
CONSTRUCTIVE MATHEMATICS AND COMPUTER
PROGRAMMING

PER MARTIN-Lt)F

University of Stockholm, Stockholm, Sweden

During the period of a bit more than thirty years that has elapsed since
the first electronic computers were built, programming languages have
developed from various machine codes and assembly languages, now re-
ferred to as low level languages, to high level languages, like FORTRAN,
ALGOL 60 and 68, LISP and PASCAL. The virtue of a machine code is
that a program written in it can be directly read and executed by the
machine. Its weakness is that the structure of the code reflects the structure
of the machine so closely as to make it unusable for the instruction of any
other machine and, what is more serious, very difficult to understand for
a human reader, and therefore error prone. With a high level language,
it is the other way round. Its weakness is that a program written in it has
to be compiled, that is, translated into the code of a particular machine,
before it can be executed by it. But one is amply compensated for this by
having a language in which the thought of the programmer can be expressed
without too much distortion and understood by someone who knows next
to nothing about the structure of the hardware, but does know some
English and mathematics. The distinction between low and high level
programming languages is of course relative to available hardware. It may
well be possible to turn what is now regarded as a high level programming
language into machine code by the invention of new hardware.

Parallel to the development from low to high level programming
languages, there has been a change in one’s understanding of the program-
ming activity itself. It used to be looked (down) upon as the rather messy
job of instructing this or that physically existing machine, by cunning tricks,
to perform computational tasks widely surpassing our own physical powers,

153

154 P. MARTIN-LOF

something that might appeal to people with a liking for crossword puzzles
or chess problems. But it has grown into the discipline of designing programs
for various (numerical as well as nonnunierical) computational tasks,
programs that have to be written in a formally precise notation so as to
admit of automatic execution. Whether or not machines have been built
or compilers have been written by means of which they can be physically
implemented is of no importance as long as questions of efficiency are
ignored. What matters is merely that it has been laid down precisely how
the programs are to be executed or, what amounts to the same, that it
has been specified how a machine for the execution of the programs would
have to function. This change of programming, which DIJKSTRA (1976,
p. 201) has suggested to fix terminologically by switching from computer
science to computing science, would not have been possible without the
creation of high level languages of a sufficiently clean logical structure.
It has made programming an activity akin in rigour and beauty to that
of proving mathematical theorems. (This analogy is actually exact in
a sense which will become clear below.)

While maturing into a science, programming has developed a conceptual
machinery of its own in which, besides the notion of program itself, the
notions of data structure and data type occupy central positions. Even
in FORTRAN, there were two types of variables, namely integer and
floating point variables, the type of a variable being determined by its
initial letter. In ALGOL 60, there was added to the two types integer and
real the third type Boolean, and the association of the types with the
variables was made both more practical and logical by means of type
declarations. However, it was only through HOARE (1972) that the
notion of type was introduced into programming in a systematic way.
In addition to the three types of ALGOL 60, there now appeared types
defined by enumeration, Cartesian products, discriminated unions, array
types, power types and various recursively defined types. All these new
forms of data types were subsequently incorporated into the programming
language PASCAL by WIRTH (1971). The left column of the table on the
next page, which shows some of the key notions of programming and their
mathematical counterparts, uses notation from ALGOL 60 and PASCAL.

As can be seen from this table, or from recent programming texts with
their little snippets of set theory prefaced to the corresponding programming
language constructions, the whole conceptual apparatus of programming
mirrors that of modern mathematics (set theory, that is, not geometry)
and yet is supposed to be different from it. How come? The reason for this

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING 155

Programming

program, procedure, algorithm

input

output, result

x := e

si; Sa
if B then Sl else Sa

while B do S

data structure

data type

value of a data type

a : A

integer

real

Boolean

(cis ..., cn)

array [I] of T

record sl:Tl; so :TB end

record case s : (cl, c,) of

set of T

cl:(sl:Tl); Ca:(sa:Tz) end

Mathematics

function

argument

value

x = e

composition of functions

definition by cases

definition by recursion

element, object

set, type

element of a set, object of a type

a E A

Z

R

{0,1)

{ci, -, 4
TI, I+T

TlX To

Ti+ Ta

curious situation is, I think, that the mathematical notions have gradually
received an interpretation, the interpretation which we refer to as classical,
which makes them unusable for programming. Fortunately, I do not need
to enter the philosophical debate as to whether the classical interpretation
of the primitive logical and mathematical notions (proposition, truth,
set, element, function, etc.) is sufficiently clear, because so much is at least
clear, that if a function is defined as a binary relation satisfying the usual
existence and unicity conditions, whereby classical reasoning is allowed
in the existence proof, or a set of ordered pairs satisfying the corresponding
conditions, then a function cannot be the same kind of thing as a computer

156 P. MARTIN-LOP

program. Similarly, if a set is understood in Zermelo’s way as a member
of the cumulative hierarchy, then a set cannot be the same kind of thing
as a data type.

Now, it is the contention of the intuitionists (or constructivists, I shall
use these terms synonymously) that the basic mathematical notions, above
all the notion of function, ought to be interpreted in such a way that the
cleavage between mathematics, classical mathematics, that is, and program-
ming that we are witnessing at present disappears. In the case of the mathe-
matical notions of function and set, it is not so much a question of providing
them with new meanings as of restoring old ones, whereas the logical
notions of proposition, proof, truth etc. are given genuinely new inter-
pretations. It was Brouwer who realized the necessity of so doing: the true
source of the uncomputable functions of classical mathematics is not the
axiom of choice (which is valid intuitionistically) but the law of excluded
middle and the law of indirect proof, Had it not been possible to interpret
the logical notions in such a way as to validate the axiom of choice, the
prospects of constructive mathematics would have been dismal.

The difference, then, between constructive mathematics and programming
does not concern the primitive notions of the one or the other, because
they are essentially the same, but lies in the programmer’s insistence that
his programs be written in a formal notation so that they can be read and
executed by a machine, whereas, in constructive mathematics as prac-
tised by BISHOP (1 967), for example, the computational procedures
(programs) are normally left implicit in the proofs, so that considerable
further work is needed to bring them into a form which makes them fit
for mechanical execution

What I have just said about the close connection between constructive
mathematics and programming explains why the intuitionistic type theory
(MARTIN-L&, 1975), which I began to develop solely with the philosophical
motive of clarifying the syntax and semantics of intuitionistic mathematics,
may equally well be viewed as a programming language. But for a few
concluding remarks, the rest of my talk will be devoted to a fairly complete,
albeit condensed, description of this language, emphasizing its character
of programming language. As such, it resembles ALGOL 68 and PASCAL
in its typing facilities, whereas the way the programs are written and ex-
ecuted makes it more reminiscent of LISP.

The expressions of the theory of types are formed out of variables

CONSTRUCTIVE MATHEhfATICS AND COMPUTBR PROORAMMINO 157

by means of various forms of expression

(Fx,, . * * Y x,)(a,, ..-,am)

In an expression of such a form, not all of the variables x, , ..., x, need
become bound in all of the parts a,, ..., a,,,. Thus, for each form of ex-
pression, it must be laid down what variables become bound in what parts.
For example,

b

a

is a form of expression (Zx)(a, b , f) with m = 3 and n = 1 which binds
all free occurrences of the single variable x in the third part f. And

df (a)
dx

is a form of expression (Dx)(a, f) with m = 2 and n = 1 which binds all
free occurrences of the variable x in the second part f.

I shall call an expression, in whatever notation, canonical or normal
if it is already fully evaluated, which is the same as to say that it has itself
as value. Thus, in decimal arithmetic,

0, 1, ..., 9, 10, 11, ...
are canonical (normal) expressions, whereas

2+2,2*2,22, 3!, ...
are not. An arbitrarily formed expression need not have a value, but, if an
expression has a value, then that value is necessarily canonical. This may be
expressed by saying that evaluation is idempotent. When you evaluate
the value of an expression, you get that value back.

In the theory of types, it depends only on the outermost form of an ex-
pression whether it is canonical or not. Thus there are certain forms of
expression, which I shall call canonical forms, such that an expression of
one of those forms has itself as value, and there are other, noncanonical
forms for which it is laid down in some other way how an expression of
such a form is evaluated. What I call canonical and noncanonical forms of
expression correspond to the constructors and selectors, respectively, of
LANDIN (1964). In the context of programming, they might also aptly be
called data and program forms, respectively. The table

158 P. MARTIN-L6F

Noncanonical

displays the primitive forms of expression used in the theory of types, the
canonical ones to the left and the noncanonical ones to the right. New
primitive forms of expression may of course be added when there is need
of them.

The conventions as to what variables become bound in what parts are
as follows. Free occurrences of x in B become bound in (nx E A)B,
(Cx E A) B and (Wx E A)B. Free occurrences of x in b become bound
in (1x)b. Free occurrences of x and y in d become bound in (Ex, y) (c , d).
Free occurrences of x in d and y in e become bound in (D x , y)(c, d, e).
Free occurrences of x and y in e become bound in (Rx, y)(c, d , e). And,
finally, free occurrences of x, y and z in d become bound in (Tx, y , z)(c, d) .

Expressions of the various forms displayed in the table are evaluated
according to the following rules. I use

w,, * * - , U,/Xl, * * a , x,)

to denote the result of simultaneously substituting the expressions a, , ... , a,
for the variables xl, ..., x, in the expression b. Substitution is the process
whereby a program is supplied with its input data, which need not necessarily
be in evaluated form.

An expression of canonical form has itself as value. This has already
been intimated.

To execute c(u), first execute c. If you get (k) b as result, then continue

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING 159

by executing b(a/x). Thus c(a) has value d if c has value (h) b and b(a/x)
has value d.

To execute (Ex, y) (c , d) , first execute c. If you get (a, b) as result, then
continue by executing d(a, b / x , y). Thus (Ex, y) (c , d) has value e if c has
value (a, b) and d(a, b /x , y) has value e.

To execute (D x , y) (c , d , e), first execute c. If you get i(a) as result, then
continue by executing d(a/x). If, on the other hand, you get j (b) as result
of executing c, then continue by executing e(b/y) instead. Thus
(D x , y) (c , d , e) has valuef’if either c has value i(a) and d(a/x) has valuef,
or c has value j (b) and e(b/y) has value f.

To execute J (c , d), first execute c. If you get r as result, then continue by
executing d. Thus J (c , d) has value e if c has value r and d has value e.

To execute R,(c, co, ..., c,-,), first execute c. If you get m, as result
for some m = 0, ..., n-1, then continue by executing c,. Thus
R,(c, co, ..., c,,-,) has value d if c has value m, and c, has value d for
some m = 0, ... , n- 1. In particular, Ro(c) has no value. It corresponds to
the statement

abort

introduced by DIJKSTRA (1976, p. 26). The pair of forms 0, and R,(c, co)
together operate in exactly the same way as the pair of forms r and J (c , d).
To have them both in the language constitutes a redundancy. R,(c, co, cl)
corresponds to the usual conditional statement

if B then S, else S,

and R,(c, co, ..., c,,-J for arbitrary n = 0, 1, ... to the statement
with e do {c, : S , , ..., c,, : S,};

introduced by HOARE (1972, p. 113) and realized by Wirth in PASCAL
as the case statement

case e of c, : S , ; ...; c,, : S,, end.

To execute (Rx, y) (c , d, e), first execute c. If you get 0 as result, then
continue by executing d. If, on the other hand, you get a’ as result,
then continue by executing e(a , (Rx, y)(a, d , e) /x , y) instead. Thus
(h, y) (c , d , e) has valuefif either c has value 0 and d has valuef, or c has
value a’ and e(u, (R x , y) (u , d , e) / x , y) has value f. The closest analogue
of the recursion form (Rx, y) (c , d, e) in traditional programming languages
is the repetitive statement form

while B do S .

160 P. MARTIN-LOF

To execute (T x , ~ , z)(c,d), first execute c. If you get sup(a,b) as
result, then continue by executing d(a, b, (h) (T x , y , z) (b (~) , d)/x, y , z).
Thus (T x , ~ , z)(c,d) has value e if c has value sup(a, b) and
d(a, by (b) (T x , y , z)(b(v) , d)/x, y , z) has value e. The transfinite recursion
form (Tx, y , z)(c, d) has not yet found any applications in programming.
It has, as far as I know, no counterpart in other programming languages.

The traditional way of evaluating an arithmetical expression is to evaluate
the parts of the expression before the expression itself is evaluated, as
in the computation

(3+2)!*4. -
5

1 20
-

480

Thus, traditionally, expressions are evaluated from within, which in pro-
gramming has come to be known as the applicative order of evaluation.
When expressions are evaluated in this way, it is obvious that an expression
cannot have a value unless all its parts have values. Moreover, as was
explicitly stated as a principle by Frege, the value (Ger. Bedeutung) of an
expression depends only on the values of its parts. In other words, if a part
of an expression is replaced by one which has the same value, the value
of the whole expression is left unaffected.

When variable binding forms of expression are introduced, as they are
in the theory of types, it is no longer possible, in general, to evaluate the
expressions from within. To evaluate (k) b , for example, we would first
have to evaluate b. But b cannot be evaluated, in general, until a value
has been assigned to the variable x. In the theory of types, this difficulty
has been overcome by reversing the order of evaluation: instead of evaluating
the expressions from within, they are evaluated from without. This is known
as head reduction in combinatory logic and normal order or lazy evaluation
in programming. For example, (h) b is simply assigned itself as value.
The term lazy is appropriate since only as few computation steps are per-
formed as are abolutely necessary to bring an expression into canonical
form. However, what turns out to be of no significance, it is no longer
the case that an expression cannot have a value unless all its parts have
values. For example, a’ has itself as value even if a has no value. What
is significant, though, is that the principle of Frege’s referred to above,
namely that the value of an expression depends only on the values of its

CONSTRUCTIVE MATHEMATTCS AND COMPUTER PROGRAMMING 161

parts, is irretrievably lost. To make the language work in spite of this loss
has been one of the most serious difficulties in the design of the theory
of types.

So far, I have merely displayed the various forms of expression used
in the theory of types and explained how expressions composed out of those
forms are evaluated. The inferential or, as one says in combinatory logic,
illative part of the language consists of rules for making judgments of the
four forms

A is a type,
A and B are equal types,
a is an object of type A,
a and b are equal objects of type A,

abbreviated
A type
A = B,

U E A ,
a = b E A ,

respectively. A judgment of any one of these forms is in general hypothetical,
that is, made under assumptions or, to use the terminology of AUTOMATH
(DE BRUIJN, 1970), in a context

X1EA1, ..., x,EA, .

In such a context, it is always the case that A , is a type, ..., A, is a type
under the preceding assumptions X , E A , , ..., x,-, E A,-, . When there
is need to indicate explicitly the assumptions of a hypothetical judgment,
it will be written

A type (xi . * . , x n ~ A n) 3

A = B(x, E A , , ..., X, E A,,) ,

a E A (x l E A l , ..., x , E A ,) ,

u = b E A (x , E A , , ..., X, E A ,) .

These, then, are the full forms of judgment of the theory of types.
The first form of judgment admits not only the readings

A is a type (set),
A is a proposition,

1 62 P. MARTIN-LOF

but also, and this is the reading which is most natural when the language is
thought of as a programming language,

A is a problem (task).

Correlatively, the third form of judgment may be read not only

u is an object of type (element of the set) A ,

a is a proof of the proposition A ,

but also
u is a program for the problem (task) A .

The equivalence of the first two readings is the by now well-known cor-
respondence between propositions and types discovered by CURRY (1 958,
pp. 312-315) and HOWARD (1969), whereas the transition from the second
to the third is the KOLMOGOROV (1932) interpretation of propositions as
problems or tasks (Ger. Aufgube).

The four forms of judgment used in the theory of types should be com-
pared with the three forms of judgment used (although usually not so called)
in standard presentations of first order predicate calculus, whether classical
or intuitionistic, namely

A is a formula ,
A is true ,
a is an individual term,

The first of these corresponds to the form A is a type (proposition),
the second is obtained from the form u is an object of type (a proof of the
proposition) A by suppressing a, and the third is again obtained from the
form a is an object of type A, this time by choosing for A the type of
individuals.

In explaining what a judgment of one of the above four forms means,
I shall first limit myself to assumption free judgments. Once it has been
explained what meanings they carry, the explanations can readily be
extended so as to cover hypothetical judgments as well.

A canonical type A is defined by prescribing how a canonical object of
type A is formed as well as how two equal canonical objects of type A are
formed. There is no limitation on this prescription except that the relation
of equality which it defines between canonical objects of type A must be
reflexive, symmetric and transitive. If the rules for forming canonical objects

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROORAMMINO 163

as well as equal canonical objects of a certain type are called the introduction
rules for that type, we may thus say with GENTZEN (1934) that a canonical
type (proposition) is defined by its introduction rules. For noncanonical A,
a judgment of the form

A is a type

means that A has a canonical type as value.
Two canonical types A and B are equal if a canonical object of type A is

also a canonical object of type B and, moreover, equal canonical objects
of type A are also equal canonical objects of type B, and vice versa. For
arbitrary (not necessarily canonical) types A and B, a judgment of the
form

A = B

means that A and B have equal canonical types as values. This finishes
the explanations of what a type is and what it means for two types to
be equal.

Let A be a type. Remember that this means that A denotes a canonical
type, that is, has a canonical type as value. Then a judgment of the form

a E A

means that a has a canonical object of the canonical type denoted bv A as
value. Of course, this explanation is not comprehensible unless we know
that A has a canonical type as value as well as what a canonical object of
that type is. But we do know this because of the presupposition that A is
a type: it is part of the definition of a canonical type how a canonical
object of that type is formed, and hence we cannot know a canonical type
without knowing what a canonical object of that type is.

Let A be a type and a and b objects of type A . Then a judgment of the
form

a = b E A

means that a and b have equal canonical objects of the canonical type de-
noted by A as values. This explanation makes sense since A was presupposed
to be a type, that is, to have a canonical type as value, and it is a part of
the definition of a canonical type how equal canonical objects of that type
are formed.

These meaning explanations are extended to hypothetical judgments
by an induction on the number of assumptions. Let it be given as premises
for all of the following four explanations that x, E A , , ... , x, E A, is a con-

164 P. MARTIN-L~P

text, that is, that A , is a type, ..., A,, is a type under the assumptions
x1 E A , , ..., x,-, E A,,-,. By induction hypothesis, we know what this
means.

A judgment of the form

A type (x , E A,, ... , x,, E A,,)

A @ , , ..., a,,/xl, ..., x,,) type
means that

provided
01

an = b,, E A , (o ~ , ..., U , , - ~ / X , , ..., ~ ~ - 1) .

Thus it is in the nature of a family of types (propositional function) to be
extensional in the sense just described.

Suppose that A and Bare types under the assumptions x1 E A, , ... , x,, E A,,.
Then

means that
A = B (x , e A l , ..., X,€A, ,)

A (u ~ , ..., a,,/xi, ..., x,,) = B (u ~ , ..., a,,/Xi, ..., x,,)

provided
a1 € 4 ,

anEAn(a1, *.-> Un-JXi, -**$xn- i) 0

From this definition, the extensionality of a family of types and the evident
transitivity of equality between types, it follows as well that

A(Q, ..., a,,/x1, ..., x,,) = B(b1, ..., b,,/X,, ..., x,,)

provided
a1 = b l E A 1 ,

U, = b,, E A , (u ~ , ..., u, , -~ /x , , ..., ~ ~ - 1) .

WNSTRUCnVE MATHEMATICS AND COMPUTER PROGRAMMING 165

Let A be a type under the assumptions x1 E Al , ..., x, E A,,. Then

a E A (X 1 E A,, ..., x,, E AJ
means that

a(a,, ... , UJX, , ... y x,,) E A (a, , ... y UJX, , ... y x,,)

provided
01 € 4 Y

an E An(a1s * * a 9 aM-,/xl> ... xn- 1) 9

and, moreover,

a(u1, ... y UJX,, ... y xn) = u(b,, ...) bJx,, ...) X") E A(u,, ...) UJX,, ..., XJ

provided
a, = b l E A 1 ,

an = b n E A , (~ , , . . . y U n - , / x i y . - * y ~ n - 1) .

Thus, just as in the case of a family of types, it is in the nature of a function
to be extensional in the sense of yielding equal objects of the range type
when equal objects of the domain types are substituted for the variables
of which it is a function.

Let A be a type and a and b objects of type A under the assumptions
xi E A,, ..., X,,E An. Then

a = b E A(x, E A , , ..., x,, E A,,)

means that

Q(Q1, ..., U J X i , ..., x,,) = b (~ , ,... , a J X l ,... , x J ~ A (a l , . . . , a J x , , . . . , x ~

provided
a, € 4 Y

a n E A n (a l , . * . , a n - i / x l , ...s Xn-1)

Again, from this definition, the extensionality of a function and the tran-
sitivity of equality between objects of whatever type, there follows the
stronger property that

166 P. MARTXN-LOP

provided

a, = b, E A , ,

a, = b, E A,(a, , ... , a,-l/xl, ... , x,- .
This finishes my explanations of what judgments of the four forms used
in the theory of types mean in the presence of assumptions.

Now to the rules of inference or proof rules, as they are called in pro-
gramming. They will be presented in natural deduction style, suppressing
as usual all assumptions other than those that are discharged by an inference
of the particular form under consideration. Moreover, in those rules whose
conclusion has one of the forms u E A and a = b E A, only those premises
will be explicitly shown which have these very Same forms. This is in
agreement with the practice of writing, say, the rules of disjunction intro-
duction in predicate calculus simply

A true B true
A v B true A v B true

without showing explicitly the premises that A and B are formulas. For
each of the rules of inference, the reader is asked to try to make the con-
clusion evident to himself on the presupposition that he knows the premises.
This does not mean that further verbal explanations are of no help in
bringing about an understanding of the rules, only that this is not the place
for such detailed explanations. But there are also certain limits to what
verbal explanations can do when it comes to justifying axioms and rules of
inference. In the end, everbody must understand for himself.

GENERAL RULES

Reflexivity

a E A

a = a E A
A type
A = A

Symmetry

a = b e A A = 3

b = ae\A B = A

CONSTRUCIlVE MATHEMATICS AND COMPUTER PROORAMMINO 167

Pransitivity

a = b E A b = c E A A = B B = C

a = c E A

Equality of types

~ E A A = B

A = C

a = b E A A = B

a E B

Substitution

a = b E B

(X E A)
a = c E A B = D

B(u/x) = D(c/x)

(x E A)
a = C E A b = dE B

b(a/x) = d(c/x) E R(a/x)

Assumption

X E A

CARTESIAN PRODUCT OF A FAMILY OF TYPES

il -formation

(X E A)
A type B type

(nx E A) B type

ll - introduction

(n x E A) B = (I Z X E C) D

(x E A) (X E A)
b E B b = d E B

(k) b E (n x E A) B (k) b = (k) d E (L'x E A) B

ll -elimination

c e (n x ~ A) B ~ E A c = ~ E (~ x E A) B u = ~ E A - -
c (4 E H a l 4 c(a) = . f (d) E B(u/x)

168 P. MARTIN-LOP

R - equality

(x E A)
a e A b e B c E (Z7x E A) B

((Rx)b)(a) = b (4 x) E B(u/x) (Ax)(c(x)) = c E (a x E A) B

DIsJOINT UNION OF A FAMILY OF TYPES

C- formation

(x E A) (X E A)
A type B type A = C B = D

(Z X E A)B = (Z X E C)D (Ex E A) B type

X- introduction

a s A b s B(a/x) a = c E A b = d E B(a/x)
(a, b) E (Zx E A) B (a, b) = (c, d) E (ZX E A) B

C- elimination

C - eqwlity

DISJOINT UNION OF TWO TYPES

+ - formution

A = C B - D - A type B type

A + B type A + B = C + D

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING 169

+ -introduction

a e A U = C E A
i(a)E A + B

b E B

j (b) E A + B

i(a) = i(c) E A + B

b = d E B
j(b) = j (d) e A + B

+ -elimination

(x E A) (Y E B)
C E A + B d e C(i(x) /z) e e C(j (y) / z)

(x A) (Y B)
b E B d E C(i(x)/z) e E C(j (y) / z)

IDENTITY RELATION

I- formation

A type a e A b E A A = C a = c e A b = d E A

I (A , a, 4 type I (A , a , b) = I(C, c, 4
I-introduction

a = b e A
r E I (A , ay b)

a = b e A
r = r e I(A, a, b)

I-elimination
c E I (A , a , b)

170

I-equality

N,- formation

Nn type

P. MARTIN-LOF

a = b E A d E C(r/z)

J (r , d) = d E C(r/z)

FINITE TYPES

N, = N,

N,- introduction

m,EN, (m = O ,..., n-1) m , = m , E N , (m = O ,..., n-1)

N,- elimination

C E N , c,EC(m,/z) (m = 0, ..., n - 1)

Rn(c, ~ 0 , ...s cn-1) E C (C / Z)

c = d ~ N , c , = d , ~ C (m , / z) (m = O , ..., n - I)

Rn(c, ~ 0 , cn-1) = Rn(d, do, .**s dn-1) E C(C/Z)

N,- equality

C,E C(m,/z) (m = 0 , ..., n - I)
(m = 0 , ..., n-1)

R,(m,, co, ..., Cn-1) = C,E C(m,,/z)

NATURAL NUMBERS

N - formation

N - introduction

O E N

a € N

a' E N

O = O E N

a = b e N

a' = b' E N

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROORAMMINO 171

N- elimination

(x E N, Y E C(x/z))

c E N d E C(O/z) e E C(x’/z)

N- equality

WELLORDERINGS

W- formation

A type B type

(Wx E A) B type
A = C B = D

(W X E A) B = (W X E C) D

W- introduction

a E A b E B(a/x) + (Wx E A)B

sup(u, b) E (W x E A) B

 sup(^, b) = sup(c, d) E (Wx E A) B

172 P. MARTIN-LOF

W- equality

UNIVERSES

Un- formation

u,, type

U,,- introduction

u, = u,,

(~ x E A) B = (~ x E C) D E U,,

(x E A)

A = C E U , B = D E U ,
(CXE A) B E U,,

A E U,, B E U,

(ZX f A) B = (ZXE C) D E U,,

A = C E U , , B = D E U ,
A + B E U,,

A = C E U , , a = c E A b = d E A
l (A , a , 6) = I (C, c, d) B U,,

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING 173

&-I E Un

Urn- elimination

A E U,

N = N E U , ,

(x A)
A = C E U , , B = D E U , ,
(W X E A) B = (W X E C) D E U ,

A = B E U ,
A = B

A = B E U , ,
A = B E U,+,

An example will demonstrate how the language works. Let the premises

A type,
B type (x E A) ,
C type (x e A , y ~ B)

be given. Make the abbreviation

(nx E A) B

A - B

provided the variable x does not occur free in B. Then

(n x E A)(Cy E B) C + (CJe (nx E A)B)(l?x E A) C(f (x) / y)

is a type which, when read as a proposition, expresses the axiom of choice.
I shall construct an object of this type, an object which may at the same time
be interpreted as a proof of the axiom of choice. Assume

x E A , z E (Ux E A)(Zy E B)C .

z (x) E (C ~ E B) C .
By D-elimination,

174 P. MARTIN-LOF

Make the abbreviations

(Ex, m, x) 9 (Ex, Y) (C , v) .
P

P (4 4 (4
By Z-elimination,

P M 4) E B 9

4(z(x)) E C(P(Z(X))/Y) *

(W P (Z (4) E (n x E 0 9

((W P (Z (X))) (X) = P (Z (4) E B *

P (Z (X)) = ((W P (Z (X))) (X) E B 9

C(P(Z(X))/Y) = c(((W P (Z (X))) (X) / Y) -

4(z(x)) E C(((llX)P(Z(X)))(X)/Y) 9

(Jx)q(z (.4) E (n x 6 4 C(((lX)P(Z(X)))(X)/Y) *

By ll-introduction,

and, by lZ-equality,

BY symmetry,

and, by substitution,

By equality of types,

and, by ll- introduction,

By Z-introduction,

((W P (Z (X)) , (W 4 (z (x))) (ZfE (n x E 4” E - W (f (X) / Y) ’

(~ Z) ((W P (Z (X >) , (2.4 4(z(x)))

Finally, by ll-introduction,

E (l l x E A) (Z y E B) c + (Zf€ (l l x E A) B) (n x E A) C (f (x) / y) .
Thus

(W ((, W P (Z (X)) I (W q (z (x)))

is the sought for proof of the axiom of choice.
To conclude, relating constructive mathematics to computer programming

seems to me to have a beneficial influence on both parties. Among the
benefits to be derived by constructive mathematics from its association
with computer programming, one is that you see immediately why YOU

cannot rely upon the law of excluded middle: its uninhibited use would

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING 175

lead to programs which you did not know how to execute. Another is that
you see the point of introducing a formal notation not only for propositions,
as in propositional and predicate logic, but also for their proofs: this is
necessary in order to make the methods of computation implicit in intui-
tionistic (constructive) proofs fit for automatic execution. And a third is
that you see the point of formalizing the process of reasoning: this is ne-
cessary in order to have the possibility of automatically verifying the pro-
grams’ correctness. In fact, if the AUTOMATH proof checker had been
written for the theory of types instead of the language AUTOMATH,
we would already have a language with the facility of automatic checking
of the correctness of the programs formed according to its rules.

In the other direction, by choosing to program in a formal language for
constructive mathematics, like the theory of types, one gets access to the
whole conceptual apparatus of pure mathematics, neglecting those parts
that depend critically on the law of excluded middle, whereas even the best
high level programming languages so far designed are wholly inadequate
as mathematical languages (and, of course, nobody has claimed them to
be so). In fact, I do not think that the search for logically ever more satis-
factory high level programming languages can stop short of anything but
a language in which (constructive) mathematics can be adequately expressed.

References
BISHOP, 1967, Foundations of constructive analysis (McGraw-Hill, New York)
DE BRUIJN, N. G., 1970, The mathematical language AUTOMATH, its usage, and some of

its extensions, in : Symposium on Automatic Demonstration, Lecture Notes in Mathe-
matics, vol. 125 (Springer-Verlag, Berlin). pp. 29-61

CURRY, H. B., 1958, Combinatory logic, vol. I (North-Holland, Amsterdam)
DAHL, 0.-J., E. W. DIJKSTRA, and C. A. R. HOARE, 1972, Structured programming

DIJKSTRA, E. W., 1976, A discipline ofprogramming (Prentice-Hall, Englewood Cliffs, N. J.)
GENTZEN, G., 1934, Untersuchungen iiber das Iogische Schliessen, Mathematische

HOARE, C. A. R., 1972, Notes on data structuring, in: DAHL, DIJKSTRA and HOARE (1972),

HOWARD, W. A., 1969, The formulae-as-types notion of construction
KOLMOCOROV, A. N., 1932, Zur Deutung der intuitionistischen Logik, Mathematische

LANDIN, 1964, The mechanical evaluation of expressions, Computer Journal, vol. 6, pp.

MARTIN-L~P, P., 1975, An intuitionistic theory of types: predicative part, in: Logic
Colloquium ‘73, eds. H. E. Rose and J. C. Shepherdson (North-Holland, Amsterdam),

WIRTH, N.. 1971, The programming language Pascal, Acta Inforrnatica, vol. 1, pp. 35-63

(Academic Press, London)

Zeitschrift, vol. 39, pp. 176-210, 405431

pp. 83-174

Zeitschrift, voI. 35, pp. 58-65

308-320

pp. 73-1 18

