
Ben Greenman December 12, 2015
Call-By-Name, Call-By-Value, and the λ Calculus

Abstract

Plotkin’s 1975 paper is strictly business. There are many theorems packed
in the space of 35 pages, with little room for discussion, conclusions, and
related/future work. This document gives a summary.

1 Historical Context

Plokin’s Call-By-Name, Call-By-Value, and the λ Calculus [4] appeared 10 years af-
ter Peter J. Landin’s The Next 700 Programming Languages [3], 11 years after the
publication of the ALGOL-60 report, and 39 years after Alonzo Church pub-
lished An Unsolvable Problem of Elementary Number Theory [1]. The significance
of these works, in order of their appearance, was:

• Church’s work introduced the λ calculus: a useful notation for reasoning
about computable functions.

• The ALGOL-60 report gives a clean definition and semantics for a pro-
gramming language. ALGOL-60 was implemented. You could run it on
a variety of machines.

• Landin noticed a strong connection between languages like ALGOL-60
and the λ-calculus. His paper suggested using calculi to influence lan-
guage design and gave a language called ISWIM to demonstrate.

• Plotkin formalized the correspondence between λ and ISWIM. Addition-
ally, Plotkin proved a method of simulating a call-by-value λ-calculus
with a call-by-name calculus, and another method in the opposite direc-
tion.

Offhand comment: Building connections is an important part of science, and
especially computer science. The Church-Turing thesis unified different mod-
els of computation. This work by Plotkin unified language calculi with lan-
guage implementations and by-name and by-value reduction semantics. Nowa-
days, a popular source of connections is the propositions-as-types principle; we
are slowly unifying type theory, logic, and category theory.

2 Results I: Lifting Computer Science

Before 1975, there were distinctly 2 kinds of PL researchers. Computer scien-
tists built languages and proved properties of their implementation. Mathe-
maticians worked in a formal system like the λ calculus and proved theorems
that could ostensibly apply to any programming language. Plotkin elevated

1

the meaning of “computer science” to include a possible formal system. Any
theorems proven in the (below) calculus will definitely hold for the implemen-
tation.

2.1 ISWIM

Landin’s programming language ISWIM is the starting point. This is a lan-
guage we hope to reason about. ISWIM is defined using a set of basic con-
stants, a function CONSTAPPLY from pairs of constants to terms, and the SECD
abstract machine [2] (Figure 2.1).

Basic constants describe the core forms of the programming language, inde-
pendent of the forms a programmer can define. These might include machine
integers and I/O system calls. The special symbol ap is used internally by the
machine’s transition function, ⇒.

Machine State = ⟨S,E,C,D⟩
Stack(S) = Closure∗

Environment(E) = (Variable,Closure)∗

Control(C) = (Term ∪ ap)∗

Dump(D) = Machine State∗

Closure(Cl) = ⟨M,E⟩
Constants = a, b, . . .

Term(M,N) = x | a | λx.M | M N

Variable = x, y, z, . . .

Side condition: for all closures ⟨M,E⟩, the free variables in the term
M must be assigned values in the environment E.

Eval(M) = N ⇐⇒ Load(M) ⇒ D and Unload(D) = N

Load(M) = ⟨nil, ∅,M,nil⟩
⇒ = (omitted, see Section 3 of the paper)

Unload(⟨Cl, ∅,nil,nil⟩) = Real(Cl)

The function Real converts a closure to a term by replacing all free
variables in a closure’s term with corresponding values from the
closure’s environment.

Figure 1: The SECD machine. Sextiles (*) denote sequences.

2

This machine is what would run on the hardware; it is the low-level imple-
mentation of a programming language. Researchers could work directly with
an implementation like this (and many do), but it is convenient to “elevate”
the state of affairs and allow reasoning about an ISWIM interpreter:

eval(M) = N ⇐⇒ ∃t . M ⇓t N

where x ⇓ x

a ⇓ a

λx.M ⇓ λx.M

M N ⇓ CONSTAPPLY(a, b)

if eval(M) = a and eval(N) = b

M N ⇓ [x/N ′]M ′

if eval(M) = λx.M ′ and evalN = N ′

Note: This interpreter uses a simple definition of substitution rather than the
closure-and-environment model of the underlying machine. Also, evaluation
will fail upon reaching a term undefined by ⇓.

The first theorem of the paper relates this mathematical eval to the SECD
machine’s Eval. Up to α-equivalence, of course.

Theorem. For any program M, Eval(M) =α eval(M).

Proving this theorem requires the time index t from the definition of eval.
The full proof is given in Section 3.

2.2 The λV Calculus

Beyond eval, it would be useful to work in Church’s λ calculus to prove results
about our programming language. At the very least, analogues of existing λ
calculus theorems should hold for the language. In particular we should like
Plotkin’s theorem 4.4 to hold:

Theorem. For any closed term M and value N , Eval(M) = N ⇐⇒ λ ⊢ M ≥ N

Here the symbol ≥ stands for “reduces to”. In English, λ ⊢ M ≥ N means
there exists a proof using any λ rule but symmetry (i.e. α, β, transitivity) that
M = N .

The plain λ calculus, however, is too free to directly correspond to Eval.
It allows β reduction of arbitrary terms, does not include CONSTAPPLY, and
allows reduction under a λ. Plotkin addresses these concerns by defining a λV

calculus, wherein:

1. β-reduction may only substitute values.

2. Constants are values, and CONSTAPPLY is represented with Curry’s no-
tion of δ-reduction.

3

3. Reduction under a λ is avoided by defining a standard reduction order of
evaluation and proving that any ≥ derivation implies a standard reduc-
tion derivation. The theorem then uses the first value along the standard
reduction sequence as N .

Section 4 carries out this plan. The main proof effort is showing that ≥ im-
plies a standard reduction sequence. That proof in turn requires λV be Church-
Rosser (confluent).

After proving theorem 4.4, the section concludes with a defintion of contex-
tual equivalence (≃) for Eval and proves:

Theorem. If λV ⊢ M = N then M ≃ N .

The converse does not hold, but at least all reasoning in λV holds for the
Eval of the underlying programming language.

2.3 Reduction Semantics

In fact, the paper defines two version of eval and two λ calculi, subscripted by
V and N . We have shown the call-by-value definitions, but Plotkin also gives
a by-name version and states the same theorems connecting it to a by-name
SECD machine. These theorems and their corollaries are given in Section 5 of
the paper.

3 Results II: Simulations

As a first example of reasoning about a concrete language using a more abstract
λ calculus, Plotkin shows how to simulate λV by λN and vice-versa. Both sim-
ulations use continuation-passing-style (CPS) to make control flow explicit. In
effect, this gives a CPS-converted term no choice but to evaluate in a deter-
mined order.

Following Plotkin, we first give the simulation of by-value reduction in a
by-name language. For any term M , we compile to M as follows, using the
reserved symbols κ,α, and β.

x = λκ. κ x

a = λκ. κ a

λx.M = λκ. κ λx.M

M N = λκ.M(λα.N(λβ. αβκ))

By forcing application terms M and N into the head position before they
are juxtaposed, Plotkin ensures that both reduce to a value they are applied.

The simulation of by-name using a by-value language is done via a conver-
sion M using the term I = λx. x. This conversion requires that constants be
split between functional constants a and basic constants b. Functional constants

4

are valid first arguments to CONSTAPPLY; basic constants are valid second ar-
guments.

x = x

a = λκ. κ(λα. a(α I))

b = λκ. κ b

λ x.M = λκ. κ(λx.M)

M N = λκ.M(λα. αNκ)

Here the intuition is that arguments N are delayed under an administrative
λα and later applying a continuation triggers evaluation.

The main theorems of this section (Section 6 in the paper) are simulation
arguments. These use conversion functions Ψ and Φ to CPS-convert result val-
ues. This is necessary because the result of EvalV (M I) may be an abstraction
λx.M ′. Thus we need to put the same administrative terms in the result of
EvalN (M).

Theorem. Ψ(EvalN (M)) = EvalV (M I) and Φ(EvalV (M)) = EvalN (M I)

A second result shows that the compiled terms give the same result whether
evaluted by-name or by-value:

Theorem. EvalN (M I) = EvalV (M I) and EvalV (M I) = EvalN (M I)

Finally, the paper shows when one λ calculus may be used to reason about
another.

Theorem. λV ⊢ M = N ⇒ λN ⊢ M = N and λN ⊢ M = N ⇐⇒ λV ⊢ M = N

Note that simulating by-value using a by-name language using this paper’s
techniques does not allow reasoning about the by-value λ calculus using the
by-name λ calculus. On the other hand, simulating by-name using by-value
requires that constants are classified as either functional or basic. So both direc-
tions have minor tradeoffs, in addition to the syntactic and operational burden
of the extra λ-terms used to guide reduction order.

At any rate, the paper concludes with the proof of translation for a by-value
implementing language.

4 Contributions

The long-standing contributions are:

• Programming languages and calculi must be defined as pairs.

• Using a CPS transformation, one can implement an evaluator for either
by-name or by-value reduction independent of the semantics for the eval-
uator’s language. The transformations do not give efficient code, but
suffice for theoretical reasoning. Hypothetically, one could demonstrate
a new feature for Haskell using a prototype built in OCaml.

5

References
[1] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of

Mathematics, 58, 1936.

[2] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320,
1964.

[3] Peter J. Landin. The next 700 programming languages. 1966.

[4] Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical Computer
Science, 1:125–159, 1975.

6

	Historical Context
	Results I: Lifting Computer Science
	ISWIM
	The V Calculus
	Reduction Semantics

	Results II: Simulations
	Contributions

