
Soft Typing April 15, 2017
Ben Greenman

Abstract

Lecture notes, April 14th, HOPL 2017. Don’t mind the ornaments.

Soft Typing: Philosophy and Motivation

“. . . the computer . . . is willing to accept almost any sequence of in-
structions and make sense of them at its own level. That is the secret
of the power, flexibility, and even reliability of computer hardware,
and should therefore be cherished.” — Tony Hoare [2]

o Static type systems have well-known benefits.

1. A static type system can catch programming errors early (typos, logical
mistakes), and exhaustively—by exploring all paths through the program.

2. Type signatures are a useful form of documentation.

3. Optimizing compilers can use type information to compile more efficient
code.1

4. Designing types first can help guide the design of programs.

L Dynamic typing also has well-known benefits.

1. Unlike untyped languages, dynamically typed languages guarantee safety
from memory errors (e.g. segfaults).

2. A dynamically typed language will run any syntactically correct program.

3. (consequence of point 2) Dynamically typed functions can be re-used on
a larger class of arguments.

4. Dynamic typing is conceptually simpler than static typing; a program-
mer only needs to understand the runtime behavior of programs, not the
behavior of the type checker.

U Note to emphasize point 3 above, here is a program by Alan Mycroft that
cannot be typed in the ML type system [3].

let rec f(x : structure) = case x of

(basecase(y): ...

|listcase(y): g(y, (hd, tl, null))

|dlistcase(y): g(y, (dhd, dtl, dnull)))

1How useful is compiling with types? This was the subject of two HOPL talks in March,
see: https://github.com/nuprl/hopl-s2017/blob/master/lecture_notes/2017-03-24.md

and https://github.com/nuprl/hopl-s2017/blob/master/lecture_notes/2017-03-28.md.

1

http://www.ccs.neu.edu/home/matthias/7480-s17/index.html
https://github.com/nuprl/hopl-s2017/blob/master/lecture_notes/2017-03-24.md
https://github.com/nuprl/hopl-s2017/blob/master/lecture_notes/2017-03-28.md

and g(x : a, (xhd: a->b, xtl: a->a, xnull: a->bool)) =

if xnull(x)

then ()

else (f(xhd x), g(xtl x, (xhd, xtl, xnull)))

Mycroft wrote this program while developing the ML compiler. End Note.
B Why not combine all the benefits in a single system? The dream would
be, an ideally-flexible type system that can type check any dynamically-typed
program.

• Standard typecheckers try to prove that a program is “good”, for some
notion of “good” (think: will not segfault at runtime). The set of “good”
programs is almost always recursively enumerable, therefore a decidable
type checker must reject some “good” programs.

• Dynamically typed programs tend to rely heavily on untagged unions,
recursive types, and structural subtyping. These features make type in-
ference and type checking more difficult. In particular, Curry-style typing
assumes that datatypes are disjoint.

Philosophy: the types in a dynamically-typed program come from the data
in that program. Functions rely heavily on structural subtyping, guided
by dynamic type tests.

One approach to solving this problem is to design a new type system [3], in
the hope that the system can accomodate enough programming idioms to be
widely useful.

A second approach is soft typing. Given a type environment Γ and expression
e, a soft type checker infers type information in e and rewrites the program to
a semantically-equivalent and type-safe program e′, which has static type τ .

Γ ⊢ e ⇒ e′ : τ

Many more details follow.

Design Criteria for a Soft Type Checker

Fagan’s dissertation outlines the design requirements for a soft type checker.
The following list is adapted from Section 1.1 of the dissertation [1].

1. No syntactically correct programs are excluded (i.e. rejected by the type
checker).

2. Run-time safety is assured by run-time checks if such checks cannot be
safely eliminated.

3. The type checking process must be unobtrusive, where unobtrusive is char-
acterized by two principles:

Minimal text principle The type checking system should function in
the absence of programmer-supplied type declarations.

2

Minimal failure principle The checker must pass a “large fraction” of
dynamic programs that will not produce an execution error.

For example,

(+ 2 2)

;; no casts

(+ 2 (lambda (x) x))

;; add cast

(if #true 2 2)

;; well-typed

(if #true 2 (lambda (x) x))

;; well-typed, no casts

(define (flatten tree)

(cond

[(null? tree)

’()]

[(pair? tree)

(append (flatten (first tree))

(flatten (rest tree)))]

[else ;; tree is a list

(list tree)]))

;; well-typed, no casts

Any questions on the design criteria? These are important in subtle
ways later.

Inferring Types from Untyped Code

Given the design criteria, the obvious challenge is how to infer descriptive types
for annotation-free code. Hindley-Milner type inference works well for a similar
problem in ML programs, so it is a natural place to start looking for a solution.

Hindley-Milner Type Inference

Types τ are disjoint, terms e are the lambda calculus. Type schemes σ quantify
over type variables α.

τ :: = α | Int | Bool | τ → τ
e :: = x | λx. e | e e | let x = e in e
σ :: = τ | ∀α. σ
Γ ::= · | x :σ,Γ
S :: = · | α :σ,Γ

3

Milner and Damas give syntax-directed type checking rules. Reading these
rules bottom-up and using fresh type variables each time a new type is required
yields an efficient inference algorithm (Algorithm W) parameterized by a solver.

Type Checking: Γ ⊢ e : τ Type Inference: W (Γ, e) = (S, τ)

Algorithm W has useful properties:

Theorem. (soundness) If W (Γ, e) = (S, τ), then Γ ◦ S ⊢ e : τ

Theorem. (completeness) If Γ ◦ S0 ⊢ e : τ0 then W (Γ, e) = (S1, τ1) and there
exists a substitution S2 such that Γ ◦ S0 = Γ ◦ S1 ◦ S2 and τ0 = τ1 ◦ S2 modulo
instantiation of quantified type variables in τ0

Theorem. (principal types) If W (Γ, e) = (S, τ) then the generalization of τ
under Γ ◦ S is a principal type of e under Γ ◦ S.

To summarize, the key ideas with Hindley-Milner are to generate type equal-
ity constraints from the syntax of the program, then solve the type constraints
for a most general unifier (using Robinson Resolution).

Adapting Hindley-Milner

A non-starter idea is to directly apply the Hindley-Milner rules to dynamically
typed programs. This is going to fail for many programs; Fagan gives a tautol-
ogy checker as an example; the flatten program from above is another good
example:

let rec tautology f =

if f == true then true

else if f == false then false

else (tautology (f true)) and (tautology (f false))

At a minumum, the type system needs recursive types and untagged unions.
The recursive types are not so difficult, but untagged unions mean that datatypes
are no longer disjoint. In particular, non-disjointness means the type system
needs a subtyping judgment; the rule for typing a function application must
look like:

Γ ⊢ f : τ → τ ′ Γ ⊢ e : τe τe ⊆ τ

Γ ⊢ f e : τ ′

Challenge 1: how to turn τe ⊆ τ into a constraint? There are two “obvious”
solutions (for some value of obvious).

• (retained inequalities) Do nothing! Keep τe ⊆ τ as a constraint, and
change the solver from Robinson resolution to something more sophisti-
cated, that can handle subset constraints.

4

• (convert to equalities) Convert the inequality to an equality using the
venerable technique of slack variables. In this case, τe ⊆ τ generates the
constraint τe ∪ α = τ .

t Fagan chooses to convert the inequalities.
Note: his choice is partially motivated by three perceived challenges with re-
tained inequalities:

• the set of inequalities will grow quickly, may not be possible to simplify,
and may require exponential time to solve;

• it is unclear how to convert an inconsistent set of constraints into a safety-
ensuring runtime check;

• existing type systems with retained inequalities do not handle parametric
polymorphism.

We will revisit these issues later, in the section on Soft Typing with Condi-
tional Types. End Note
Challenge 2: the Hindley-Milner solver (Robinson resolution) finds most-
general-unifiers only for terms in a free term algebra. But we have terms like
τe ∪ α = τ that use the union operator (∪). Union is not free! It is associative,
commutative, and idempotent (ACI).
What to do? We can start like computer science normally does, by asking
mathematicians for help. And it turns out, general unification theory has results
for ACI unification. Unfortunately ACI unificiation:

• produces multiple unifiers;

• does not support the circularity needed to infer recursive types;2

• does not offer any distributivity, but we need equations like c τ ∪ c τ ′ =
c(τ ∪ τ ′) (furthermore, Fagan notes that distributive, associative theories
do not have unification methods).

What to do (2)? Fagan restricts the solution space to discriminative unions
over rational regular trees.

• A discriminative union contains at most one occurrence of each type con-
structor. This solves the ACI issues because (AC) we can sort the con-
structors (I) and idempotence becomes a non-issue by definition.

• A rational regular tree is a possibly-infinite tree with a finite set of non-
isomorphic subtrees. (Example: reduction graph for (K I Ω).)

Proposition. Algorithm W can infer a substitution for two rational regular
trees, if a substitution exists.

Proposition. There is a useful type system for dynamically typed programs
whose types are isomorphic to rational regular trees.

2This may have changed, but was true in 1990.

5

Diversion: The Rémy Encoding

Not going to prove those propositions, but want to give a general idea of how the
encoding works. It is based on a technique by Didier Rémy for adding records
with structural subtyping to ML.

Setup

Start with the ML language, want to add record types. A record type is a
sequence of field labels l and types.

e :: = . . . | {l = e, . . .}
τ :: = . . . | {l : τ, . . .}

Also want structural subtyping, so if we have a function that extracts the
value of the left label on a record, it works for records with more labels.

let get_left (x : {left : ’a}) : ’a =

x.left

get_left {left = 1};;

get_left {left = 1, right = 2};;

Insight and Solution Sketch

Suppose the set l of labels has only 2 elements and records can only contain
values of type Unit. Then we can encode all possible record types in a 4-element
lattice, where each label is either present or absent in each type.

For example, X = xo and Y = xx are two possible record values. Their
types are obvious.

One way to add subtyping would be to pretend thatX and Y denote multiple
values:

X = oo | xoY = oo | xo | ox | xx

Then we can take the union or intersection of these “value sets”. But we do
not want multiple values; we want one value for X and one value for Y .

Rémy’s solution is to encode the various types of X and Y with polymor-
phism. He does so in two steps:

1. Add flags to the labels in record types, indicating whether the label is
present (+), absent (-), or unknown.

2. Introduce variables ϕ that range over the flags.

Using this encoding, the final types for X and Y are:

X : {ϕ0 : Unit,− : Unit}Y : {ϕ1 : Unit, ϕ2 : Unit}

6

The absent field in X has flag -. The present fields in X and Y have a flag
variable, meaning they could be used or forgotten depending on the context. For
example, the expression if e then X else Y has type {ϕ : Unit, - : Unit} by
unifying ϕ2 with -. Also, the type for get left is {left : +, right : ϕ} → Unit.

If you have more labels, just make longer types. That’s the essence of the
encoding.

“Variants are to concrete data types what records are to labelled
products.” — Rémy

Adding structural subtyping for variants is straightforward; a variant type
is the sum of all appropriately-flagged possibilities.

Rémy adds recursive types, records, and variants to the ML type system
and proves the same soundness, completeness, and principle types properties as
Milner. Clean and simple.

Fagan’s Soft Type System

Back to soft typing, “the” type for expressions in a dynamically typed program
is one large variant of all the possible base types.

Given the following grammar of types,

τ :: = Int | Bool | τ → τ

we can express:

• Integers : [Int+,Bool−,→ −, α0, α1]

• Booleans or Integers : [Int+,Bool+,→ −, α0, α1]

• Functions from integers to booleans : [Int−,Bool−,→ +, [Int+,Bool−,→
−, α0, α1], [Int−,Bool+,→ −, α2, α3]]

These are types written in Fagan’s notation. The type variables cover “stuc-
turally similar” positions. Wright makes further use of type variables, so we will
use his system instead.

Wright’s Soft Type System

Wright presents a soft type system for PureScheme.

Expressions, Operational Semantics, Stuck Programs

Terms e are lambda terms, and are made of values v, primitives c, base values
b, and primitive functions p.

7

e :: = v | (ap e e) | (CHECK− ap e e) | (if e e e) | (let (x e) in e)
v :: = c | x | (λx. e)
c :: = b | p
b :: = integer | true | false | nil
p :: = add1 | cons | first | second | integer? | CHECK-add1 | . . .

The unconventional thing about PureScheme is that applications are labeled
as unsafe (CHECK− ap) or checked (ap). Primitive operations also come in
unsafe (e.g. add1) and checked flavors (CHECK-add1). If the checks are present,
the operational semantics will raise a special error checked instead of undefined
behavior.

E[(ap (λx. e) v)] 7→ E[e[x/v]]
E[(CHECK− ap (λx. e) v)] 7→ E[e[x/v]]
E[(let x v in e)] 7→ E[e[x/v]]
E[(if v e0 e1)] 7→ E[e0] when v ̸= false
E[(if false e0 e1)] 7→ E[e1]
E[(ap p v)] 7→ E[v] when v′ = δ(p, v)
E[(ap p v)] 7→ checked when checked = δ(p, v)
E[(CHECK− ap p v)] 7→ E[v′] when v′ = δ(p, v)
E[(CHECK− ap p v)] 7→ checked when checked = δ(p, v)
E[(CHECK− ap b v)] 7→ checked

The δ metafunction what you would expect. Here are its cases for checked
primitives:

δ(CHECK-p, v) = v′ when v′ = δ(p, v)
δ(CHECK-p, v) = checked when δ(p, v) is undefined

The purpose of showing these definitions was to define what it means for a
program to be stuck. Stuck evaluation contexts have the following forms:

E[(ap p v)] where δ(p, v) is undefined
E[(CHECK− ap p v)] where δ(p, v) is undefined
E[(ap b v)]

Proposition. (dynamic typing) terms e that always use CHECK− ap and checked
primitives never transition to a stuck state via the reflexive, transitive closure
of 7→

The (upcoming) soft type system will justify replacing some checked opera-
tions with unsafe ones.

Type System

First static types. Second, soft types.
The static type system will have type soundness.

8

Theorem. (soundness) if ⊢ e : τ then either e diverges or e 7→∗ checked or
e 7→∗ v and ⊢ v : τ .

The soft type system will have two important properties

Theorem. (universal applicability) for all e, there exist e′ and τ such that
⊢ e ⇒ e′ : τ

Theorem. (static typability) if ⊢ e ⇒ e′ : τ then ⊢ e′ : S ◦ τ

Wright’s grammar for static types τ is unconventional. To start, a type τ
can be empty (∅) or a type variable (α) or a recursive type (µα. τ). A type can
also be a sequence of tagged (k), flagged (f), parameterized types, followed by
a type variable or empty type. A tag is a type constructor; each constructor
has a fixed arity. The grammar for flags is the same used by Rémy [4].

Type schemes Σ bind type variables. Substitutions S are used in unification.

G0 :: = α | ∅
G1 :: = (kf τ . . .) ∪G1 | G0
τ :: = G0 | G1 | µα. τ
k :: = Int | True | False | Nil |→
f :: = + | - | ϕ
Σ ::= ∀ ν.Σ | τ
S :: = · | α = Σ, S | ϕ = f, S
ν :: = α | ϕ

f Note: the above grammar is incomplete, when we get to soft types we will
need absent type and flag variables, along with absent types τ and absent flags
f . Will clarify their purpose later, but for now the important point is that the
full grammar for substitutions S maps absent variables to absent non-terminals:

S :: = · | α = Σ, S | ϕ = f, S | ϕ = f, S | α = τ , S

Examples:

• 4 : (Int+) ∪ ∅

• 4 : (Int+) ∪ (True+) ∪ ∅

• true : (True+) ∪ (False+) ∪ ∅

• integer? : (→ +α((True+) ∪ (False+) ∪ ∅)) ∪ ∅

(A little strange, but not as difficult to write as Fagan’s.)
These types must also be discriminative; each constructor k can appear at

most once in a union type. This means that type variables at the end of a union
quantify only over missing constructors. Discriminativity also lets Wright re-
order constructors in a union to a canonical order.

Example type scheme:

∀ϕ0, ϕ1. (Intϕ0) ∪ (Nilϕ1) ∪ ∅

9

this scheme represents a lattice of four types, just like the Rémy-encoded
type for records with two labels.

Types for primitive operations are next on the agenda. But you should keep
in mind this general intuition:

• flag variables ϕ in a function domain allow subtyping at call sites

• type variables α in a function codomain let the function return a supertype

As a simple example illustrating the second point, consider this if-statement:

if e 1 false

Its type should be the union of the types for the constants 1 and false. To
make this union defined, their types are:

1 : ∀α. (Int+) ∪ αfalse : ∀α. (False+) ∪ α

Hence the union is:

∀α. (Int+) ∪ (False+) ∪ α

Static Primop Types
Remember (from Rèmy [4]):

A positive occurrence of a union type ending with a type variable
(α) can be unified with any supertype.

This is why the types bind so many variables.

4 : ∀α. Int+ ∪ α

add1 : ∀α0 α1 ϕ. (→+ (Intϕ0 ∪ ∅) (Int+ ∪ α0)) ∪ α1

integer? : ∀α0 α1 α2. (→+ α0 (True+ ∪ False+ ∪ α1)) ∪ α2

cons : ∀α0 α1 α2 α3 α4. (→+ α0 (→+ α1 ((Cons+ α0 α1) ∪ α2)) ∪ α3) ∪ α4

first : ∀α0 α1 α2 ϕ. (→+ ((Cons+ α0 α1) ∪ ∅) α0) ∪ α2

second : ∀α0 α1 α2 ϕ. (→+ ((Cons+ α0 α1) ∪ ∅) α1) ∪ α2

A The flag ϕ0 on the domain of add1 should seem unnecessary. Using + instead
would be the more natural choice. The reason for using a flag variable is that it
adds no constraints during unification (it would be “less good” if an application
of add1 bound a flag variable in context to +; Wright calls this reverse flow [5]).
Static Type Checking

The judgment Γ ⊢ e : τ states that term e, which is closed under the type
environment Γ, has type τ .3

The judgment relies on three auxilliaries:

• the metafunction TypeOf : c → Σ returns the static type of a constant;

3Fagan, Wright, and Rèmy all use the letter A (for “type assumptions”) rather than Γ [4,
1, 5].

10

• the judgment τ ≺S Σ states that τ is a substitution instance of the type
scheme Σ (in particular, S Σ = τ);

• the metafunction Close : Γ× τ → Σ generalizes free variables in its second
argument that are not bound in its first argument.

Γ ⊢ e : τ

τ ≺S TypeOf(c)

Γ ⊢ c : τ

τ ≺S Γ(x)

Γ ⊢ x : τ

Γ ⊢ f : (→ϕ τ ′ τ) ∪ τ ′′

Γ ⊢ e : τ ′

Γ ⊢ (ap f e) : τ

Γ ⊢ f : (→ϕ τ ′ τ) ∪ ∅
Γ ⊢ e : τ ′

Γ ⊢ (CHECK− ap f e) : τ

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx. e : (→+ τ τ ′) ∪ τ ′′

Γ ⊢ e0 : τ ′

Γ ⊢ e1 : τ
Γ ⊢ e2 : τ

Γ ⊢ if e0 e1 e2 : τ

Γ ⊢ e0 : τ ′

Γ[x := Close(Γ, τ ′)] ⊢ e1 : τ

Γ ⊢ let x e0 in e1 : τ

Soft Primop Types
The soft types are similar to the static types, but use absent variables instead

of ∅ in negative positions. An absent variable α is an identifier drawn from an
infinite set, same as type variables and flag variables. In the next section, the
soft typing judgments will check whether absent variables are instantiated with
non-empty types.

4 : ∀α. Int+ ∪ α

add1 : ∀α0 α1 α2 ϕ. (→+ (Intϕ0 ∪ α2) (Int
+ ∪ α0)) ∪ α1

integer? : ∀α0 α1 α2. (→+ α0 (True+ ∪ False+ ∪ α1)) ∪ α2

cons : ∀α0 α1 α2 α3 α4. (→+ α0 (→+ α1 ((Cons+ α0 α1) ∪ α2)) ∪ α3) ∪ α4

first : ∀α0 α1 α2 α3 ϕ. (→+ ((Cons+ α0 α1) ∪ α3) α0) ∪ α2

second : ∀α0 α1 α2 α3 ϕ. (→+ ((Cons+ α0 α1) ∪ α3) α1) ∪ α2

Soft Type Checking
The soft typing judgment Γ ⊢ e ⇒ e′ : τ states that terms e and e′ (both

closed under Γ) are syntactically identical except that e′ may use a checked
operation where e uses an unchecked one. Furthermore, Γ ⊢ e′ : τ .

Auxilliaries:

• SoftTypeOf : c → Σ returns the soft type of a constant

• Empty : τ ∨ f → Bool returns true when all types in the given set are
empty, and all flags in the given set are -.

• SoftClose is similar to Close, but does not generalize absent variables.
Wright’s thesis suggests ways to lighten this restriction.

11

Γ ⊢ e ⇒ e′ : τ

τ ≺S SoftTypeOf(c)
∀ν ∈ S .Empty(S(ν))

Γ ⊢ c ⇒ c : τ

τ ≺S SoftTypeOf(c)

Γ ⊢ c ⇒ CHECK-c : τ

τ ≺S Γ(x)

Γ ⊢ x ⇒ x : τ

Γ ⊢ f ⇒ f ′ : (→ϕ τ ′ τ) ∪ τ ′′

Γ ⊢ e ⇒ e′ : τ ′

Empty(τ ′′)

Γ ⊢ (ap f e) ⇒ (ap f ′ e′) : τ

Γ ⊢ f ⇒ f ′ : (→ϕ τ ′ τ) ∪ τ ′′

Γ ⊢ e ⇒ e′ : τ ′

Γ ⊢ (ap f e) ⇒ (CHECK− ap f ′ e′) : τ

Γ ⊢ f ⇒ f ′ : (→ϕ τ ′ τ) ∪ τ ′′

Γ ⊢ e ⇒ e′ : τ ′

Γ ⊢ (CHECK− ap f e) ⇒ (CHECK− ap f ′ e′) : τ

Γ, x : τ ⊢ e ⇒ e′ : τ ′

Γ ⊢ λx. e ⇒ λx. e′ : (→+ τ τ ′) ∪ τ ′′

Γ ⊢ e0 ⇒ e′0 : τ ′

Γ ⊢ e1 ⇒ e′1 : τ
Γ ⊢ e2 ⇒ e′2 : τ

Γ ⊢ if e0 e1 e2 ⇒ if e′0 e′1 e′2 : τ

Γ ⊢ e0 ⇒ e′0 : τ ′

Γ[x := SoftClose(Γ, τ ′)] ⊢ e1 ⇒ e′1 : τ

Γ ⊢ let x e0 in e1 ⇒ let x e′0 in e′1 : τ

Soft Typing for Scheme (R4RS)

Wright built a soft type system for R4RS Scheme, on top of Chez Scheme [5].
Adapting the model to Scheme required handling:

• mutation, strong updates

• call/cc

• variable-arity functions

• letrec

• mutually-recursive definitions

• pattern matching

• records and modules

• struct (user-defined types)

• type annotations

• macros

12

Wright validated the model on 14 Scheme programs. Twelve programs were
from the Gabriel benchmarks suite. The other two (Dtype and Interp) were
Henglein’s cast inferencer and Cartwright and Felleisen’s implementation of ex-
tensible denotational semantics.

The soft type system was able to infer types for these programs (of course),
and often improved their performance by justifying the removal of dynamic type
checks. Wright was able to futher improve the performance of four programs by
auditing the inferred types modifying the programs (for example, by removing
unnecessary strong updates).

Soft Typing with Conditional Types

The original problem applying Hindley-Milner inference to untyped code was
the type rule for function application:

Γ ⊢ f : τ ′ → τ Γ ⊢ e : τ ′′ τ ′′ ⊆ τ ′

Γ ⊢ f e : τ

Specifically, the problem is what to do with τ ′′ ⊆ τ ′. Fagan chose to convert
the inequality to an equality using slack variables.

Aiken, Wimmers, and Lakshman chose to keep the inequalities, infer a collec-
tion of set constraints over programs, and apply a specialized constraint solver.
Their grammar for types reflects the fact that types, in this system, are sets.

τ :: = α | 0 | 1 | k τ . . . | τ → τ | τ ∪ τ | τ ∩ τ | τ ? τ
k :: = Cons | Int | . . .

The types 0 and 1 represent the empty type and “set of all types”, respec-
tively. The operators ∪ and ∩ represent set union and set intersection. The
operator ? is a type-level conditional; the type τ1 ? τ2 is the type τ1 unless the
type τ2 is empty.

The type system Γ, S ⊢ e : τ takes a type environment Γ and term e as
input, and infers a type τ and constraints S.

Auxiliaries:

• V : p → {x} computes the set of free variables in a pattern

• T : p → τ computes a type that characterizes all values that can match a
pattern

Using conditional types, the type system encode control flow. For example,
in the type rule for case statements:

Γ, S ⊢ e : τ

Γ, S ⊢ e : τ
Γ ∪ {x : τx | x ∈ V (pi)} ⊢ ei, pi : τi

Γ, S ∪ {τ ⊆
∪

τ ′i} ⊢ case e of . . . pi → ei . . . :
∪

τi?(τ ∩ T (pi))

13

One more thing; the constraints in S are of the form L ⊆ R, where L and R
are basically types, but:

• intersections L1 ∩ L2 require that L2 is an upward-closed monotype

• unions R1 ∪R2 require that R1 ∩R2 = 0

Given constraints of this form, their solver was able to quickly solve the
constraint sets generated by some example programs (of a few hundred lines
each).

Quasi-Static Typing

Premise: improving on Abadi, Cardelli, Pierce, and Plotkin’s type Dynamic.
Type Dynamic adding explict casts in and out of any static type. Problem is,
casting was not idempotent, and programmers needed to remember the order
of casts when unpacking values.

Thatte’s external language did not include casts, but added a dynamic type
Ω. Values of every static type inherited possible dynamic typing implictly. The
type inference system would infer where the casts should go. Automatic cast
management.

After type checking, Thatte ran a “plausibility” checker to reduce casts and
identify casts that were certain to fail at runtime. The whole system is very
interesting, a predecessor of gradual typing with slightly different design goals.

Global Tagging Optimization by Type Inference

One more system you should know about, Henglein’s.
Take a Scheme program, make all untag checks explicit. Also make all tags

explicit (e.g. constructor applications).
Build a constraint graph from the tags and untags, every AST node gets a

variable. Constraints have the form α = α or f(α...) ≤ α. Solve equationally
to get minimal (minimal cast) solution.

Can solve quickly using union-find.
Monomorphic type system, except for polymorphic library functions. But if

you have programs working with list structures and want to optimize those tags
and checks, pretty darn good. Simple, fast.

Questions

In other words, these are things that do not fit in the real presentation, but are
interesting and might come up as questions.

Q. Fundamental Theorem of Static Typing?
A. Fagan states and proves the “fundamental theorem”, that a static type sys-
tem must reject some meaningful programs [1]. Here are the relevant definitions
from Fagan:

14

Let a programming language be a triple ⟨L,V, J·K⟩ where L is the syntax of
the language, V are the value forms, and J·K is a denotational semantics mapping
syntax to values.

A programming language is interesting if (1) all terms have a value (2) the
set V includes values denoting errors and non-terminating computations (3)
the language includes an if-statement (4) the set of terminating programs is
recursively enumerable but not recursive.4

A good program written in a language ⟨L,V, J·K⟩ is a member of the set
{e | e ∈ L ∧ JeK ̸= wrong}.

A static type system for a language ⟨L,V, J·K⟩ computes a recursive set LW ⊂
L such that for all e ∈ L, the value JeK is not wrong.

Fagan then proves:

• Lemma 1.1 the set of good programs is not recursive

• Fundamental Theorem of Static Typing any set of well-typed pro-
grams LW is a strict subset of the set of good programs

The proofs are in Fagan’s dissertation [1], but proving them is a nice exer-
cise.

Q. What were Wright’s extensions, how did they work?
A.

Appendix

References
[1] Mike Fagan. Soft typing: An approach to type checking for dynamically typed languages.

PhD thesis, Rice University, 1991.

[2] C.A.R. Hoare. Hints on programming language design. In DTIC document, 1973.

[3] Alan Mycroft. Polymorphic type schemes and recursive definitions. In ICOP, 1984.

[4] Didier Rémy. Typechecking records and variants in a natural extension of ml. In POPL,
pages 77 – 88, 1989.

[5] Andrew K. Wright. Practical Soft Typing. PhD thesis, Rice University, 1994.

4A recursively enumerable set is a set that can be computed by a (partial) Turing ma-
chine. A recursive set can be computed by a total Turing machine. The difference is roughly
“computable” vs. “decidable”.

15

