
Datalog for Static Analysis May 9, 2017
Ben Greenman

Abstract

These are post-lecture notes for my February 7th presentation for
HOPL 2017. The theme is the use of Datalog as a framework for build-
ing static analyses. The lecture covered the history of Datalog, who its
original application to static analysis, and its later success.

These notes are a bare-minimum transcription of my on-paper notes
for the lecture. Better than nothing.

Datalog for Static Analysis

Last year, there were two new papers about an old domain-specific language.

• From Datalog to Flix [14] at PLDI 2016

• Datafun: A Functional Datalog [4] at ICFP 2016

Both have a similar motivation, essentially:

Datalog has been successful because it lies at a confluence between
logic programming and static analysis.

And both papers suggest new extensions for Datalog. The goal today is to
understand why and how Datalog has been successful.

To start, we’ll trace the papers’ citations. Both cite work regarding the
LogicBlox Datalog engine: Flix cites the Doop program analyzer (for Java
programs) [6] and Datafun cites a paper that summarizes the engine [3]. They
also both cite Whaley and Lam’s bddbddb. Finally they each cite one early work
on Datalog. Flix cites Ullman’s text on Principles of database and knowledge-
base systems and Datafun cites the proceedings of a 1978 workshop on Logic
and Databases, hosted by Gallaire, Minker, and Nicholas. (See Figure 1 for a
picture of this paragraph. The solid lines represent citations in the 2016 papers.)

At this point, the earliest cited work that ues Datalog to implement a static
analysis is the bddbddb paper, from 2004.1 The bddbddb paper in turn cites work
by Reps [17] that uses the Coral deductive database [16] (a Datalog database)
to implement demand-driven program slicing. But the idea of Datalog for static
analysis goes (at least!) one step further: to Uwe Aβmann’s dissertation work.

That’s where we’ll start today. The road map is (1) Aβmann, (2) classic Dat-
alog, (3) bddbddb, and (4) Doop. In terms of deltas and contributions, we’ll (1)
see a uniform framework for expressing three static analyses, (2) rephrase that
framework as Datalog, (3) see how context-sensitive points-to analysis turned
Datalog from a novelty to a necessity, and (4) the power of a mature Datalog
implementation.

1Ullman’s text demonstrates how Datalog can express and solve the reaching definitions
problem, that is likely the first work to present the idea of implementing a static analysis with
Datalog.

1

http://www.ccs.neu.edu/home/matthias/7480-s17/index.html
http://conf.researchr.org/home/pldi-2016
http://conf.researchr.org/home/icfp-2016
http://www.logicblox.com/

Flix, PLDI 2016 Datafun, ICFP 2016

LogiQL, SIGMOD 2015

Doop, OOPSLA 2009

bddbddb, PLDI 2004

Reps, CC 1994

Aβmann, TAGT 1994

Ullman, 1988/1989
Ceri, Gottlob, Tanca, 1989

Logic and Databases, Gallaire, Minker, Nicholas, 1978

Figure 1: Tracing citations

EARS

Aβmann’s framework for static analysis is EARS: Edge Addition Rewrite Sys-
tems. His 1994 paper demonstrates how EARS can efficiently solve three prob-
lems in static analysis.

3 Static Analysis Problems

Basic Block Ordering (BB) is the problem of building a control-flow graph
for a set of basic blocks.

• A basic block is a straight-line sequence of machine instructions.

• Every basic block has a unique label.

• Machine instructions include definitions, jumps to other basic blocks, and
conditional jumps to other basic blocks. (Jumps reference block labels.)

2

https://books.google.com/books/about/Principles_of_Database_and_Knowledge_bas.html?id=YmpqAAAAMAAJ
https://books.google.com/books/about/Principles_of_Database_and_Knowledge_bas.html?id=vUw1AQAAMAAJ

1 int y,z;

2 y = random ();

3 if (y > 0.5) {

4 y = random ();

5 }

6 z = 2 * y;

Figure 2: Example C code.

• The last instruction in any basic block is a jump. Intermediate instructions
are not jumps.

• A control flow graph draws an edge from each basic block to its possible
successors.

For example, the fragment of C code in Figure 2 might compile to three basic
blocks. The first would represent lines 2 and 3. The second would represent
line 4. The third would represent line 5. A control flow graph would connect
the first block to the other two, and the second block to the third.

Reaching Definitions (RD) is the problem of associating variable references
in a program with variable definitions. In Figure 2, the definition of y on line
2 reaches the use on line 3. The same definition also reaches line 6 because the
first block (representing lines 2 and 3) is a direct predecessor of the third block
(representing line 6).

To simplify this problem, Aβmann assumes two relations between basic
blocks and definition instructions.

• The Def relation associates basic blocks to definitions that exit the block.
If a block defines the same variable twice, only the latter definition is in
the Def relation.

• The Preserved relation associates basic blocks to definitions; in partic-
ular, to definitions that the basic block does not overwrite.

These seem like big assumptions to me. Don’t worry about it.

Equivalence Classes / Value Numbering (EQ) is the problem of finding
syntactically equal subexpressions within a basic block. If the term x + y occurs
twice in a basic block, these two occurrences belong in an equivalence class.

Uniform Representation

All three problems and their solutions can be expressed uniformly as rewrite
rules on graphs. Figures 3, 4, and 5 present Aβmann’s rules. Each rule has two
parts: the left-hand side matches a sub-graph with labeled nodes and labeled

3

BB-1 B1

I3
Kind=Jump

Lbl=L

B2

Lbl=L

Last

:: = B1

I3
Kind=Jump

Lbl=L

B2

Lbl=L

Last

B-Succ

BB-2 B1

I3
Kind=CondJump

ThenLbl=L

B2

Lbl=L

Last

:: = B1

I3
Kind=CondJump

ThenLbl=L

B2

Lbl=L

Last

B-Succ

BB-3 B1

I3
Kind=CondJump

ElseLbl=L

B2

Lbl=L

Last

:: = B1

I3
Kind=CondJump

ElseLbl=L

B2

Lbl=L

Last

B-Succ

Figure 3: Graph rewrite system BB

edges (defined more formally in the next section). The right-hand side adds one
(or more) edges to the left-hand side graph.

For BB, assume a Last relation associating basic blocks to their final (jump)
instruction. Then the rewrite rules to compute the “successor” relation between
blocks are:

• (BB-1) if the last instruction in block B1 is a direct jump, the jump’s
target is a successor of B1.

• (BB-2, BB-3) if the last instruction in block B1 is a conditional jump, the
“then” and “else” targets are successors of B1.

(Aβmann simulataneously defines a “predescessor” relation between blocks.)
For RD, assume the Def and Preserved relations noted above.

• (RD-1) if a block defines a variable, the definition reaches the end of the
block.

• (RD-2) if a definition flows into block B1 and is not re-defined, the defini-
tion flows out of B1.

• (RD-3) if a definition flows out of a block, it flows in to that block’s
successors.

4

RD-1 B1 D2
Def :: = B1 D2

Def

RD-Out

RD-2 B1 D2

RD-In

Preserved

:: = B1 D2

RD-In

Preserved

RD-Out

RD-3 B1

B3

D2

B-Succ

RD-Out :: = B1

B3

D2

B-Succ

RD-Out

RD-In

Figure 4: Graph rewrite system RD

For EQ, the goal is to compute “shallow” and “deep” equality relations
(Simple= and Tree=, respectively). These rules in Figure 5 work for numbers
and addition; any expression node E is either a number or the sum of two
expression nodes.

• (EQ-1) two number nodes with equal values are both Simple= andTree=.

• (EQ-2) any two sum nodes are Simple=.

• (EQ-3) if two nodes are Simple= and have Tree= children, they are
Tree=.

To find the solution of these problems on a program P, first convert P to an
appropriate graphs and then apply the rewrite rules to a fixed point.

Termination and Strong Confluence

The above graph rewrite systems are useful because they can express a variety of
static analysis problems and furthermore yield a terminating, strongly confluent
algorithm for computing the solution. Strong confluence means that applying
the rewrite rules in any order gives the same solution.

Aβmann defines an edge-addition rewrite system (EARS) E as a pair (S,Z)
where:

• Z is a graph with labeled nodes, labeled edges, and a dictionary of at-
tributes for each node. A given pair of nodes can have multiple edges
between them, but each such edge must have a unique label. Here is
Aβmann’s definition: Z = ⟨N,E,ΣN ,ΣE , lN ,mN , AN ⟩ where

– N is a set of nodes

5

EQ-1 E1

Kind=Num

Val=n

E2

Kind=Num

Val=n

:: = E1

Kind=Num

Val=n

E2

Kind=Num

Val=n

Simple=

Tree=

EQ-2 E1

Kind=+

E2

Kind=+

:: = E1

Kind=+

E2

Kind=+

Simple=

EQ-3 E1

E2 E3

E4

E5 E6

Simple=

Tree= Tree=

:: = E1

E2 E3

E4

E5 E6

Simple=

Tree= Tree=

Tree=

Figure 5: Graph rewrite system EQ

– E is a set of triples (N,N,ΣE) (directed, labeled edges).

– ΣN is a set of node labels (e.g. a set of strings).

– ΣE is a set of edge labels.

– lN : N 7→ ΣN associates nodes to labels.

– mN : E 7→ ΣE associates edges to labels.234

– AN is a set of functions that map nodes to a particular attribute.
Aβmann writes AN = {f | f : N 7→ Ai, i ∈ N}

• S is a set of pairs of such graphs, such that (GL, GR) ∈ S implies that
GL and GR have the same nodes and the edges of GL are a subset of the
edges of GR.

Intuition: Z represents a program and S is the graph rewrite rules.
Next, rule application for an EARS is the non-deterministic process of se-

lecting a rewrite rule in S and applying it to Z. Let (S,Z) →R (S,Z ′) mean
that applying rule R ∈ S to graph Z yield graph Z ′. Aβmann states three
conditions for R ∈ S to apply to the EARS (S,Z). Let R = (GL, GR):

1. There exists a graph morphism gL : GL → Z.

2Seems redundant to me.
3I should point out: around this time in the presentation, Mitch said “you all should look

at a definition like this and, as scientists, pinpoint why it is wrong.” I think his point was, if
the formalism isn’t as simple and clear as possible, you need to fix the formalism.

4Around the same time, Olin said “these compiler guys usually have a bunch of hacks and
pseudo-math, and a very cool idea underneath”

6

2. The morphism gL preserves node attributes.5

3. There is no morphism gR : GR → Z such that gL(GL) ⊆ gR(GR).

Condition 3 ensures that rule application adds an edge. In other words, (S,Z)→R

(S,Z ′) implies that Z is a strict subgraph of Z ′.

Theorem. the transitive closure of rule application is terminating and strongly
confluent

Proof. Termination is obvious: rule application always adds an edge, and every
graph contains at most one edge for every label and pair of nodes.

Confluence is also easy to prove, but relies on the reflexive-transitive closure
of rule application, written (S,Z) →∗ (S,Z ′). Suppose there are two ways an
EARS can step:

(S,Z)

(S,Z1) (S,Z2)

R1 R2

Then there exists an EARS (S,Z3) such that:

(S,Z1) (S,Z2)

(S,Z3)
∗ ∗

The proof is by cases on the edges added by R1 and R2. Let these edges be
the sets E1 and E2.

• If E1 = E2 then Z1 = Z2 = Z3. Do nothing.

• If E1 ⊂ E2 then Z2 = Z3. Apply (S,Z1)→R2
(S,Z3).

• If E2 ⊂ E1 then Z1 = Z3. Apply (S,Z2)→R1 (S,Z3).

• Otherwise, apply (S,Z1)→R2 (S,Z3)R1 ← (S,Z2).

Efficent Solutions

These problems (BB, RD, EQ) are old problems in static analysis. When
Aβmann began developing his framework, all three problems had well-known
and efficient solutions. But the solutions for each problem were ad-hoc; it was
not clear how those solutions could systematically lead to efficient solutions for
other problems.

The main contribution of the EARS framework is that it provides a sys-
tematic method of deriving efficient solutions to problems. Aβmann shows that

5Aβmann formalizes this. I won’t.

7

S :: = R . . .
R :: = F | Q | L :−L . . .
F,Q, L :: = p(a . . .)
p :: = ⟨symbol⟩
a :: = ⟨symbol⟩ | X

Figure 6: Datalog syntax

these solutions are as efficent as the previously-known, ad-hoc solutions. See the
paper for details: the idea is to start with a straightforward, iterative solution
and optimize the for-loops based on the number of nodes in a rewrite rule with
no incoming edges.

To Datalog

In a short subsection, Aβmann notes that his graph rewrite rules can be mapped
to Datalog. EARS are “just Datalog”, and Datalog is “just EARS”. The next
section introduces Datalog and explains the mapping.

EARS External Links

• Sourceforge page for Optimix: http://optimix.sourceforge.net/ Op-
timix is part of Aβmann’s dissertation, it is a language for specifying
EARS-based transformations for C and Java code.

• DBLP page for the TAGT conference (where the EARS paper appeared):
http://dblp.uni-trier.de/db/conf/gg/index.html

Datalog

One quick definition of Datalog is “Prolog without function symbols or nega-
tion”. Another is “a deductive database”; that is, a database extended with
first-order Horn clauses.

Figure 6 presents a syntax for Datalog. A program S is a sequence of facts
F , rules, and queries Q. A rule L0 :−L1 . . . Ln is an axiom for deducing new
information (L0) from existing facts (Li, for i ∈ [1, n]). Facts, rules, and queries
consist of predicate symbols p and atoms a. Atoms are either symbols (typeset
in lowercase, serif font) or variables (captalized, in math mode, e.g. X).

There are two syntactic restrictions:

1. A fact may not contain variables.

2. Any free variables in the head of a rule must be appear in the rule’s
body. Let fvs(L) denote the set of variables that appear in L. Then the
restriction on L0 :−L1 . . . Ln is that fvs(L0) ⊆

∪
i∈[1,n] fvs(Li).

8

http://optimix.sourceforge.net/
http://dblp.uni-trier.de/db/conf/gg/index.html

b succ(B0, B1) :− basic block(B0)
basic block(B1)
last(B0, I)
kind(I, jump)
lbl(I, L)
lbl(B1, L)

Figure 7: Datalog encoding of BB-1

Figure 7 encodes the rule BB-1 in Datalog. This encoding assumes there are
predicates basic block, last, kind, and lbl corresponding to the edges and labels
in the BB-1 graph. Using these predicates, the rule describes how to deduce
that a block B0 has a successor block B1.

The syntax and example should give an intuition for the semantics of a
Datalog program. For one last bit of intuition, here is the translation (∼) of a
Datalog rule to first-order logic (specifically, a translation from rules to Horn
clauses):

L0 :−L1 . . . Ln ∼ ∀X⃗ . (L1 ∧ . . . ∧ Ln)⇒ L0

where X⃗ =
∪

j∈[0,n]

fvs(Lj)

More precisely, the semantics of a Datalog program is the least fixed point of
the elementary production principle (EPP). The EPP describes how a Datalog
program S can step to a program S′ using a rule in S to derive a new fact:

S →R (S ∪ (L0 θ)) ⇐⇒ ∃R ∈ S
∧ R = L0 :−L1 . . . Ln

∧ ∃F1 . . . Fn ∈ S

∧ X⃗ =
∪

j∈[0,n] fvs(Lj)

∧ ∃θ : X⃗ 7→ F such that θ(X) ∈ S
∧ ∀i ∈ [1, n] . Li θ = Fi

where L θ is the fact produced by replacing free variables in L by their value in
θ.

The least fixed point of applying the EPP is the set of facts that a Datalog
program represents.

Databases

The previous section explains how a Datalog program S represents a database of
facts. This database is known as the intensional database (or IDB) represented
by S [7].

It’s often useful to connect a Datalog program to an existing database of
facts. Such databases are called extensional databases.

9

Once we incorporate an extensional database, we can view a Datalog pro-
gram P as a mapping from an EDB to an IDB:

P : EDB→ IDB

Typically, P is a time-invariant mapping from a time-invariant set of facts
(the EDB) to some answer (the IDB).

(The EDB / IDB distinction is a pragmatic one. You could pretend that the
EDB is a sequence of facts at the top of the Datalog program and the IDB is
always fully computed and committed to an extensional database.)

History Lesson

My reference for “pure Datalog” is the 1989 article by Ceri, Gottlob, and
Tanca [7]. At that time, Datalog was well-known and well understood in the
logic and databases community. Here’s a very quick timeline of the world until
1989.

• (19XX) databases are as old as computers. The early implementations6

were link-based. Unlike computers, there was no early mathematical model
of databases.

• (1970) Codd proposed the relational model of databases, founded on re-
lational algebra [9]. This was a hit. For example, SQL databases are
relational databases. Codd received a Turing award in 1981.

• (196X-197X) meanwhile, researchers began exploring the idea that math-
ematical logic could be useful for understanding databases.

• (1973) Colmeraur and his students develop the first Prolog interpreter.

• (1974) Kowalski suggests logic as a programming language.

• (1976) Van Emden and Kowalski give a semantics of predicate logic as
a programming langauge [20]. Datalog is predicate logic; their model-
theoretic, proof-theoretic, and fixpoint semantics were the foundation.

• (1978) Gallaire, Minker, and Nicholas organized a workshop titled Logic
and Databases. At this workshop:

– Someone introduced Datalog.

– Reiter stated the closed-world axiom implicit in relational models.

– Clark stated the completion axiom, also implicit in relational databases.

• (198X) researchers explored extensions to Datalog and techniques for effi-
ciently answering queries (without computing the entire IDB!). Extensions
include:

6Such as IBM’s hierarchical model.

10

http://amturing.acm.org/award_winners/codd_1000892.cfm
https://en.wikipedia.org/wiki/Hierarchical_database_model

– negation

– arithmetic, primitive functions such as <

– complex objects, missing information null

Evaluation techinques include:

– semi-näıve evaluation

– the magic sets transformation

– the query-subquery method

Suffice to say, Datalog was considered a successful experiment by 1989. No
commercial implementations of Datalog existed, but the theory was all laid out.

In fact, the magic sets transformation is the premise of the 1994 paper by
Reps [17]. The transformation minimizes the number of facts computed to
answer a query based on symbols that appear in the query. Reps uses this
transformation to implement demand-driven program slicing.

One more thing that doesn’t fit anywhere else: Datalog corresponds to posi-
tive relational algebra with recursion. Full relational algebra has a set-difference
operator.

One more thing: I posit that there is a paper that proves you can encode
any polynomial time algorithm in Datalog [10]. (Flix cites this paper as such,
but I did not understand the paper’s theorems.)

Further Reading

• The survey by Gallaire, Minker, and Nicholas [11].

• The 20-year retrospective by Minker [15].

Context-sensitive Points-To Analysis (for Java)

Aβmann and Reps demonstrated that Datalog could successfully be used to
implement static analyses. Very good. But for the next decade, there doesn’t
seem to be much work using Datalog for static analysis.7

(As I understand, Aβmann didn’t use Datalog because (1) his goal was to add
EARS to an existing compiler, which used adjacency lists as an IR and (2) he did
not have access to a Datalog implementation. Reps used the Coral deductive
database, but reported order-of-magnitude slowdowns for using Coral rather
than C.)

It took the combination of an old problem and a new programming paradigm
to revive interest. The paradigm was object-oriented programming. The prob-
lem was context-sensitive points-to analysis.

Points-to analysis is essentially the reaching definitions (RD) problem. The
goal, in the OOP sense, is to describe the heap objects that a variable can

7Mitch says: that’s not entirely true, there are definitely some papers where—if you
squint—you realize they’re using Datalog.

11

denote. A context-sensitive points-to analysis further indexes this information.
Exactly how to index is a design choice; for example, one way to index is to
track the previous three (generalization: k) method names on the call stack.

Proposition: many static analyses require points-to information.
In the early 2000’s, if you wanted points-to information for your Java pro-

gram, you had essentially two alternatives:

• Apply a know context-sensitive algorithm, limit yourself to programs of
about 3,000 lines.

• Apply a unification-based [19] or context-insensitive algorithm.

Scaling Points-to Analysis

John Whaley and (advisor) Monica Lam at Stanford came up with a radical
solution [21]. They decided to apply a context-insensitive algorithm to an ex-
ploded control-flow graph. That is, they added paths to a given control-flow
graph to make context information explicit in the paths. Consequently, the
insensitive algorithm would give context-sensitive results.

The obvious problem with this approach is that the number of contexts in
a large, object-oriented program is usually large.8 Whaley and Lam report
that 1014 contexts is “typical”, and one of the DaCapo benchmarks had 1023

contexts.9 Yet they made the algorithm work at scale by:

• representing program paths as relations

• representing relations as boolean functions

• using binary decision diagrams (BDDs) [1] to efficiently represent the func-
tions.

BDDs worked because these contexts had a lot of redundant information.

Datalog for Points-to Analysis

The PLDI 2004 paper [21] reports on the implementation of bddbddb: a binary-
decision-diagram based deductive database. The database front-end is Datalog.
Whaley and Lam encoded a points-to of C and Java programs as Datalog rules.
(Later, with Livshits, Martin, Avots, Carbin, and Unkel, they encoded a variety
of taint analyses in Datalog [12].10)

The database back-end is binary decision diagrams. That’s right, Whaley
and Lam built an efficient deductive database from the ground up just to im-
plement points-to analysis.

8This is exactly why previous algorithms did not work at scale.
9A context is a call path to a method, e.g. they are reporting that if you count all the

paths to all the methods, it’s typical that the total count is 1014. A second, common kind
of context-sensitivity is object sensitivity [18]. Thank you to Radu Grigore for helping me
understand the contexts.

10And furthermore developed a compiler from source-code patterns to Datalog rules.

12

http://rgrig.appspot.com/

Conclusion: they succeeded at a problem that nobody before they could
solve. Their points-to analysis finished in minutes on programs selected from
the DaCapo benchmarks [5].11

A Commercial Datalog Engine

Finally, I want to mention the Doop system for points-to analysis of Java
programs [6]. Doop builds on bddbddb and the later Paddle system [13] in
that Doop is:

• encodes call-graph construction in Datalog (as well as the points-to anal-
ysis);

• extends the logic from the Paddle system [13] to encode more details of
the Java language;

• handles reflection “better” (details were not apparent to me);

• handles exceptions “better” by building the relevant parts of the call
graph12

Doop is historically significant because it uses a commercial Datalog engine
developed by LogicBlox.

I am not aware of any work before Doop to mark the existence of a commer-
cial (i.e. implementing all the optimizations from the 1980’s) Datalog engine.
That means its approximately 33 years from the initial conference on logic and
databases to a practical realization.

Oh, and by modifying their Datalog rules to trigger certain behavior in
the Datalog engine, Bravenboer and Smaragdakis achieve numbers that suggest
Doop is the fastest and most scalable implementation of points-to analysis for
Java programs. Regarding scalability, they are able to index each pointer with
2 abstract objects or associate 2 contexts to each heap location. The Paddle
system implemented these settings, but did not produce results in reasonable
time.

Conclusions

Datalog is:

• predicate logic as a programming language

• a convenient interface to a database

11Remember that program with 1023 contexts? Well bddbddb could not actually encode all
those, it stopped at 264 − 1 contexts and merged all others into the last context.

12I think this is possible because the Doop builds a call graph on-demand instead of pre-
computing, similar to how Reps used Datalog for demand-driven program slicing. But this is
just a guess, beyond the phrase “on-the-fly” the details were not apparent to me from reading
the paper.

13

http://www.logicblox.com/

The high-level benefits of storing program facts in a database and encoding
a static analysis in Datalog are:

• the encoding works for a variety of problems, and yields a uniform solution

• the Datalog encoding separates the specification of the analysis from how
to compute the analysis

• techniques for efficient evaluation of Datalog are techniques for efficient
evaluation of your analysis

Meta-lessons: watch out for

• confluence points among research areas

• sub-Turing languages that solve a real problem

FAQ

(Not really an FAQ. These are the questions I had answers to prior to the talk,
and my answers to questions that came up at the end.)

Q. Does the bddbddb paper report the overhead of building the deductive
database?
A. Not that I know of. I do know that the Doop paper criticizes the overhead
of BDDs [6], so lets say it’s “significant”, but not outrageous.

The Averroes paper later criticized the overhead of representing a program
analysis in Doop [2]. So it goes.

Q. Given the overhead, do you still think Datalog is a good idea.
A. Yeah I think this is “the future”. Data is cheap, and we should look to re-
use quality research (e.g. evaluation techniques for Datalog) without reinventing
them each time (building a bddbddb).

Q. Is there an easy way to try or use Datalog?
A. Yes. There’s implementations everywhere. You can play with #lang

datalog in Racket. For real work, there’s the Datomic library for Clojure,
Graal project for Java, and Dyna for Haskell. Also see the recent work on Flix
and Datafun.

Q. Why did you pick this topic?
A. Last Spring I was building on the Type Systems as Macros [8] approach to
type systems to put static analysis in the Racket macro expander. Researching
Datalog is a step in a broader goal of looking at other frameworks for static
analysis to determine what will work best in the macro expander.

Q. Can you quickly explain this magic sets thing?
A. Sure, it’s a source-code rewriting technique. Start with a query, for example
p(a, X). Then rewrite the p(A,B) rule to include the condition relevant(A). If

14

http://docs.racket-lang.org/datalog/datalog.html
http://docs.racket-lang.org/datalog/datalog.html
http://www.datomic.com/
https://graphik-team.github.io/graal/
https://github.com/nwf/dyna
https://github.com/flix
https://github.com/rntz/datafun

A is not relevant, you don’t want to compute facts about it. This “relevant”
predicate is a new rule that’s introduced by the rewriting, along with the fact
relevant(a) and some way of identifying other relevant atoms.

Q. Any opinions on Flix and Datafun?
A. Flix sounds exicting. It’s not straightforward to express lattice-based
program analysis in Datalog. It is straightforward to do so in Flix.

What worries me though, is that they’re building a Datalog engine from
scratch. Hope they stick with it, and implement the optimizations.

Datafun is interesting, but I need to see more (or read the paper more
carefully). For example, they cite other researchers extensions to Datalog as
evidence that we could use a typed functional language for implementing Dat-
alog extensions. But they don’t show whether the language can express those
existing extensions.

Q. Final remarks?
A. There’s an interesting “wishlist” at the end of the Ceri, Gottlob, Tanca
article [7]:

• To date, there are no useful applications of recursive or non-linear Datalog
rules (points-to analysis certainly changed that)

• Datalog would be more useful if it was more of a programming language,
e.g. with modules and structures, and the ability to implement a user
interface. (Shouts out to Datafun.)

• Datalog is too declarative, sometimes you really do want to go low-level
and control how things compute.

• Datalog focuses on interactions with a single database, but the modern
trend is towards heterogenous systems.

They thought about a lot of interesting things in 1989.

References
[1] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516,

1978.

[2] Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole
program. In ECOOP, 2013.

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir
Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of the
LogicBlox system. In SIGMOD, 2015.

[4] Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: a functional Datalog.
In ICFP, 2016.

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z
Guyer, Martin Hirzel, Anthony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapo benchmarks: Java benchmarking development and analysis. In
OOPSLA, 2006.

15

[6] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophis-
ticated points-to analyses. In OOPSLA, pages 243 – 262, 2009.

[7] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know
about Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146 – 166, 1989.

[8] Stephen Chang, Alex Knauth, and Ben Greenman. Type systems as macros. In POPL,
2017.

[9] E.F. Codd. A relational model of data for large shared data banks. 13(6), 1970.

[10] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of
logic programming. In CSUR, 2001.

[11] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A deductive
approach. ACM Computing Surveys (CSUR), 16(2):153–185, 1984.

[12] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots,
Michael Carbin, and Christopher Unkel. Context sensitive program analysis as database
queries. In PODS, pages 1 – 12, 2005.

[13] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a BDD-based implementation. TOSEM, 18(1), 2008.

[14] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From Datalog to flix: A declarative
language for fixed points on lattices. In PLDI, 2016.

[15] Jack Minker. Logic and databases: past, present, and future. 18(3):21–48, 1999.

[16] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Seshadri. Imple-
mentation of the CORAL deductive database system. In SIGMOD, 1993.

[17] Thomas Reps. Demand interprocedural program analysis using logic databases. In CC,
1994.

[18] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. Pick your contexts well:
Understanding object-sensitivity. In POPL, 2011.

[19] Bjarne Steensgaard. Points-to analysis in almost linear time. In POPL, 1995.

[20] Maarten H Van Emden and Robert A Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM (JACM), 23(4):733–742, 1976.

[21] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In PLDI, 2004.

16

