecosystem is in need of a robust and safe way of
reusing components. As it stands, however, the concepts and functions needed to create
web components are spread out, immature, and not clearly defined, leaving much room for
misunderstandings. To improve the situation, we need to look at the core of web browsers:
the Document Object Model (DOM). It represents the state of a website with which users
and client-side code (JavaScript) interact. Being in this central position makes the DOM
the most central and critical part of a web browser with respect to safety and security,
so we need to understand exactly what it does and which guarantees it provides. A well-
established approach for this kind of highly critical system is to apply formal methods to
mathematically prove certain properties. In this thesis, we provide a formal analysis of
web components based on shadow roots, highlight their short-comings by proving them
unsafe in many circumstances, and propose suggestions to provably improve their safety.
In more detail, we build a formalisation of the Core DOM in Isabelle/HOL into which
we introduce shadow roots. Then, we extract novel properties and invariants that improve
the often implicit assumptions of the standard. We show that the model complies to the
standard by symbolically evaluating all relevant test cases from the official compliance
suite successfully on our model. We introduce novel definitions of web components and
their safety and classify the most important DOM API accordingly, by which we uncover
surprising behavior and shortcomings. Finally, we propose changes to the DOM standard
by altering our model and proving that the safety of many DOM API methods improves
while leading to a less ambiguous API.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/tpusxam8
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 9

Understanding and Evolving the Rust Programming Language

RALF JUNG
Saarland University, Germany

Date: August 2020; Advisor: Derek Dreyer
URL: https://tinyurl.com/38ejx5c3

Rust is a young systems programming language that aims to fill the gap between
high-level languages—which provide strong static guarantees like memory and thread
safety—and low-level languages—which give the programmer fine-grained control over
data layout and memory management. This dissertation presents two projects establish-
ing the first formal foundations for Rust, enabling us to better understand and evolve this
important language: RustBelt and Stacked Borrows.

RustBelt is a formal model of Rust’s type system, together with a soundness proof estab-
lishing memory and thread safety. The model is designed to verify the safety of a number
of intricate APIs from the Rust standard library, despite the fact that the implementations
of these APIs use unsafe language features.

Stacked Borrows is a proposed extension of the Rust specification, which enables the
compiler to use the strong aliasing information in Rust’s types to better analyze and opti-
mize the code it is compiling. The adequacy of this specification is evaluated not only
formally, but also by running real Rust code in an instrumented version of Rust’s Miri
interpreter that implements the Stacked Borrows semantics.

RustBelt is built on top of Iris, a language-agnostic framework, implemented in the Coq
proof assistant, for building higher-order concurrent separation logics. This dissertation
begins by giving an introduction to Iris, and explaining how Iris enables the derivation
of complex high-level reasoning principles from a few simple ingredients. In RustBelt,
this technique is exploited crucially to introduce the lifetime logic, which provides a
novel separation-logic account of borrowing, a key distinguishing feature of the Rust type
system.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/38ejx5c3
https://doi.org/10.1017/S0956796821000149


10 G. Hutton

Relational Reasoning for Effects and Handlers

CRAIG MCLAUGHLIN
University of Edinburgh, UK

Date: June 2020; Advisor: James McKinna and Ian Stark
URL: https://tinyurl.com/5cfp2ya9

This thesis studies relational reasoning techniques for Frank, a strict functional language
supporting algebraic effects and their handlers, within a general, formalised approach for
completely characterising observational equivalence.

Algebraic effects and handlers are an emerging paradigm for representing computational
effects where primitive operations, the sources of an effect, are primary, and given seman-
tics through their interpretation by effect handlers. Frank is a novel point in the design
space because it recasts effect handling as part of a generalisation of call-by-value func-
tion application. Furthermore, Frank generalises unary effect handlers to the n-ary notion
of multihandlers, supporting more elegant expression of certain handlers.

There have been recent efforts to develop sound reasoning principles, with respect to
observational equivalence, for languages supporting effects and handlers. Such techniques
support powerful equational reasoning about code, such as substitution of equivalent sub-
terms (‘equals for equals’) in larger programs. However, few studies have considered a
complete characterisation of observational equivalence, and its implications for reason-
ing techniques. Furthermore, there has been no account of reasoning principles for Frank
programs.

Our first contribution is a formal reconstruction of a general proof technique, trian-
gulation, for proving completeness results for observational equivalence. The technique
brackets observational equivalence between two structural relations, a logical and an
applicative notion. We demonstrate the triangulation proof method for a pure simply-typed
λ-calculus. Our results are readily formalisable in Agda using state-of-the-art technology
for dealing with syntaxes with binding.

Our second contribution is a calculus, Ella, capturing the essence of Frank’s novel
design. In particular, Ella supports binary handlers and generalises function application
to incorporate effect handling. We extend our triangulation proof technique to this new
setting, completely characterising observational equivalence for this calculus. We report
on our partial progress in formalising our extension to Ella in Agda.

Our final contribution is the application of sound reasoning principles, inspired by
existing literature, to a variety of Ella programs, including a proof of associativity for a
canonical pipe multihandler. Moreover, we show how leveraging completeness leads, in
certain instances, to simpler proofs of observational equivalence.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/5cfp2ya9
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 11

A Semantic Foundation for Sound Gradual Typing

MAX S. NEW
Northeastern University, USA

Date: December 2020; Advisor: Amal Ahmed
URL: https://tinyurl.com/y4jxarnn

Gradually typed programming languages provide a way forward in the debate between
static and dynamic typing. In a gradual language, statically typed and dynamically typed
programs can intermingle, and dynamically typed scripts can be gradually migrated to a
statically typed style. In a sound gradually typed language, static type information is just
as reliable as in a static language, establishing correctness of type-based refactoring and
optimization. To ensure this in the presence of dynamic typing, runtime type casts are
inserted automatically at the boundary between static and dynamic code. However the
design of these languages is somewhat ad hoc, with little guidance on how to ensure that
static reasoning principles are valid.

In my dissertation, I present a semantic framework for design and metatheoretic anal-
ysis of gradually typed languages based on the theory of embedding-projection pairs. I
show that this semantics enables proofs of the fundamental soundness theorems of gradual
typing, and that it is robust, applying it to different evaluation orders and programming
features.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/y4jxarnn
https://doi.org/10.1017/S0956796821000149


12 G. Hutton

Accelerated Financial Algorithms:
Derivative Pricing and Risk Management Applications

WOJCIECH MICHAL PAWLAK
University of Copenhagen, Denmark

Date: May 2021; Advisor: Martin Elsman, Cosmin Oancea, Allan Engsig-Karup and Carl Clausen
URL: https://tinyurl.com/3y5hwhvp

This industrial Ph.D. thesis is about Accelerated Financial Algorithms. We describe
the design and implementation of common compute-intensive financial applications that
combine state-of-the-art High-Performance Computing (HPC) code optimisation tech-
niques to harness massive parallelism of modern parallel hardware architectures like
Graphical Processing Units (GPU). We target the acceleration of pricing and risk man-
agement of real investment portfolios that consist of complex derivative instruments. We
demonstrate our findings through a detailed analysis and practical accelerated implemen-
tations of common numerical algorithms. Our research is supplemented with a feasibility
study carried out using high-level data-parallel programming languages and frameworks.
We propose Futhark, which is a purely functional array programming language, as an
example of a technology that enables efficient performance, while sustaining modularity,
maintainability, and scalability of complex financial algorithms.

We focus on high-level algorithmic specifications and code optimisations that extract
enough parallelism from a given algorithm to efficiently map it to high-throughput
Graphics Processing Units (GPUs). In particular, we use flattening techniques for non-
regular nested parallelism; target memory access patterns and size requirements through
code optimisation such as data reordering, padding, and access coalescing; introduce
inspector-executor approaches to dynamically analyse and adapt to any input dataset;
and provide multiple kernel versions that together efficiently cover the entire spectrum
of possible datasets.

The first contribution addresses an acceleration of a fixed-income derivatives pricing
algorithm based on the Hull-White One-Factor Lattice Method (HW1F). We introduce
a high-level algorithmic specification, which exhibits irregular-nested parallelism, and
derive and optimise two hand tuned CUDA implementations: one of which utilises the
only outer level of parallelism, while the other utilises both levels of parallelism. The sec-
ond contribution is an accelerated algorithm for equity derivatives pricing that uses a Least
Squares Monte Carlo Simulation Model (LSMC) following a Longstaff-Schwartz model
and is implemented in high-level Futhark language. We show how an auto-generated
implementation beats a manually-optimised one for certain datasets. The third contribu-
tion is a massive-scale Monte Carlo simulation to obtain Value at Risk (MCVaR) and
other portfolio market risk measures. The memory-bound simulations comprise multiple
nested parallel levels executed on a diverse portfolio of vanilla and exotic derivatives.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/3y5hwhvp
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 13

Leveraging Information Contained in Theory Presentations

YASMINE SHARODA
McMaster University, Canada

Date: March 2021 ; Advisor: Jacques Carette and William M. Farmer
URL: https://tinyurl.com/4ma6p4j2

Building a large library of mathematical knowledge is a complex and labour-intensive
task. By examining current libraries of mathematics, we see that the human effort put in
building them is not entirely directed towards tasks that need human creativity. Instead,
a non-trivial amount of work is spent on providing definitions that could have been
mechanically derived.

In this work, we propose a generative approach to library building, so definitions that
can be automatically derived are computed by meta-programs. We focus our attention
on libraries of algebraic structures, like monoids, groups, and rings. These structures are
highly inter-related and their commonalities have been well-studied in universal alge-
bra. We use theory presentation combinators to build a library of algebraic structures.
Definitions from universal algebra and programming languages meta-theory are used to
derive library definitions of constructions, like homomorphisms and term languages, from
algebraic theory presentations. The result is an interpreter that, given 227 theory expres-
sions, builds a library of over 5000 definitions. This library is, then, exported to Agda and
Lean.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/4ma6p4j2
https://doi.org/10.1017/S0956796821000149


14 G. Hutton

Don’t Mind the Formalization Gap:
The Design and Usage of hs-to-coq

ANTAL SPECTOR-ZABUSKY
University of Pennsylvania, USA

Date: May 2021; Advisor: Stephanie Weirich
URL: https://tinyurl.com/3e4cf36v

Using proof assistants to perform formal, mechanical software verification is a powerful
technique for producing correct software. However, the verification is time-consuming
and limited to software written in the language of the proof assistant. As an approach to
mitigating this tradeoff, this dissertation presents hs-to-coq, a tool for translating programs
written in the Haskell programming language into the Coq proof assistant, along with its
applications and a general methodology for using it to verify programs. By introducing
edit files containing programmatic descriptions of code transformations, we provide the
ability to flexibly adapt our verification goals to exist anywhere on the spectrum between
“increased confidence” and “full functional correctness”.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/3e4cf36v
https://doi.org/10.1017/S0956796821000149


PhD Abstracts 15

Advanced Semantics for
Non-deterministic and Probabilistic Programming

ALEXANDER VANDENBROUCKE
KU Leuven, Belgium

Date: December 2021; Advisor: Tom Schrijvers
URL: https://tinyurl.com/24mxekxz

Declarative programming is the idea that a program should describe what it does, which
problem it is solving, not how it does so. Thus, declarative programming focuses on com-
plexity that is inherent in the problem, not accidental complexity that originates from
solving the problem on a computer. Less accidental complexity reduces the opportunity
for software defects. This thesis contributes towards declarative programming in three
overlapping paradigms: logic programming, functional programming and probabilistic
programming.

The first part of this thesis studies tabling, a resolution mechanism for logic pro-
gramming that ensures termination of a larger class of programs. Extensions of tabling
(mode-directed tabling and answer subsumption) allow efficient tabling for optimisation
problems. While much attention has been devoted to the expressivity and efficiency of
these approaches, soundness has not been considered. This thesis shows that some imple-
mentations indeed fail to produce the correct answer for some programs. To remedy this
situation, the thesis provides a formal framework and establishes a correctness criterion for
soundness.

Then, tabling is adapted for non-determinism and optimisation in Haskell. However,
Haskell’s default recursion mechanism is not suitable for non-deterministic programs, and
causes non-termination. Instead, the correct semantics is a complete-lattice based least
fixed point semantics, implemented as a monad via tabling.

The second part of this thesis presents PλωNK, a probabilistic programming language
for modelling networks. Unlike the earlier language Probabilistic NetKAT (PNK), PλωNK
provides higher-order functions, to make programming more convenient and declarative.

Formalisation of PλωNK is challenging for two reasons: Firstly, network programming
introduces side effects (e.g., non-determinism and probabilistic choice) which need to be
carefully controlled in a functional setting. PλωNK’s explicit syntax makes this inter-
play precise. Secondly, measure theory, the standard approach, only supports first-order
functions. The solution is to leverage ω-Quasi Borel Spaces.

This work is not only useful for bringing abstraction to PNK. But may also inform sim-
ilar meta-theoretic efforts which combine advanced features like higher-order functions,
iteration and parallelism.

https://doi.org/10.1017/S0956796821000149 Published online by Cambridge University Press

https://tinyurl.com/24mxekxz
https://doi.org/10.1017/S0956796821000149

	PhD Abstracts

