Abstract
Craig Interpolants: definitions, intuitions, and applications.

1 Definitions

The following sentences A, B, C are special. For each, A implies B. Furthermore, A implies C and C implies B.

$$
\begin{aligned}
& A=\neg(P \wedge Q) \Rightarrow(\neg R \wedge Q) \\
& B=(T \Rightarrow P) \wedge(T \Rightarrow \neg R) \\
& C=(P \vee \neg R) \\
& A=P \vee(Q \wedge R) \\
& B=P \vee \neg \neg Q \\
& C=P \vee Q \\
& A=\neg(P \wedge Q) \Longrightarrow(\neg R \wedge Q) \\
& B=(S \Rightarrow P) \vee(S \Rightarrow \neg R) \\
& C=P \vee \neg R
\end{aligned}
$$

Definition. Craig Interpolant (1957)
Suppose A and B are logical formulas. An interpolant C for the pair (A, B) is:

- Implied by $A: \vdash A \Rightarrow C$
- Sufficient to prove $B: \vdash C \Rightarrow B$
- Expressed over the common variables of A and B :
$\operatorname{atoms}(C) \subseteq \operatorname{atoms}(A) \cup \operatorname{atoms}(B)$
Theorem. If $\vdash A \Rightarrow B$ then an interpolant for (A, B) exists [2]].
Proof. By induction on the size of $V=\operatorname{atoms}(A) \backslash \operatorname{atoms}(B)$. If V is empty, A is an interpolant. Else choose any variable $v \in V$ and define $A^{\prime}=A[T / v] \vee$ $A[\perp / v]$. By the induction hypothesis, an interpolant for $\left(A^{\prime}, B\right)$ is an interpolant for (A, B).

If atoms $(A) \cap \operatorname{atoms}(B)=\emptyset$ then either $\vdash \neg A$ or $\vdash B$.
Challenge. Find an optimal interpolant for (A, B) i.e. smallest, least variables, quantifier-free.

The proof above can make an exponentially large term. Craig's proof introduces quantifiers.

2 Craig Interpolants in Model Checking

Very simple program:

```
void f(int n) {
    int x = n;
    int y = n + 1;
    assert(y == x + 1);
}
```

Goal: prove that the assertion on line 4 is never violated.
At line 4, we have the following premise (A) and goal (B) :

$$
\begin{aligned}
& A=\{n \in \operatorname{short} \wedge x=n \wedge y=n+1\} \\
& B=y=x+1
\end{aligned}
$$

A suitable interpolant for (A, B) is B.

2.1 Basic Strategy

Start by finding a path in the program to as assert statement. The path will be represented by primarily by transitions $T\left(s_{i}, s_{j}\right)$ from one state s_{i} to a successor state s_{j}. The final state in the path is the assertion C we wish to prove correct; in total we can represent the path as a formula:

$$
p=T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{n-1}, s_{n}\right) \wedge C\left(s_{n}\right)
$$

The formula should be true of a specific path, but we want to know whether it holds for all paths. The key idea of interpolation-based model checking is to use our proof that p is correct to find counterexamples to C.

We take the (false) formula p^{\prime} :

$$
p^{\prime}=T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{n-1}, s_{n}\right) \wedge \neg C\left(s_{n}\right)
$$

and consider of each \wedge from left to right in turn as a formula $A \wedge B$ where A and B are mutually inconsistent. Then we apply interpolation to get a formula A^{\prime} that is:

- Implied by A
- Inconsistent with B
- Expressed over the common atoms: atoms $(A) \backslash \operatorname{atoms}(B)$

A good interpolant A^{\prime} will contain no irrelevant information about B. In other words, A^{\prime} contains only the facts about A necessary to prove the assertion C holds later in the path.

2.1.1 Equivalent Definitions

Note: this definition is classically equal to Craig's original, just switch $\neg B$ for B. It is also more common in the model-checking community [8$]$. Here are a few new-style interpolants.

$$
\begin{aligned}
& A=u=x \wedge f(u, y)=z \\
& B=v=y \wedge f(x, v) \neq z \\
& C=f(x, y)=z \\
& A=x \leq y \wedge y \leq z \\
& B=x-z-1 \geq 0 \\
& C=x \leq z
\end{aligned}
$$

2.2 While Programs

Take a small while program [T]:

```
int i = 0;
while (i < 1000)
    i += 1;
assert(i <= 1000);
```

Using interpolation, ${ }^{[0}$ we can prove that the assertion on line 4 never fails. First, the control-flow-graph of our program is:

By unrolling the program, exploring paths, and computing interpolants for each state (by splitting the path formula into two inconsistent conjunctions) we get the tree:

[^0]Correctness follows because the 3 error states are unreachable and state 4 covers state 8 . The covering condition follows because states 4 and 8 refer to the same control-flow condition and the proposition $i<1000$ at state 8 implies the proposition at state 4.

2.3 More Examples

From D'Silva [3]:

```
void g(int i, int j) {
    int x = i;
    int y = j;
    int tmp;
    while (*) {
        tmp = x;
        x = y + 1;
        y = tmp + 1;
    }
    if (i == j && x <= 10) {
        assert(y <= 10);
    }
}
```

A few possible interpolants:

1. $i=j \Longrightarrow x \leq y$
2. $i=j \Longrightarrow y \leq x$
3. $(1) \wedge(2) \Longrightarrow x=y$

3 Alternative: Image Computation

Before interpolation, "the way" to annotate states was image computation i.e. computing all successors of each state [8]. One would compute the strongest invariant of a program with initial state I and transition relation T by taking the fixed point of all strongest postconditions at each reachable state.

$$
R(I, T)=\mu U . I \vee \operatorname{post}_{T}(Q)
$$

Each $\operatorname{post}_{T}(Q)$ for a state formula Q is easy to express in propositional logic, but difficult to compute:

$$
\operatorname{post}_{T}(Q)=\exists S \cdot Q \wedge T
$$

where S is a signature representing the entire state space. At least we know how to compute it, but the process is very slow for all but the smallest pro-
grams. If post T_{T} is monotonic, the least fixed point of Q exists and is the strongest invariant of the program. ${ }^{\text {D }}$

4 How to Derive Interpolants

Core idea for how to derive an interpolant from a refutation of $A \wedge B$.

4.1 Basic Logic

Start with a quantifier-free propositional logic and these rules for proving \forall $A \wedge B$ [3]. Very important to divide rules based on where the variables occur.

$$
\begin{gathered}
\text { A-HYP } \frac{C \in A}{\vdash C} \quad \text { A-Res } \frac{x \in \operatorname{atoms}(A) \backslash \operatorname{atoms}(B) \quad \vdash C \vee x}{\vdash C \vee D} \quad \vdash \neg x \vee D \\
\text { B-HYP } \frac{C \in B}{\vdash C} \quad \text { B-Res } \frac{x \in \operatorname{atoms}(B)}{\vdash} \quad \vdash C \vee x \quad \vdash \neg x \vee D \\
\vdash C \vee D
\end{gathered}
$$

Then annotate rules with partial interpolants.

$$
\begin{gathered}
\mathrm{A}-\mathrm{HYp} \frac{C \in A}{\vdash C \quad\left[\left\{C^{\prime} \in C \mid \operatorname{atoms}\left(C^{\prime}\right) \subseteq \operatorname{atoms}(B)\right\}\right]} \\
\text { A-REs } \frac{x \in \operatorname{atoms}(A) \backslash \operatorname{atoms}(B) \quad \vdash C \vee x\left[I_{1}\right] \quad \vdash \neg x \vee D \quad\left[I_{2}\right]}{\vdash C \vee D\left[I_{1} \vee I_{2}\right]} \\
\text { B-HYP } \frac{C \in B}{\vdash C[\top]} \quad \text { B-REs } \frac{x \in \operatorname{atoms}(B) \quad \vdash C \vee x\left[I_{1}\right] \quad \vdash \neg x \vee D\left[I_{2}\right]}{\vdash C \vee D\left[I_{1} \wedge I_{2}\right]}
\end{gathered}
$$

4.1.1 Sample Proof

$$
\begin{aligned}
& A=\left(a_{1} \vee \neg a_{2}\right) \wedge\left(\neg a_{1} \vee \neg a_{3}\right) \wedge a_{2} \\
& B=\left(\neg a_{2} \vee a_{3}\right) \wedge\left(a_{2} \vee a_{4}\right) \wedge \neg a_{4}
\end{aligned}
$$

An interpolant is $C=\neg a_{3} \wedge a_{2}$, derived below:

[^1]
4.2 Basic Arithmetic

McMillan's simple rules for linear inequalities [9]:

$$
\begin{array}{cc}
\mathrm{H}<\mathrm{A} \frac{0 \leq x \in A}{\vdash 0 \leq x \quad[x]} & \mathrm{H}<\mathrm{B} \frac{0 \leq x \in B}{\vdash 0 \leq x \quad[\mathrm{\top}]} \\
\text { Comb } \frac{\vdash 0 \leq y-x[y-x]}{\vdash 0 \leq c_{1} x+c_{2} y} & {\left[c_{1} x^{\prime}+c_{2} y^{\prime}\right]}
\end{array}
$$

4.2.1 Example

$$
\begin{aligned}
& A=(0 \leq y-x) \wedge(0 \leq z-y) \\
& B=0 \leq x-z-1
\end{aligned}
$$

Now we show that A and B are inconsistent and derive an interpolant.

$$
\begin{array}{cccc}
\hline \stackrel{\vdash 0 \leq y-x}{ }[y-x] & \overline{\vdash 0 \leq z-x}[z-y] & \\
\hline \vdash 0 \leq z-x & {[z-x]} & & \\
\hline & \vdash 0 \leq-1 \quad[z-x] &
\end{array}
$$

4.3 Complexity Results

At least one of the following is true [TiT]:

- $P=N P$
- NP \neq coNP
- Then interpolants in propositional logic are not in general computable in time polynomial in the size of (A, B).
If the propositional formula $A \wedge B$ has a refutation of size n there is an interpolant of circuit size $3 n$ [$\boxed{\text { I }}$.

5 Applications of Craig Interpolation in Model Checking

McMillan [8] gives three examples of using interpolants to do model checking faster / more efficiently.

1. Find invariants of program paths
2. Choose predicates to approximate a program state. Relies on interpolants not introducting new quantifiers.
3. Filter irrelevant details from a transition relation

6 Theories with Efficient Interpolants

- Resolution, bounded arithmetic theory, linear equational calculus, cutting planes [[7].
- Linear Arithmetic with quantifiers (LA(Q)) [9$]$.
- Datatype theories [6].
- Quatifier-free, linear inequalities, equality, uninterpreted functions [9].
- Quantifier-free Presburger Arithmetic with arrays [T].
- DL(Q), UTVPI
- Linear Diophantine \& Linear Modular equations [b]
- Bit vectors [4].

7 Reflecting

"Craig's Theorem is about the last significant property of first-order logic that has come to light. Is there something deeper going on here, and if so, can we prove it?" - Van Bentham, 2008

References

[1] Angelo Brillout, Daniel Kroening, Phillip Rümmer, and Thomas Wahl. Program verification via craig interpolation for presburger arithmetic with arrays. 2010. http://www.ccs.neu. edu/home/wahl/Publications/bkrw10a.pdf.
[2] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and proof theory. 1957.
[3] Vijay D'Silva. Interpolation: Theory and applications. 2015. nttp://www.cs.nyu.edu/ ~barrett/summerschool/dsilva.pdf.
[4] Alberto Griggio. Effective word-level interpolation for software verification. 2011.
[5] Himanshu Jain, Edmund Clarke, and Orna Grumberg. Efficient craig interpolation for linear diophantine (dis)equations and linear modular equations. 2008.
[6] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for data structures. https://www.cs.unm.edu/~kapur/mypapers/Interpolation_for_data_ structures.pdt.
[7] Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. 1997.
[8] K.L. McMillan. Applications of craig interpolants in model checking. 2005.
[9] K.L. McMillan. An interpolating theorem prover. 2005. http://www.kenmcmil.com/ pubs/TCSUb.pd土.
[10] Daniele Mundici. Tautologies with a unique craig interpolant vs. nonuniform complexity. 1984.

Appendix: Craig's Statement \& Proof

The Journal of Sympolic Logic
Volume 22, Number 3, Sept, 1957

THREE USES OF THE HERBRAND-GENTZEN THEOREM IN RELATING MODEL THEORY AND PROOF THEORY
 WILLIAM CRAIG

2. Lemma and extensions. We shall consider a system $P C I$ of firstorder predicate calculus without identity and a system $P C I=$ of first-order predicate calculus with identity. $P C I$ shall contain individual variables and constants, and predicate variables and constants of $n \geq 0$ arguments. $P C I$ shall not contain a symbol for identity and shall not contain symbols for functions of $n \geq 1$ individual arguments. (Most results of this paper do not hold for first-order predicate calculus with function symbols but without axioms for identity.) The result of adding to $P C I$ these further symbols, changing the formation rules accordingly, and adding also axioms for identity shall be $P C I=$, \vdash and $\vdash_{_}$shall stand for derivability in $P C I$ or $P C I=$ respectively. The letters $\mathrm{A}, \mathrm{B}, \mathrm{C}$, etc. shall refer to the formulas of the system concerned. Those formulas in which no individual variable occurs free shall be sentences. (Hence any 0-place predicate symbol is a sentence.) The individual constants and the individual variables occurring free in a formula shall be the individual parameters of that formula. Likewise, the function symbols in a formula and the predicate symbols other than the identity sign shall be its function or predicate parameters ${ }^{3}$ respectively. The identity sign shall not be a parameter but a logical constant, since its interpretation cannot vary (except for the range of definition). Thus among the parameters of a formula of $P C I$ are all its predicate symbols, no function symbols, and none or more individual symbols. Among the parameters of a formula of $P C I=$ are all its predicate symbols except the identity sign, all its function symbols, and none or more individual symbols.

Lemma 1. If $\vdash \mathrm{A} \supset \mathrm{A}^{\prime}$ and if A and A^{\prime} have a predicate parameter in common, then there is an "intermediate" formula B such that $\vdash \mathrm{A} \supset \mathrm{B}$, $\vdash \mathrm{B} \supset \mathrm{A}^{\prime}$, and all parameters of B are parameters of both A and A^{\prime}. Also, if $\vdash \mathrm{A} \supset \mathrm{A}^{\prime}$ and if A and A^{\prime} have no predicate parameter in common, ${ }^{4}$ then either $\vdash \neg \mathrm{A}$ or $\vdash \mathrm{A}^{\prime}$.

[^2]Proof. The results of [4] hold a fortiori for $P C_{I}$ in place of first-order predicate calculus with function symbols. Hence by Theorem 5 of [4], which is derived from the Herbrand-Gentzen Theorem, there is a B^{*} which satisfies all the requirements of the lemma except perhaps that B^{*} may contain individual parameters which are not parameters of both A and A^{\prime}. Now take each individual parameter of B^{*} which is not a parameter of A , replace all its free occurrences in B^{*} by a new individual variable, and then universally quantify this variable over the entire formula. In the resulting formula similarly replace by an existentially quantified variable any individual parameter which is not a parameter of A^{\prime}. The formula B which thus finally results satisfies the lemma.

The methods of [4] allow a more detailed study than is needed here of how the structure of A and B are related. For example, if A is a formula in prenex normal form containing only universal quantifiers and containing all the individual parameters of A^{\prime}, then B can easily be shown to be a formula of the same kind.

[^0]: ${ }^{1}$ Also: bounded model checking, predicate abstraction, and lazy abstraction.

[^1]: ${ }^{2}$ Other fixed points are inductive invariants of the program.

[^2]: ${ }^{3}$ This usage is taken from [1].
 ${ }^{4}$ This case was first called to my attention by P. C. Gilmore. For the special case where in addition A and A^{\prime} are sentences, he has found a much simpler argument in terms of satisfiability.

