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Abstract

Gradual typing systems ensure type soundness by trans-
forming static type annotations into run-time checks. These
checks provide semantic guarantees, but may come at a large
cost in performance. In particular, recent work by Takikawa
et al. suggests that enforcing a conventional form of type
soundness may slow a program by two orders of magnitude.
Since different gradual typing systems satisfy different no-
tions of soundness, the question then arises: what is the cost
of such varying notions of soundness? This paper answers
an instance of this question by applying Takikawa et al.’s
evaluation method to Reticulated Python, which satisfies a
notion of type-tag soundness. We find that the cost of sound-
ness in Reticulated is at most one order of magnitude, and
increases linearly with the number of type annotations.
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1 How Much does Soundness Cost?

Gradual typing systems can help programmers with the task
of maintaining code written in a dynamically typed language.
If the language comes with a gradual typing system, develop-
ers may incrementally add type annotations as they improve
a piece of the code base. The next developer that needs to
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comprehend this part of the application can use the type
annotations to understand its structure and invariants.

While gradual typing can improve readability and robust-
ness, it has serious implications for performance. The prob-
lem is that gradual typing systems enforce type soundness
with run-time assertions that check whether values supplied
by dynamically typed code match the type system’s assump-
tions. These checks can impose a large performance cost.

Since the design space of gradual typing comes with a
range of soundness notions, the question arises how much
soundness costs in terms of performance. One such notion
is Typed Racket’s generalized type soundness [6]. At a high
level, generalized soundness states that if a well-typed term
reduces to a value, the value has the expected type. Oth-
erwise, evaluation halts with a type error that directs the
programmer to the source of the unexpected value. The
performance cost of this guarantee is evidently high. An
evaluation by Takikawa et al. [4] found that Typed Racket’s
implementation of generalized soundness can slow a work-
ing program by over two orders of magnitude.

A second notion of gradual type soundness is Reticulated’s
tag soundness [8]. Tag soundness guarantees that if a well-
typed expression reduces to a value, then the value has the
correct top-level type constructor (see section 2). Thus an
expression with type List(Int) may reduce to a list of strings,
but not to an integer or a function.

One might expect that gradual typing in Reticulated comes
at a lower performance cost, but this claim has not been sys-
tematically evaluated. For example, both Vitousek et al. [8]
and Muehlboeck and Tate [2] report the performance of
Reticulated on fully-typed and fully-untyped programs, but
do not report the performance of programs that actually use
gradual typing. Part of the challenge is that Reticulated sup-
ports the addition of type annotations at a fine granularity,
making exhastive evaluation infeasible for many programs.
We address this limitation with an evaluation method based
on random sampling (see section 3.1 and the appendix).

This paper contributes a systematic evaluation of the cost
of gradual typing in Reticulated. The central findings are:

e Reticulated experiences a slow down of at most one
order of magnitude at a function-level granularity;

o the performance degradation is approximately a linear
function of the number of type annotations; and

¢ random sampling can approximate the performance
overhead of gradual typing in Reticulated with a linear
number of samples from an exponentially-large space.
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@fields({"dollars": Int, "cents":Int})
class Cash:
def __init__(self:Cash, d:Int, c:Int)—>Void:
self.dollars = d

self.cents = ¢

def add_cash(self:Cash, other:Cash)—>Void:
self.dollars += other.dollars

self.cents += other.cents

Figure 1: A well-typed class

Outline: Section 2 introduces Reticulated, Section 3 adapts
the Takikawa method, and Section 4 presents the evaluation.

2 Reticulated Python

Reticulated is a gradual typing system for Python' that gives
programmers the ability to annotate functions and class
fields with types [7, 8]. By way of example, figure 1 presents
a type-annotated class representing US currency. The an-
notations imply two high-level invariants: (1) instances of
the cash class have integer-valued fields, and (2) the add_cash
method is only invoked with instances of the cash class.

Within the add_cash method, Reticulated enforces these
invariants by translating the type annotations into dynamic
checks that protect the two arguments of add_cash and the
four dereferences of the fields dollars and cents [7]. These
checks defend the statically typed method from arbitrary
callers. If a Python context invokes add_cash with an integer,
then the program will halt with a type-tag error.

2.1 Tag Soundness

Reticulated uses dynamic type checks to implement a form of
type soundness [8]. Informally, if e is a well-typed expression,
then evaluating e can result in one of four outcomes:

1. the program execution terminates with a value v that
has the same type tag as the expression e;
2. the execution diverges;
3. the execution ends in an exception due to a partial
computational primitive (e.g., division-by-zero); or
4. the execution ends in a type-tag error.
A type tag is essentially a type constructor without param-
eters. For completeness, figure 2 presents selected types ¢
and tags k, as well as the mapping || from types to tags.”
Tag soundness is clearly weaker than standard type sound-
ness; a well-typed program can reduce to a value that does
not match its static type annotation. Figure 3 demonstrates
with an expression that has the static type List(Int) but
evaluates to a list containing a string and a function. This

ISpecifically, CPython 3.
2The type Dyn is the dynamic type. Every expression is well-typed at Dyn.
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t = Int| List(r) | Function([z],7) | Dyn
k = Int| List| Function | Dyn
lz] =«
[Int] = Int |Function([r],z’)| = Function

|List(r)] = List [Dyn| = Dyn

Figure 2: Selected types (7) and type tags (k)

def make_ints()—>List(Int):
xs = []
xs.append("NaN")
xs.append (make_ints)

return xs

make_ints() # returns ["NaN", <function>]

Figure 3: A strange but well-typed function

particular program succeeds because the append method is
dynamically typed, but the general issue is that Reticulated
supports only tag-level compositional reasoning. A program-
mer cannot trust the types beyond their top-level constructor.

Nevertheless, tag soundness is a pragmatic guarantee
to retrofit to a dynamically-typed language. Reticulated’s
main design goal is to provide seamless interaction with the
Python 3 runtime and libraries [3]. Consequently, Reticu-
lated cannot implement a standard form of type soundness.
There are two fundamental reasons why Reticulated must
aim for a different guarantee.

First, any interaction between Reticulated code and Python
code can potentially cause a type-tag error. There are two
reasons for this. On one hand, the Reticulated type anno-
tation might not match the behaviors implemented by the
Python code. On the other hand, the Python code might con-
tain a bug. These impedance mismatches cannot be caught
without analyzing the Python code, and so the fourth clause
of tag soundness admits the possibility of tag errors.

Second, Python code may inspect the representation of
values. Reticulated must therefore ensure that a value from
statically-typed code is indistinguishable from a Python
value. The only way to meet this criterion (without mod-
ifying the Python runtime API) is to use the same value
in both cases.’ In particular, a Reticulated list must be in-
distinguishable from a Python list. This indistinguishability
constraint explains why it is difficult for Reticulated to pre-
dict the run-time type of a value.

Reticulated chooses to implement tag soundness instead
of some other compromise because of a secondary design

30ther gradually-typed languages use proxies to approximate indistin-
guishability [5, 9]. This approach typically fails when values are serialized
or sent across a foreign function interface (FFI).
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goal: all dynamic type checks run in near-constant time.
Instead of checking the type of values within a data structure,
Reticulated stops at the structure’s outermost tag. Hence
list types require an ©(1) tag check and structural object
types with f fields require an ©(f) check that the given
value binds the proper fields. Intuitively, such checks should
impose little overhead no matter how a programmer adds
type annotations.

3 Evaluation Method

Takikawa et al. [4] introduce a three-step method for evaluat-
ing the performance of a gradual typing system: (1) identify
a suite of fully-typed programs; (2) measure the performance
of all gradually-typed configurations of the programs; (3)
count the number of configurations with performance over-
head no greater than a certain limit. They apply this method
to Typed Racket, a gradual typing system with module-level
granularity; in other words, a Typed Racket program with
M modules has 2 gradually-typed configurations.

Reticulated supports gradual typing at a much finer gran-
ularity, making it impractical to directly apply the Takikawa
method. A naive application would require 2% measurements
for one function with a formal parameters, and similarly
2/ measurements for one class with f fields. The follow-
ing subsections therefore generalize the Takikawa method
(section 3.1) and describe the protocol we use to evaluate
Reticulated (section 3.2).

3.1 Generalizing the Takikawa Method

A gradual typing system enriches a dynamically typed lan-
guage with a notion of static typing; that is, some pieces of a
program can be statically typed. The granularity of a gradual
typing system defines the minimum size of such pieces in
terms of abstract syntax. A performance evaluation must
define its own granularity to systematically explore the ways
that a programmer may write type annotations, subject to
practical constraints.

Definition (granularity) The granularity of an evaluation
is the syntactic unit at which the evaluation adds or removes
type annotations.

For example, the evaluation in Takikawa et al. [4] is at the
granularity of modules. The evaluation in Vitousek et al. [8]
is at the granularity of whole programs. Section 3.2 defines
the function and class-fields granularity, which we use for
this evaluation.

After defining a granularity, a performance evaluation
must define a suite of programs to measure. A potential
complication is that such programs may depend on external
libraries or other modules that lie outside the scope of the
evaluation. It is important to distinguish these so-called fixed
modules from the focus of the experiment.

4This goal is implicit in the implementation of Reticulated [8].
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Definition (experimental, fixed) The experimental mod-
ules in a program define its configurations. The fixed modules
in a program are common across all configurations.

The granularity and experimental modules define the con-
figurations of a fully-typed program.

Definition (configurations) Let P — P’ if and only if pro-
gram P’ can be obtained from P by annotating one syntactic
unit in an experimental module. Let —* be the reflexive,
transitive closure of the — relation.” The configurations of a
fully-typed program P are all programs P such that P —*P”.
Furthermore, P7 is a so-called fully-typed configuration; an
untyped configuration P* has the property P* —*P for all
configurations P.

An evaluation must measure the performance overhead
of these configurations relative to some default. A natural
baseline is the performance of the original program, distinct
from the gradual typing system.

Definition (baseline) The baseline performance of a pro-
gram is its running time in the absence of gradual typing.

In Typed Racket, the baseline is the performance of Racket
running the untyped configuration. In Reticulated, the base-
line is Python running the untyped configuration. This is not
the same as Reticulated running the untyped configuration
because Reticulated inserts checks in untyped code [7].

Definition (performance ratio) A performance ratio is the
running time of a configuration divided by the baseline per-
formance of the untyped configuration.

An exhaustive performance evaluation measures the per-
formance of every configuration. The natural way to inter-
pret this data is to choose a notion of “good performance”
and count the proportion of “good” configurations. In this
spirit, Takikawa et al. [4] ask programmers to consider the
performance overhead they could deliver to clients.

Definition (D-deliverable) For D € R™, a configuration is
D-deliverable if its performance ratio is no greater than D.

If an exhaustive performance evaluation is infeasible, an
alternative is to select configurations via simple random sam-
pling and measure the proportion of D-deliverable configu-
rations in the sample. Repeating this sampling experiment
yields a simple random approximation of the true proportion
of D-deliverable configurations.

Definition (95%-r, s-approximation) Given r samples each
containing s configurations chosen uniformly at random, a
95%-r, s-approximation is a 95% confidence interval for the
proportion of D-deliverable configurations in each sample.

The appendix contains mathematical and empirical justi-
fication for the simple random approximation method.

5The — relation expresses the notion of a type conversion step [1, 4]. The
—* relation expresses the notion of term precision [3].
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3.2 Protocol

Granularity The evaluation presented in section 4 is at
the granularity of function and class fields. One syntactic unit
in the experiment is either one function, one method, or the
collection of all fields for one class. The class in figure 1, for
example, has 3 syntactic units at this granularity.

Benchmark Creation To convert a Reticulated program
into a benchmark, we: (1) build a driver module that runs
the program and collects timing information; (2) remove any
non-determinism or I/O actions;’ (3) partition the program
into experimental and fixed modules; and (4) add type anno-
tations to the experimental modules. We modify any Python
code that Reticulated’s type system cannot validate, such as
code that requires untagged unions or polymorphism.

Data Collection For benchmarks with at most 22! config-
urations, we conduct an exhaustive evaluation. For larger
benchmarks we conduct a simple random approximation us-
ing ten samples each containing 10+ (F + C) configurations,
where F is the number of functions in the benchmark and C
is the number of classes. Note the number 10 is arbitrary; our
goal was to collect as much data as possible in a reasonable
amount of time. End

All data in this paper was produced by jobs we sent to the
Karst at Indiana University’ computing cluster. Each job:

1. reserved all processors on one node;

2. downloaded fresh copies of Python 3.4.3 and Reticu-
lated (commit e478343 on the master branch);

3. repeatedly: selected a random configuration from a
random benchmark, ran the configuration’s main mod-
ule 40 times, and recorded the result of each run.

Cluster nodes are IBM NeXtScale nx360 M4 servers with two
Intel Xeon E5-2650 v2 8-core processors, 32 GB of RAM, and
250 GB of local disk storage.

4 Performance Evaluation

To assess the run-time cost of gradual typing in Reticulated,
we measured the performance of twenty-one benchmark
programs. Figure 4 tabulates information about the size and
structure of the experimental portions of these benchmarks.
The four columns report the lines of code (SLOC), number of
modules (M), number of function and method definitions (F),
and number of class definitions (C). Section 2 of the appendix
describes the benchmarks’ origin and purpose.

The following three subsections present the results of
the evaluation. Section 4.1 reports the performance of the
untyped and fully-typed configurations. Section 4.2 plots the
proportion of D-deliverable configurations for D between 1
and 10. Section 4.3 compares the number of type annotations
in each configuration to its performance.

SFour benchmarks inadvertantly perform I/O actions, see section 5.
7kb.iu.edu/d/bezu
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Benchmark SLOC M F C
futen 221 3 13 2
http2 86 2 3 1
s1lowSHA 210 4 14 3
call_method 115 1 6 1
call_simple 113 1 6 0
chaos 190 1 12 3
fannkuch 41 1 1 0
float 36 1 5 1
g0 80 1 6 1
meteor 100 1 8§ 0
nbody 01 1 5 0
nqueens 37 1 2 0
pidigits 33 1 5 0
pystone 177 1 13 1
spectralnorm 31 1 5 0
Espionage 93 2 11 1
PythonFlow 112 1 11 1
take5 130 3 14 2
sample_fsm 148 5 17 2
aespython 403 6 29 5
stats 1118 13 79 0

Figure 4: Static summary of benchmarks

4.1 Performance Ratios

The table in figure 5 lists the extremes of gradual typing in
Reticulated. From left to right, these are: the performance
of the untyped configuration relative to the Python baseline
(the retic/python ratio), the performance of the fully-typed
configuration relative to the untyped configuration (the type-
d/retic ratio), and the overall delta between fully-typed and
Python (the typed/python ratio).

For example, the row for futen reports a retic/python ratio
of 1.58. This means that the average time to run the untyped
configuration of the futen benchmark using Reticulated was
1.58 times slower than the average time of running the same
code using Python. Similarly, the typed/retic ratio for futen
states that the fully-typed configuration is 1.06 times slower
than the untyped configuration.

Conclusions Migrating a benchmark to Reticulated, or
from untyped to fully-typed, always adds performance over-
head. The migration never improves performance. The over-
head is always within an order-of-magnitude. Regarding the
retic/python ratios: eleven are below 2x, six are between 2x
and 3x, and the remaining four are below 4.5x. The type-
d/retic ratios are typically lower: sixteen are below 2x, two
are between 2x and 3x, and the final three are below 3.5x.

Fourteen benchmarks have larger retic/python ratios than
typed/retic ratios. Given that an untyped Reticulated pro-
gram offers the same safety guarantees as Python, it is sur-
prising that the retic/python ratios are so large.


https://github.com/mvitousek/reticulated/commit/e478343ce7c0f2bc50d897b0ad38055e8fd9487d
https://github.com/mvitousek/reticulated
https://kb.iu.edu/d/bezu
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retic/ typed/ |typed/
Benchmark  python retic |python
futen 1.58 1.06 1.68
http2 3.07 1.18 3.63
slowSHA 1.66 1.18 1.96
call_method 4.48 1.74 7.79
call_simple 1.00 3.10 3.11
chaos 2.08 1.77 3.69
fannkuch 1.14 1.01 1.15
float 2.18 1.52 3.32
go 3.77 1.97 7.44
meteor 1.56 1.37 2.13
nbody 1.78 1.01 1.80
nqueens 1.25 1.57 1.96
pidigits 1.02 1.02 1.05
pystone 1.36 2.06 2.79
spectralnorm 2.01 3.47 6.98
Espionage 2.87 1.79 5.14
PythonFlow 2.38 3.04 7.23
take5 1.21 1.14 1.38
sample_fsm 2.80 2.16 6.07
aespython 341 1.74 5.93
stats 1.09 1.39 1.52

Figure 5: Performance ratios

4.2 Overhead Plots

Figure 6 summarizes the overhead of gradual typing in the
benchmark programs. Each plot reports the percent of D-
deliverable configurations (y-axis) for values of D between
1x overhead and 10x overhead (x-axis). The x-axes are log-
scaled to focus on low overheads; vertical tick marks appear
at 1.2x, 1.4x, 1.6x, 1.8x, 4x, 6%, and 8x overhead.

The heading above the plot for a given benchmark states
the benchmark’s name and indicate whether the data is ex-
haustive or approximate. If the data is exhaustive, this head-
ing lists the number of configurations in the benchmark. If
the data is approximate, the heading lists the number of sam-
ples and the number of randomly-selected configurations in
each sample.

Note the curves for the approximate data (i.e., the curves
for sample_fsm, aespython, and stats) are intervals. For
instance, the height of an interval at x = 4 is the range of
the 95%-10, [10(F + C)]-approximation for the number of 4-
deliverable configurations. These intervals are thin because
there is little variance in the proportion of D-deliverable
configurations across the ten samples. End

How to Read the Plots Overhead plots are cumulative dis-
tribution functions. As the value of D increases along the
x-axis, the number of D-deliverable configurations is mono-
tonically increasing. The important question is how many
configurations are D-deliverable for low values of D. If this
number is large, then a developer who applies gradual typing
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to a similar program has a large chance that the configura-
tion they arrive at is a D-deliverable configuration. The area
under the curve is the answer to this question. A curve with
a large shaded area below it implies that a large number of
configurations have low performance overhead.

The second most important aspects of an overhead plot
are the two values of D where the curve starts and ends.
More precisely, if h:RT — N is a function that counts the
percent of D-deliverable configurations in a benchmark, the
critical points are the smallest overheads dy, d; such that
h(dy) > 0% and h(d;) =100%. An ideal start-value would lie
between zero and one; if dy < 1 then at least one configuration
runs faster than the Python baseline. The end-value d; is the
overhead of the slowest-running configuration.

Lastly, the slope of a curve corresponds to the likelihood
that accepting a small increase in performance overhead
increases the number of deliverable configurations. A flat
curve (zero slope) suggests that the performance of a group
of configurations is dominated by a common set of type
annotations. Such observations are no help to programmers
facing performance issues, but may help language designers
find inefficiencies in their implementation of gradual typing.

Conclusions Curves in figure 6 typically cover a large area
and reach the top of the y-axis at a low value of D. This value
is always less than 10. In other words, every configuration
in the experiment is 10-deliverable. For many benchmarks,
the maximum overhead is significantly lower. Indeed, eight
benchmarks are 2-deliverable.

None of the configurations in the experiment run faster
than the Python baseline. This is to be expected, given the
retic/python ratios in figure 5 and the fact that Reticulated
translates type annotations into run-time checks.

Fourteen benchmarks have relatively smooth slopes. The
plots for the other four benchmarks have wide, flat segments.
These flat segments are due to functions that are frequently
executed in the benchmarks’ traces; all configurations in
which one of these functions is typed incur a significant
performance overhead.

Eighteen benchmarks are roughly T-deliverable, where T
is the typed/python ratio listed in figure 5. In these bench-
marks, the fully-typed configuration is one of the slowest
configurations. The notable exception is spectralnorm, in
which the fully-typed configuration runs faster than 38% of
all configurations. Unfortunately, this speedup is due to a
soundness bug;8 in short, the implementation of Reticulated
does not type-check the contents of tuples.

4.3 Absolute Running Times

Since changing the type annotations in a Reticulated pro-
gram changes its performance, the language should provide
a cost model to help developers predict the performance of a
given configuration. The plots in figure 7 demonstrate that

8Bug report: github.com/mvitousek/reticulated/issues/36
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Figure 6: Overhead plots

a simple heuristic works well for these benchmarks: the per-
formance of a configuration is proportional to the number
of type annotations in the configuration.

How to Read the Plots Figure 7 contains one point for
every run of every configuration in the experiment. (Recall
from section 3.2, the data for each configuration is 40 runs.)
Each point compares the number of type annotations in a
configuration (x-axis) against its running time, measured in
seconds (y-axis).

The plots contain many points with both the same number
of typed components and similar performance. To reduce the
visual overlap between such points, the points for a given
configuration are spread across the x-axis; in particular, the

40 points for a configuration with N typed components lie
within the interval N +0.4 on the x-axis.

For example, fannkuch has two configurations: the un-
typed configuration and the fully-typed configuration. To
determine whether a point (x, y) in the plot for fannkuch
represents the untyped or fully-typed configuration, round
x to the nearest integer.

Conclusions Suppose a programmer starts at an arbitrary
configuration and adds some type annotations. The plots in
figure 7 suggest that this action will affect performance in
one of four possible ways, based on trends among the plots.

Trend I (types make things slow): The plots for ten bench-
marks show a gradual increase in performance overhead
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Figure 7: Running time (in seconds) vs. Number of typed components

as the number of typed components increases. Typing any
function, class, or method adds a small performance over-
head. Applies to futen, slowSHA, chaos, float, pystone,
PythonFlow, take5, sample_fsm, aespython, and stats.

Trend II (types make things very slow): Nine plots have
visible gaps between clusters of configurations with the same
number of types. Configurations below the gap contain type
annotations that impose relatively little run-time cost. Con-
figurations above the gap have some common type anno-
tations that add significant overhead. Each such gap corre-
sponds to a flat slope in figure 6. Applies to call_method,
call_simple, go, http2, meteor, nqueens, spectralnorm,
Espionage, and PythonFlow.

Trend III (types are free): In three benchmarks, all config-
urations have similar performance. The dynamic checks that
enforce tag soundness add insignificant overhead. Applies
to fannkuch, nbody, and pidigits.

Trend IV (types make things fast): In two benchmarks,
some configurations run faster than similar configurations
with fewer typed components. These speedups are the result
of two implementation bugs: (1) Reticulated does not dynam-
ically check the contents of statically-typed tuples, and (2) for
method calls to dynamically-typed objects, Reticulated per-
forms a run-time check that overlaps with Python’s dynamic
typing [7]. Applies to call_method and spectralnorm.
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Overall, there is a clear trend that adding type annota-
tions adds performance overhead. The increase is typically
linear. On one hand, this observation may help programmers
predict performance issues. On the other hand, the linear
increase demonstrates that Reticulated does not use type in-
formation to optimize programs. In principle a JIT compiler
could generate check-free code if it could infer the run-time
type of a variable, but it remains to be seen whether this
approach would improve performance in practice.

5 Threats to Validity

We have identified five sources of systematic bias. First, the
experiment consists of a small suite of benchmarks, and
these benchmarks are rather small. For example, an ad-hoc
sample of the PyPI Ranking’ reveals that even small Python
packages have far more functions and methods than our
benchmarks. The simplejson library contains over 50 func-
tions and methods, the requests library contains over 200,
and the Jinja2 library contains over 600.

Second, the experiment considers one fully-typed config-
uration per benchmark; however, there are many ways of
typing a given program. The types in this experiment may
differ from types ascribed by another Python programmer,
which, in turn, may lead to different performance overhead.

Third, some benchmarks use dynamic typing. The take5
benchmark contains one function that accepts optional argu-
ments, and is therefore dynamically typed.!” The go bench-
mark uses dynamic typing because Reticulated cannot val-
idate its use of a recursive class definition. The pystone
and stats benchmarks use dynamic typing to overcome
Reticulated’s lack of untagged union types.

Fourth, the aespython, futen, http2, and s1owSHA bench-
marks read from a file within their timed computation. We
nevertheless consider our results representative.

Fifth, Reticulated supports a finer granularity of type anno-
tations than the experiment considers. Function signatures
can leave some arguments untyped, and class field declar-
actions can omit types for some members. We believe that
a fine-grained evaluation would support the conclusions
presented in this paper.

6 Is Sound Gradual Typing Alive?

Our application of the Takikawa method suggests that any
combination of statically typed and dynamically typed code
in Reticulated runs within one order of magnitude of the orig-
inal Python program. This relatively impressive performance
comes at a three-fold cost. First, soundness is at the level
of type-tags rather than full static types. Second, run-time
tag errors do not describe the source of the ill-typed value.
Third, fully-typed programs typically suffer more overhead
than any other combination of typed and untyped code.

pypi-ranking.info/alltime
0Bug report: github.com/mvitousek/reticulated/issues/32.
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Our evaluation thus raises a number of open research prob-
lems. First among these is whether programmers will find
the static guarantees of tag soundness useful for maintain-
ing large programs. In our experience, well-tagged programs
often contain subtle mistakes.

A second question is how the cost of soundness compares
to the cost of expressive types and precise error messages.
Experience by Vitousek et al. [8] suggests that the cost of
useful error messages is high. They extend Reticulated to
track a set of possibly-guilty boundaries and find that main-
taining the set doubled the typed/retic ratio in the majority
of their benchmark programs.

A third question is whether Reticulated can reduce its
overhead relative to Python. Ideally, untyped Reticulated
programs should have the same performance as Python.

Finally, we ask whether Reticulated can leverage type in-
formation to remove run-time checks from Python programs.
The current implementation performs far worse than Typed
Racket on fully-typed programs because the latter only adds
run-time checks at boundaries between statically-typed and
dynamically-typed code.

Appendix
1 Validating the Approximation Method

Section 3 proposes a so-called simple random approximation
method for guessing the number of D-deliverable configura-
tions in a benchmark:

Definition (95%-r, s-approximation) Given r samples each
containing s configurations chosen uniformly at random, a
95%-r, s-approximation is a 95% confidence interval for the
proportion of D-deliverable configurations in each sample.

Section 4 instantiates this method using r = 10 samples
each containing 10+ (F + C) configurations, where F is the
number of functions and methods in the benchmark and C
is the number of class definitions. The intervals produced
by this method (for the sample_fsm, aespython, and stats
benchmarks) are thin, but the paper does not argue that
the intervals are very likely to be accurate. This appendix
provides the missing argument.

1.1 Statistical Argument

Let d be a predicate that checks whether a configuration from
afixed program is D-deliverable. Since d is either true or false
for every configuration, this predicate defines a Bernoulli
random variable X; with parameter p, where p is the true
proportion of D-deliverable configurations. Consequently,
the expected value of this random variable is p. The law of
large numbers therefore states that the average of infinitely
many samples of X; converges to p, the true proportion of
deliverable configurations. Convergence suggests that the
average of “enough” samples is “close to” p. The central limit
theorem provides a similar guarantee—any sequence of such
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averages is normally distributed around the true proportion. :‘ggor/: 10 samples of 150 configurations
A 95% confidence interval generated from sample averages S } o
is therefore likely to contain the true proportion. P \ Lo
. . 50+ -
1.2 Empirical lustration o \ I
Figure 8 superimposes the results of simple random sampling 1 | o
upon the exhaustive data for three benchmarks. Specifically, o3 - > ‘ p— Tox
these plots are the result of a two-step recipe: SlowSHA 10 samples of 170 configurations
o First, we plot the true proportion of D-deliverable con- 100% ——— ‘ —
figurations for D between 1x and 10x. This data is N \ I
represented by a blue curve; the area under the curve : : : : : : :
is shaded blue. o A
e Second, we plot a 95%-10, [10(F + C)]-approximation Ry ! Lo
as a brown interval. This is a 95% confidence interval o L : : : :
generated from ten samples each containing 10(F +C) 1 2 10x
configurations chosen uniformly at random. ;:gggs 10 samples of 150 configurations
NEE \ I
2 Benchmark Descriptions o } o
Five benchmarks originate from case studies by Vitousek et 5041 : —
al. [7]. Twelve are from the evaluation by Vitousek et al. [8] P ! Lo
on programs from the Python Performance Benchmark Suite. : : : : : : :
The remaining four originate from open-source programs. 04+——+—H : —
The following descriptions credit each benchmark’s orig- ! 2 i .10x
. pystone 10 samples of 140 configurations
inal author, state whether the benchmark depends on any 100%
fixed modules, and briefly summarize its purpose. o } o
futen from momijiame 50 : : : : : : :
Depends on the fnmatch, os.path, re, shlex, and socket oy o
libraries. N / .
Converts an OpenSSH configuration file to an inventory file o 1A ! [
for the Ansiable automation framework. 1 2 10x
Espionage 10 samples of 120 configurations
http2 from Joe Gregorio 100% e ‘ —
Depends on the urllib library. N \ Lo
Converts a collection of Internationalized Resource Identi- o } L
fiers to equivalent ASCII resource identifiers. S0 T ‘ o
slowSHA from Stefano Palazzo : : : : : : :
Depends on the os library. 01 —_— : ‘ — "y
Applies the SHA-1 and SHA-512 algorithms to English words. o
PythonFlow 10 samples of 120 configurations
call_method from The Python Benchmark Suite 100% R | | |
No dependencies. o .
Microbenchmarks simple method calls; the calls do not use sl 1 | I
argument lists, keyword arguments, or tuple unpacking. C ; L
call_simple from The Python Benchmark Suite o i i i i i i i

No dependencies. 1 > 10x
Same as call_method, using functions rather than methods.

chaos from The Python Benchmark Suite Figure 8: Simple random approximations
Depends on the math and random libraries.
Creates fractals using the chaos game method.

fannkuch from The Python Benchmark Suite
No dependencies.
Implements Anderson and Rettig’s microbenchmark.
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float from The Python Benchmark Suite
Depends on the math library.
Microbenchmarks floating-point operations.

g0 from The Python Benchmark Suite

Depends on the math and random libraries, and two untyped
modules.

Implements the game Go. This benchmark is split across
three files: an experimental module that implements the
game board, a fixed module that defines constants, and a fixed
module that implements an Al and drives the benchmark.

meteor from The Python Benchmark Suite
No dependencies.
Solves the Shootout benchmarks meteor puzzle. !

nbody from The Python Benchmark Suite
No dependencies.
Models the orbits of Jupiter, Saturn, Uranus, and Neptune.

nqueens from The Python Benchmark Suite
No dependencies.
Solves the 8-queens problem by a brute-force algorithm.

pidigits from The Python Benchmark Suite
No dependencies.
Microbenchmarks big-integer arithmetic.

pystone from The Python Benchmark Suite
No dependencies.
Implements Weicker’s Dhrystone benchmark. '

spectralnorm from The Python Benchmark Suite
No dependencies.
Computes the largest singular value of an infinite matrix.

Espionage from Zeina Migeed
Depends on the operator library.
Implements Kruskal’s spanning-tree algorithm.

PythonFlow from Alfian Ramadhan
Depends on the os library.
Implements the Ford-Fulkerson max flow algorithm.

take5 from Maha Alkhairy and Zeina Migeed
Depends on the random and copy libraries.
Implements a card game and a simple player Al

sample_fsm from Linh Chi Nguyen

Depends on the itertools, os, and random libraries.
Simulates the interactions of economic agents modeled as
finite-state automata.

aespython from Adam Newman and Demur Remud
Depends on the os and struct libraries.
Implements the Advanced Encryption Standard.

henchmarksgame.alioth.debian.org/u32/meteor-description.html
2eembc.org/techlit/datasheets/ECLDhrystoneWhitePaper2.pdf
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stats from Gary Strangman

Depends on the copy and math libraries.

Implements first-order statistics functions; in other words,
transformations on either floats or (possibly-nested) lists of
floats. The original program consists of two modules. The
benchmark is modularized according to comments in the
program’s source code to reduce the size of each module’s
configuration space.
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