
Coinduction Primer Ben Greenman, March 2, 2015

1 Introduction

These notes are about bisimulation and coinduction. Bisimulation defines behavioral equality. Coinduction
is a related proof principle. We introduce bisimulation first, but focus mainly on coinduction.

Section 2 motivates our discussion, then Sections 3 and 4 briefly and formally present bisimulation
and coinduction. The purpose of these first sections is to associate the definitions one finds in research
articles with intuitive explanations. Section 5 gives a series of exercises on streams. We suggest the reader
implements solutions in his or her favorite programming language; for reference, we include solutions in
Agda, Coq, Haskell, OCaml, and Typed Racket.1 Finally, we explore connections to inductive reasoning in
Section 6 and conclude with a brief review of the literature in Section 7.

2 Motivation

The intution behind bisimulation and coinduction is that we can reason about unknown or “black box” ob-
jects by performing experiments on them. This sort of reasoning is extremely natural! It’s just the scientific
method; coinduction formalizes the scientific method.

Figure 1: The Scientific Method

To summarize, Aristotle’s Scientific Method says that we can effectively “investigate phenomena” or
“acquire knowledge” by systematically observing them.2 We use this style of reasoning every day, often
without realizing it. Suppose the internet stops working, and doesn’t come back on immediately or after
you slam on the keyboard a few times. The next step is to make observations: you might check the connec-
tion settings in your computer or the physical cable attached to your machine. Albiet informal, this is an
experiment.

1http://ccs.neu.edu/home/types/resources/notes/coinduction-tutorial/src.zip
2http://en.wikipedia.org/wiki/Scientific_method

1

http://ccs.neu.edu/home/types/resources/notes/coinduction-tutorial/src.zip
http://en.wikipedia.org/wiki/Scientific_method

Coinductive reasoning takes this approach to the extreme, asserting that two unknowns are equal if we
cannot tell them apart by experiments. At first this may seem unsatisfactory; “never going wrong” is not
the same as “going right”. But if we think for a moment, we realize that reasoning by experiment is the
only technique we have for understanding most of our world.

For example, consider the question of whether animals3 feel pain. Can we ever prove an answer? Either
way, a proof would need to be in terms of the tools we have for measuring pain, and the only such tool is
observing that animal’s responses to stimuli. This technique is fundamentally unreliable: even if we see the
animal twitch, or measure an electrical impulse in its nervous system, we cannot be certain that the animal
felt pain in the abstract sense.

Or suppose your iPhone broke and you sent it to a repair shop. As there is no way to open a Apple prod-
uct, the only way to can check whether the repaired phone is equal to your old phone is by experimenting
through the UI. However, reasoning by experiment is not restrictive in this case. It is precisely the equality
that you, the phone user, cares about. In the same way, an explorer in the swamps of Florida might not care
to distinguish an alligator from a crocodile. They’re dangerous enough to discourage an investigation.

A more serious example of reasoning up-to-experiment is evident in O.K. Bouwsma’s answer to the
Evil Genius problem [3]. The Evil Genius was imagined by Descartes in his Meditations on absolute knowl-
edge [4]. Descartes began with the famous “Cogito ergo sum”4 and proceeded using his senses to reason
about the world. But he later noted that his observations might all be invalid if some evil demon had been
manipulating his senses. In 1949, the Dutch philosopher O.K. Bouwsma argued that an evil genius intent
on confounding our senses could not succeed. If his illusions were not perfect, we could of course sense
a flaw and escape. But if he truly was an evil genius and created the perfect illusion, then it would by
definition be indistinguishable from reality. Therefore we can live as though there was no illusion at all.
Bouwsma’s insight was that equality up to experiment is precisely the equality to use for a happy life.

We hope these examples have convinced you that reasoning by experiment / systematic observation /
scientific reasoning is:

• Extremely common

• Useful for abstracting unnecessary details

• Quite often the only tool at our disposal

The exceptions seem to be finite constructions which, fortunately for us,5 abound in mathematics and
computer science. We know literally everything about a well-founded set, finite binary search tree, or even
a Bloom filter. This allows a different style of reasoning: proof by induction. We will consider similarities
between induction and coinduction in Section 6. Also see [7].

3 Bisimulation

Bisimulation is a notion of equality. It asserts that two things that act the same are equal.
We use automata as a formal example. Let M = ⟨Q,Σ, δ, q0, F ⟩ denote an automata over the alphabet Σ

having the set of states Q, the initial state q0, the set F ⊆ Q of accepting states, and the transition function
δ : Q × Σ → Q mapping a state to its successor for a given input. Intuitively, δ(q, c) = q′ says that the
automata currently in state q will transition upon reading character c ∈ Σ to state q′.

3.1 Definition

A bisimulation on two automataM1 andM2 is a relationR on the states of these automata that is preserved
by transitions. That is, if the states q1 ∈ Q1 and q2 ∈ Q2 are related by R, then the following must hold:

• If there is a transition δ1(q1, c1) = q′1 for any c ∈ Σ1 and q′1 ∈ Q1, then there exists a character c2 ∈ Σ2

and state q′2 ∈ Q2 such that δ2(q2, c2) = q′2 and (q1, q2) ∈ R).

3Or cats, or fish, or insects. Pick whatever’s interesting.
4I am thinking, therefore I exist
5i.e., for the author and his intended audience

2

http://billmill.org/bloomfilter-tutorial/

• If there is a transition δ2(q2, c2) = q′2 then there is a corresponding transition δ1(q1, c1) = q′1 and also
q′1 and q′2 are related by R.

In other words, the first automata transitions only when the second does, and vice-versa. They move in
lock-step. Similar definitions appear, for example, in works on concurrency [12], parametricity [17], and
probabilistic programming [9, 5]. We can model these uniformly as labelled transition systems [11] consisting
of a set of states Q and a function δ : Q×Σ → Q defining transitions labelled by elements of an alphabet Σ.

3.2 Usage

One useful bisimulation R is the equivalence class of states based on their accept behavior. In this case,
bisimilar automata recognize the same language and are thus equal according to the traditional notion. We
can then prune unneeded states from a given machine M by converting it to smaller, bisimilar automata.

In fact, this is the maximal bisimulation on automata and exactly the algorithm suggested by the Myhil-
Nerode theorem for regular languages. Briefly, the theorem states that a regular language consists of finitely
many words that are pairwise indistinguishable under concatenation on the right. A simple algorithm for
constructing a minimal automata is then to consider accepting states distinguishable from rejecting states
and then iteratively explore transitions, merging states that transition to indistinguishable states.

The algorithm’s correctness follows from the coinduction proof principle.

4 Coinduction

A useful property of bisimulations is their closure under union. IfR1 andR2 are bisimulations, thenR1∪R2

is also a bisimulation. Going further, the union of all bisimulations on a machine M (or any labelled transi-
tion system) is a bisimulation. Moreover, it is the final bisimulation on M because every other bisimulation
is contained in it. This finality leads to the principle of coinduction.

More generally, a coalgebra is a set C, called the carrier of the coalgebra, and a mapping α that gives
some structure to elements of C. To be fully precise, a coalgebra (C,α) is defined in terms of some underly-
ing functor F . The type of α is determined by this functor: α : C → F (C).

C F (C)
α

Figure 2: A coalgebra

Intuitively, C is our black box, unknown object. The only thing we know about C is what we can learn
through experiments using α. The possible results of any experiment are characterized by F .

Coinduction plays an important role when there exists a final coalgebra (C⊤, α⊤) for F . By final, we
mean that there exists a unique coalgebra morphism ρ to (C⊤, α⊤) from any other coalgebra (D,β) that
commutes with the maps α⊤, β, and F .

D C⊤

F (D) F (C⊤)

ρ

β α⊤

F (ρ)

Figure 3: A coalgebra homomorphism

3

http://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem
http://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem

Finality implies that the homomorphism ρ both exists and is unique. This leads to two complementary
and powerful concepts:

Definition by coinduction follows from the existence of ρ. Given any other coalgebraic structure, there is a
homomorphism from it to the final coalgebra.

Proof by coinduction follows from uniqueness. If we can show two maps from a coalgebra to the final
coalgebra, then it follows that they are equal.

5 Example: Streams

A stream is an infinite sequence. We claim that streams over a set A, written as AN and with the structure
⟨head, tail⟩, are the final coalgebra for the functor F (X) = A× F (X). To be precise, we claim that the final
coalgebra is (AN, ⟨head, tail⟩), where head : C → A returns the first element of the stream and tail : C → C
drops the first element and returns the remaining stream.

head(a) = a(0) tail(a)(n) = a(n+ 1)

We can prove finality by considering an arbitrary coalgebra (D,β), where β : D → A × D, for the
functor F (X) = A×X . Because the domain of F is a product, β must have the form ⟨obs,nxt⟩ for functions
f : D → A and g : D → D. So we have the following situation for an unknown morphism ρ.

D AN

A×D A×AN

ρ

⟨obs, nxt⟩ ⟨head, tail⟩

⟨id, ρ⟩

Figure 4: A coalgebra homomorphism

Now we must define ρ. We choose:

ρ(a)(n) = obs(nxtn(a))

In other words, the function that takes n “steps forward” before making an observation. Note that this
type-checks because AN is just N → A.

The first step in the proof is showing that ρ is actually a homomorphism. We show this by observing
that head ◦ ρ = obs and tail ◦ ρ = ρ ◦ nxt. Taking an arbitrary a ∈ A, we have:

(head ◦ ρ)(a) = head((λxn . obs(nxtn(x)))(a))
= head(λn . obs(nxtn(a)))
= (λ y . y(0)) (λn . obs(nxtn(a)))
= (λn . obs(nxtn(a)))(0)
= obs(nxt0(a))
= obs(a)

(tail ◦ ρ)(a) = tail((λxm . obs(nxtm(x)))(a))
= (λ y n . y(n+ 1))((λm . obs(nxtm(a))))
= λn . (λm . obs(nxtm(a)))(n+ 1)
= λn . obs(nxtn+1(a))
= (λ z n . obs(nxtn(z))) nxt(a)
= (tail ◦ nxt)(a)

Next is uniqueness. Suppose we have some ρ′ such that head ◦ ρ′ = obs and tail ◦ ρ′ = ρ′ ◦ nxt. But we
just proved that head ◦ ρ = obs, so by transitivity and definition of composition it must be that ρ = ρ′.

4

5.1 Exercises

We can now leverage the coinductive definition principle to define functions on streams. In OCaml, we can
represent streams over the set A as a pair containing an element of A and a delayed computation building
the rest of the stream.

type ’a stream = Pair of ’a * (unit -> ’a stream)

We can further define the universal property for streams as taking an arbitrary coalgebra (represented
by the maps obs and nxt) and yielding a stream.

let rec univ (obs : ’a -> ’b) (nxt : ’a -> ’a) (seed : ’a) : ’b stream
= Pair (obs seed , fun () -> univ obs nxt (nxt seed))

Try definining these stream functions using the universal property instead of general recursion.

val nats : int stream
(** Stream of natural numbers 0, 1, 2, ... *)

val evens : ’a stream -> ’a stream
(** Stream of elements in even positions of the argument stream *)

val odds : ’a stream -> ’a stream
(** Stream of elements in odd positions of the argument stream *)

val repeat : ’a -> ’a stream
(** Infinite sequence of one element. [repeat true = true, true, ...] *)

val map : (’a -> ’b) -> ’a stream -> ’b stream
(** Apply a function to each element of a stream. *)

let interleave : ’a stream -> ’a stream -> ’a stream
(** Merge two streams into one. [interleave (evens nats) (odds nats) = nats] *)

val zip : ’a stream -> ’b stream -> (’a * ’b) stream
(** Combine two streams into a stream of products, pointwise *)

val suffixes : ’a stream -> ’a stream stream
(** Stream of all suffixes of a stream *)

val prod : ’a stream -> ’b stream -> (’a * ’b) stream stream
(** Cartesian product of two streams *)

val diag : (’a stream) stream -> ’a stream
(** Take the diagonal entries in a 2D matrix of streams *)

val fib : int stream
(** Fibonacci sequence *)

val look_and_say : int -> int stream
(** [look_and_say 1 = 1, 11, 21, 1211, 111221, 312211, ...] *)

Try defining a filter function on streams. What goes wrong?

5

6 Induction

Coinduction is often compared to the dual notion of proof by induction. Just as coinduction arises from the
notion of finality among coalgebra structures, induction comes from initiality in algebras.

An algebra (α,A) for some base functor F consists of a carrier set A and a mapping α : F (A) → A.
Whereas the functor F in a coalgebra described the possible results of an experiement—the structure we
could impose on our black boxes in A—the functor for an algebra describes how to build new members of
A from old ones.

F (C) C
α

Figure 5: An algebra

Think of α as a function for building new elements of A, and F (X) as a specification for well-formed
inputs to α. The formal term for α is a constructor; in contrast, our coalgebras used destructors.

The principles of definition and proof by induction apply when F has an initial algebra. To give a
concrete example, the algebra ([nil, cons],N) of finite lists of natural numbers is initial for the functor
F (X) = 1 + X . Proof by induction says that we can decompose any other algebra on lists into a func-
tion that appends elements one at a time. This unique homomorphism is often called a fold, in contrast to
the unfold we used to create all our stream function in Section 5.

7 Further Reading

Rutten and Jacobs have an excellent tutorial on coalgebras and coinduction [7]. We strongly recommend it,
along with Jacob’s unpublished introductory textbook [6] and Rutten’s paper on universal coalgebra [11].
Silva’s thesis is also a good source of examples [16].

Sangiorgi’s introduction motivates the rest of this section [13]. His books are probably great [14, 15].

7.1 Historical Notes

The term “bisimulation” was coined by Milner and Park in their study of communicating processes in
the early 1980s [13]. Coinduction was originally formulated by Aczel in terms of bisimulation in 1988 [1].
However the ideas behind coinduction and bisimulation go back a bit further.

Philosophy

Philosophers were the first to formally use bisimulation arguments.
Ehrenfeucht Fraüsse games (1953), otherwise known as “back-and-forth games”, consist of two players

and a pair of structures. One player’s goal is to show the structures are different. He or she does so by
making a proposition / forcing a transition. The other player’s goal is to prove the structures are identical,
and does so by finding a transition to match the opponents. The argument for equality is thus “the opposer
could not show otherwise”.

Bisimulation arguments are common in studies of Modal logics. A modal logic takes time into account:
the premise p suffices to prove the proposition ⋄ψ if there is some path from p to ψ. The idea is that ψ might
eventually become true, but we cannot be certain.

During the study of modal logics in the 1970’s, it became apparant that plain homomorphisms were too
weak to prove equivalences of modal logics. In 1971 Segerberg added backwards-simulation as a condition
on homomorphisms. So no matter which of the two logics could “take a step”, the homomorphism guar-
anteed the other could match it. Later, in 1976 VanBentham pioneered the so-called p-relation (or, zig-zag
relation) to relate first order logic to modal logic using a total bisimulation.

6

Computer Science

Automata and bisimulation are closely connected, though the latter technique was formalized much later.
Moore’s theory of experiments was motivated by the tests an engineer might perform on a malfunctioning
heating system, and Kleene’s theory of events was developed to model an animal’s interaction with its
environment. We find the latter particularly interesting: Kleene defined an event as the set of inputs that
would trigger it, reasoning that this is how an animal identifies events.

Bisimulation “per se” was developed by Milner in his work on the Calculus of Communicating Sys-
tems [8]. Like the philosophers before him, Milner found that traditional definitions of equality were too
strict. In this case, he needed to identify programs with slightly different interleavings of commands.

Math

Mathematicians were the last to work formally with bisimulation and coinduction. Aczel’s short 1988 book
introduces coinduction in terms of graph theory [1]. Barwise and Moss use systems of equations [2].

We suppose Russell’s paradox is to blame for mathematician’s reluctance to adopt circularity. The belief
that “whatever involves all of a collection can not be one of the collection” is widely held, although Russell’s
type theory is still less popular than set theory [10]. And despite its inelegance, breaking the world into an
inductive hierarchy of universes has been an effective way of solving foundational issues.

References

[1] Peter Aczel and Jon Barwise. Non-well-founded
sets, volume 14. Center for the Study of Lan-
guage and Information Stanford, CA, 1988.

[2] Jon Barwise and Lawrence Moss. Vicious circles:
on the mathematics of non-wellfounded phenomena.
Center for the Study of Language and Informa-
tion, 1996.

[3] Oets Kolk Bouwsma. Descartes’ evil genius.
The Philosophical Review, pages 141–151, 1949.

[4] Rene Descartes. Mediations on first philosophy.
1641. Haldane, ES; Ross, GRT Trans.: The philo-
sophical works of Rene Descartes. Cambridge Uni-
versity Press, Cambridge, 1931.

[5] Josée Desharnais, Abbas Edalat, and Prakash
Panangaden. Bisimulation for labelled markov
processes. Information and Computation, 179,
2002.

[6] Bart Jacobs. Introduction to coalgebra. Towards
mathematics of states and observations, 2012.

[7] Bart Jacobs and Jan Rutten. A tutorial on (co)
algebras and (co) induction. Bulletin-European
Association for Theoretical Computer Science, 62,
1997.

[8] Robin Milner. Communicating and mobile sys-
tems: the pi calculus. Cambridge university
press, 1999.

[9] Anna Philippou, Insup Lee, and Oleg Sokolsky.
Weak bisimulation for probabilistic systems. In
CONCUR. 2000.

[10] Bertrand Russell. Mathematical logic as based
on the theory of types. American journal of math-
ematics, 30, 1908.

[11] Jan JMM Rutten. Universal coalgebra: a the-
ory of systems. Theoretical Computer Science, 249,
2000.

[12] Davide Sangiorgi. A theory of bisimulation for
the π-calculus. Acta informatica, 33, 1996.

[13] Davide Sangiorgi. On the origins of bisimula-
tion and coinduction. TOPLAS, 31, 2009.

[14] Davide Sangiorgi. Introduction to bisimulation
and coinduction. Cambridge University Press,
2012.

[15] Davide Sangiorgi and Jan Rutten. Advanced top-
ics in bisimulation and coinduction. Cambridge
University Press, 2012.

[16] Alexandra Silva. Kleene coalgebra. 2010.
http://www.alexandrasilva.org/
files/thesis.pdf.

[17] Eijiro Sumii and Benjamin C Pierce. A bisimu-
lation for type abstraction and recursion. ACM
SIGPLAN Notices, 40, 2005.

7

http://www.alexandrasilva.org/files/thesis.pdf
http://www.alexandrasilva.org/files/thesis.pdf

	Introduction
	Motivation
	Bisimulation
	Definition
	Usage

	Coinduction
	Example: Streams
	Exercises

	Induction
	Further Reading
	Historical Notes

