
DEEP AND SHALLOW TYPES
THESIS DEFENSE

BEN GREENMAN 2020-12-17

Matthias Felleisen

Amal Ahmed

Jan Vitek

Shriram Krishnamurthi

Fritz Henglein

Sam Tobin-Hochstadt

DEEP AND SHALLOW TYPES
THESIS DEFENSE

BEN GREENMAN 2020-12-17

On Great Ideas

If I reproduce somebody's guess
 in my work ...

 me living far away ...

 it means that
 there really is something in it.

 Ershov

Great Idea:
mixing typedtyped and untypeduntyped code

Gradual Typing

Migratory Typing

Multi-Language
Semantics

Hybrid Typing

The Basics

typed codetyped code
 more constraints, strong guarantees

untyped codeuntyped code
 more freedom, for better or worse

mixed-typed code
 combine both ... somehow

Q. What happens at the boundaries?

Q. What happens at the boundaries?

Does the type Num keep out the letter "A" ?

#lang untyped

(f "A")

#lang typed

(define (f (n : Num))

 (+ n 1))

Gradual Typing

Migratory Typing

Multi-Language
Semantics

Hybrid Typing

Gradual Typing

Migratory Typing

Multi-Language
Semantics

Hybrid Typing

research landscape

research landscape ... over 200 publications

research landscape ... over 200 publications

Q. What happens at the boundaries?

Q. What happens at the boundaries?

research landscape ... over 200 publications

 6+ ideas for boundaries

research landscape

research landscape

language landscape ... many implementations

Mixed-Typed Design Space

#lang untyped

(f "A")

#lang typed

(define (f (n : Num))

 (+ n 1))

Q. Does the type Num keep out the letter "A" ?

#lang untyped

(f "A")

#lang typed

(define (f (n : Num))

 (+ n 1))

Q. Does the type Num keep out the letter "A" ?

A. Yes! A. No

#lang untyped

(f (λ "A"))

#lang typed

(define (f (x : (-> Num)))

 (g x))

#lang untyped

(define (g y)

 (.... y))

Q. Can the type (-> Num) detect bad functions?

#lang untyped

(f (λ "A"))

#lang typed

(define (f (x : (-> Num)))

 (g x))

#lang untyped

(define (g y)

 (.... y))

Q. Can the type (-> Num) detect bad functions?

A. Yes A. No

Q. What happens at the boundaries?

A. Nothing A. Spot-checks A. Everything! A. ...

Q. Why?

Q. Why? A. Performance!

Q. Why? A. Performance!

Q. Where's the data?

Mixed-Typed Design Space
Lively, but Disorganized!

My Research
 brings order to
 the design space

* How to assess
 type guarantees

* How to measure
 performance

* How to measure
 performance

(the problem)

* How to assess
 type guarantees

(solution space)

* How to measure
 performance

(the problem)

* How to assess
 type guarantees

(solution space)

Thesis Preview:
 Deep and Shallow types can interoperate

* How to measure
 performance

(the problem)

Typed Racket

- Mature, strong mixed-typed language

- Home of severe performance costs

Costs ...

25x to 50x

... More Costs

#lang untyped

(require pfds/trie)

(define t (trie))

(time (bind t))

12 seconds

... More Costs

#lang untyped

(require pfds/trie)

(define t (trie))

(time (bind t))

12 seconds

#lang typed

(require pfds/trie)

(define t (trie))

(time (bind t))

1 ms!

Typed Racket, Performance

- Clearly, problems exist

Typed Racket, Performance

- Clearly, problems exist

Need a way to measure!

Step 1: Benchmarks

Step 1: Benchmarks

Collected small, useful programs

Step 1: Benchmarks

Collected small, useful programs

Added types, if missing

Step 1: Benchmarks

 +

Step 2: How to Measure

Step 2: How to Measure

What to measure = all confgurations

3 components

8 confgurations

Step 2: How to Measure

What to measure = all confgurations

6 components

64 confgurations

Step 2: How to Measure

What to measure = all confgurations

Q. How to study? Q. How to scale?

Step 2: How to Measure

What to measure = all confgurations

Q. How to study? Q. How to scale?

A. Focus on the programmer ...

1x

20x

.9x

Step 2: How to Measure

A. Count D-deliverable confgs

Step 2: How to Measure

A. Count D-deliverable confgs

If D=4, then count
confgs with at most
4x overhead

= 50%

Step 2: How to Measure

A. Count D-deliverable confgs

Step 2: How to Measure

A. Count D-deliverable confgs

D-deliverable ~ Bernoulli random variable

linear-size sampling works

Step 3: Summarize with a Picture

Step 3: Summarize with a Picture

quadU

1x 2x 10x 20x

100%

D =

Step 3: Summarize with a Picture

quadU

1x 2x 10x 20x

100%

D =

quadU 10 samples of 140 confgs

1x 2x 10x 20x

Performance Method

Performance Method

1. collect mixed-typed benchmarks

2. count D-deliverable confgs
 (or sample)

3. plot results

Applications:

Typed Racket

Reticulated Python

Typed Racket some results from our 21 benchmarks

jpeg

2x 20x

sufxtree

2x 20x

take5

2x 20x

synth

2x 20x

Typed Racket some results from our 21 benchmarks

jpeg

2x 20x

sufxtree

2x 20x

take5

2x 20x

synth

2x 20x

Bad

Reticulated Python diferent benchmarks

Reticulated Python diferent benchmarks

Not so bad

Bad

Not bad

Bad

Not bad

Q. Is Reticulated better, overall?

Natural
Transient

Natural
Transient

Natural Transient

type soundness

gradual guarantee

blame theorem

Natural
Transient

Natural Transient

type soundness

gradual guarantee

blame theorem

Natural
Transient

#lang untyped

(f (λ "A"))

#lang typed

(define (f (x : (-> Num)))

 (g x))

#lang untyped

(define (g y)

 (.... y))

Q. Can the type (-> Num) detect bad functions?

Natural
Transient

#lang untyped

(f (λ "A"))

#lang typed

(define (f (x : (-> Num)))

 (g x))

#lang untyped

(define (g y)

 (.... y))

Q. Can the type (-> Num) detect bad functions?

A. Natural = Yes A. Transient = No

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang typed

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

 expects Num , Str ...

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang typed

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

 expects Num , Str gets Error: + bad input

 expects Num , Str gets Str , Num

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang typed

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

 expects Num , Str gets Str , Num

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang typed

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

Q. Do types protect
 the callback?

A. Transient = No

A. Natural = Yes

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

Natural
Transient

Natural Transient

type soundness

gradual guarantee

blame theorem

- But Natural and Transient disagree

Natural
Transient

Natural Transient

type soundness

gradual guarantee

blame theorem

- But Natural and Transient disagree

Need to measure type guarantees

Natural
Transient

* How to assess
 type guarantees

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

1. Complete Monitoring ~ types guard all boundaries

Complete Monitoring vs. Type Soundness

Complete Monitoring vs. Type Soundness

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang typed

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

Q. Do types protect
 the callback?

TS =/> Yes

CM => Yes

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

TS nothing

CM Num , Str

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

DeepDeep Shallow

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

DeepDeep Shallow

Shallow types are sound.

DeepDeep types protect untyped code, too.

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

1. Complete Monitoring ~ types guard all boundaries

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

1. Complete Monitoring ~ types guard all boundaries

2. Blame Soundness ~ errors are accurate

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

1. Complete Monitoring ~ types guard all boundaries

2. Blame Soundness ~ errors are accurate

3. Blame Completeness ~ errors are exhaustive

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

0. before = sound vs. unsound

1. Complete Monitoring ~ types guard all boundaries

2. Blame Soundness ~ errors are accurate

3. Blame Completeness ~ errors are exhaustive

4. Error Preorder ~ head-to-head test

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

Natural C F Transient A E

type soundness

complete monitoring

blame soundness

blame completeness

error preorder

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

Natural C F Transient A E

type soundness y

complete monitoring

blame soundness h 0

blame completeness

error preorder Natural C F Transient A E< < < = <

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

My Research
 brings order to
 the design space

* How to assess
 type guarantees

* How to measure
 performance

Goal: mixed mixed-typed code with strong guarantees

Problem: high performance overhead

Goal: mixed mixed-typed code with strong guarantees

Problem: high performance overhead

Q. What to do?

Goal: mixed mixed-typed code with strong guarantees

Problem: high performance overhead

Q. What to do?

a. build a new language

a. build a new compiler

a. improve the current compiler

Goal: mixed mixed-typed code with strong guarantees

Problem: high performance overhead

Q. What to do?

a. build a new language

a. build a new compiler

a. improve the current compiler

Goal: mixed mixed-typed code with strong guarantees

Problem: high performance overhead

Q. What to do?

a. build a new language

a. build a new compiler

a. improve the current compiler
- re-use type system

- add new semantics

Thesis Statement

Deep and Shallow types can interoperate.
preserving their formal properties

Programmers can use these types to:
- strengthen Shallow guarantees

- avoid unimportant Deep errors

- lower runtime costs

UNPUBLISHED RESULTS

Plan:

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

Plan:

Natural
Transient

1. new model

- combine Natural + Transient

Plan:

Natural
Transient

1. new model

- combine Natural + Transient

- extend TR

2. new language

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
....

T =

L =

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
unop s | binop s s | app s s |

....

T =

L =

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
unop s | binop s s | app s s |

module L s

T =

L =

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
unop s | binop s s | app s s |

module L s

T = Nat | Int | T x T | T -> T

L =

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
unop s | binop s s | app s s |

module L s

T = Nat | Int | T x T | T -> T

L = Deep | Shallow | Untyped

Model Deep + Shallow + Untyped

s = x | i | (s, s) | λx. s | λx:T. s |
unop s | binop s s | app s s |

module L s

T = Nat | Int | T x T | T -> T

L = Deep | Shallow | Untyped

Deep Shallow

Untyped

Model Boundaries

Deep Shallow

Untyped

Model Boundaries

Deep Shallow

Untyped

wrapwrap
wrapwrap

wrapwrap

wrapwrap

noop

scan

Model Boundaries

Deep Shallow

Untyped

wrapwrap
wrapwrap

wrapwrap

wrapwrap

noop

scan

Deep = wrap, or fully check

Shallow = spot-check inputs

Natural
Transient

1. new model

Natural
Transient

1. new model

Type Soundness
 types predict outcomes

Deep Shallow

Complete Monitoring
 Deep types predict behaviors

Deep

Natural
Transient

2. new language

2. new language

Expand Typecheck
Generate
Contracts

Optimize

Typed Racket Compiler

2. new language

Expand Typecheck
Generate
Contracts

Optimize

Shallow Racket

2. new language

Expand Typecheck
Generate
Contracts

Optimize

Shallow Racket

Insert Checks

2. new language

Expand Typecheck
Generate
Contracts

Optimize

Shallow Racket

Insert Checks

Insert Checks types to shapes

design choice: enforce full type constructors

Insert Checks types to shapes

design choice: enforce full type constructors

Type shape

Num number?

(Listof Num) list?

(U Num Sym) (or number? symbol?)

(-> Num Num) (and procedure?
 (arity-includes 1))

Optimize

apply box dead-code extfonum

fxnum foat-complex foat list

number pair sequence string

struct vector

Optimize

apply box dead-code extfonum

fxnum foat-complex foat list

number pair sequence string

struct vector

Natural
Transient

Natural
Transient

- strengthen Shallow guarantees

- avoid unimportant Deep errors

- lower runtime costs

Shallow to Deep = stronger guarantees

Shallow to Deep = stronger guarantees

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang shallow

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

nothing

Shallow to Deep = stronger guarantees

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang shallow

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

#lang deep

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

Num , Str

Shallow to Deep = stronger guarantees

#lang untyped

(t-fold-file "file.txt" 0 count)

(define (count acc str)

 (+ 1 acc))

#lang shallow

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

#lang untyped

(define (u-fold-file path acc f)

 ; read str from path

 ... (f str acc) ...)

#lang deep

(: t-fold-file

 (-> Path Num

 (-> Num Str Num)

 Num))

(define t-fold-file u-fold-file)

Num , Str

Deep protects all boundaries

Deep to Shallow = fewer errors

Deep to Shallow = fewer errors

Deep to Shallow = fewer errors

#lang deep

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

Deep to Shallow = fewer errors

#lang deep

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

Error: attempted to use higher-order

value passed as Any

Deep to Shallow = fewer errors

#lang deep

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

Error: attempted to use higher-order

value passed as Any

#lang shallow

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

OK

Deep to Shallow = fewer errors

#lang deep

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

Error: attempted to use higher-order

value passed as Any

#lang shallow

(: b Any)

(define b (box 42))

#lang untyped

(set-box! b 0)

OK

Shallow can run almost all type-correct code

Better Performance

#lang untyped

....

#lang untyped

.... ~ 2 sec. Untyped baseline

Better Performance

#lang untyped

....

#lang untyped

.... ~ 2 sec. Untyped baseline

#lang untyped

....

#lang deep

.... ~ 13 sec.

#lang untyped

....

#lang shallow

.... ~ 4 sec.
Mixed : Shallow wins

Better Performance

#lang untyped

....

#lang untyped

.... ~ 2 sec. Untyped baseline

#lang untyped

....

#lang deep

.... ~ 13 sec.

#lang untyped

....

#lang shallow

.... ~ 4 sec.
Mixed : Shallow wins

#lang deep

....

#lang deep

.... < 2 sec.

#lang shallow

....

#lang shallow

.... ~ 5 sec.
Typed : Deep wins

Better Performance

quadU

1x 2x 10x 20x

100%

Deep + Shallow = maximize D-deliverable cfgs.

Better Performance

jpeg

2x 20x

sufxtree

2x 20x
take5

2x 20x

synth

2x 20x
quadU

2x 20x

sieve

2x 20x

New Migration Plan

1. Deep, until slow

2. Shallow, to fx boundaries

3. Deep, or mix, at end

New Migration Plan

What % of paths are D-deliverable
at each step?

New Migration Plan

% of 3-deliverable paths

New Migration Plan

% of 3-deliverable paths

Benchmark Deep or Shallow Deep and Shallow

jpeg 100% 100%

suffixt 0% 12%

take5 100% 100%

sieve 0% 100%

fsmoo 0% 50%

dungeon 0% 67%

Better Together

How many confgs do best with a mix?

Better Together

How many confgs do best with a mix?

Benchmark D+S ≥ D|S

fsm 37%

morsecode 25%

jpeg 37%

kcfa 55%

zombie 6%

zordoz 46%

Thesis Statement

Deep and Shallow types can interoperate.
preserving their formal properties

Programmers can use these types to:
- strengthen Shallow guarantees

- avoid unimportant Deep errors

- lower runtime costs

Thesis Statement

Deep and Shallow types can interoperate.
preserving their formal properties

Programmers can use these types to:
- strengthen Shallow guarantees

- avoid unimportant Deep errors

- lower runtime costs

Thesis Statement

Deep and Shallow types can interoperate.
preserving their formal properties

Programmers can use these types to:
- strengthen Shallow guarantees

- avoid unimportant Deep errors

- lower runtime costs

Natural
Transient

Contributions 1. performance analysis method

2. design analysis method

3. scaled-up Transient

4. Deep + Shallow

Natural

Co-Natural Forgetful

Transient
Amnesic

Erasure

Natural C F Transient A E

type soundness y

complete monitoring

blame soundness h 0

blame completeness

error preorder Natural C F Transient A E< < < = <

Optimization

apply box dead-code extfonum

fxnum foat-complex foat list

number pair sequence string

struct vector

Better Performance

Benchmark Worst Deep Worst Shallow

jpeg 23x 2x

suffixtree 31x 6x

take5 32x 3x

synth 49x 4x

quadU 60x 8x

sieve 10x 2x

Transient Blame Quite Bad!

Benchmark Shallow Blame Worst Deep

jpeg 46x 23x

suffixtree >189x 31x

take5 51x 32x

synth >1440x 49x

quadU 560x 60x

sieve out of memory 10x

Shallow cannot run 1/2

problem: inst changes shape

#lang deep

(require/typed racket/base

 (cdr (All (A) A)))

(define fake-str : String

 (inst cdr String))

(string-length fake-str)

Shallow cannot run 2/2

problem: occurrence-type side efect

#lang deep

(require/typed racket/base

 (values (-> Any Any : String)))

(define x : Any 0)

(define fake-str : String

 (if (values x)

 x

 (error 'unreachable)))

Model Other Ideas

- conditionally weaken Deep -- Shallow, if escapes

- noop Deep -- Shallow, if S can wrap

Deep Shallow

Untyped

wrapwrap
wrapwrap

wrapwrap

wrapwrap

noop

scan

Deep to Shallow = simpler behavior

Untyped
 0

Deep
 #f

Shallow
 0

#lang untyped

(index-of '(a b) 'a)

Deep to Shallow = simpler behavior

Untyped
 0

Deep
 #f

Shallow
 0

#lang deep

(: index-of

 (-> (Listof T) T (Maybe Num)))

(index-of '(a b) 'a)

Deep to Shallow = simpler behavior

Untyped
 0

Deep
 #f

Shallow
 0

#lang shallow

(: index-of

 (-> (Listof T) T (Maybe Num)))

(index-of '(a b) 'a)

Deep to Shallow = simpler behavior

Untyped
 0

Deep
 #f

Shallow
 0

#lang shallow

(: index-of

 (-> (Listof T) T (Maybe Num)))

(index-of '(a b) 'a)

No wrappers = fewer surprises

