
194

How to Evaluate Blame for Gradual Types, Part 2

LUKAS LAZAREK, PLT @ Northwestern University, USA

BEN GREENMAN, PLT @ Brown University, USA

MATTHIAS FELLEISEN, PLT @ Northeastern University, USA

CHRISTOS DIMOULAS, PLT @ Northwestern University, USA

Equipping an existing programming language with a gradual type system requires two major steps. The �rst
and most visible one in academia is to add a notation for types and a type checking apparatus. The second,
highly practical one is to provide a type veneer for the large number of existing untyped libraries; doing so
enables typed components to import pieces of functionality and get their uses type-checked, without any
changes to the libraries. When programmers create such typed veneers for libraries, they make mistakes that
persist and cause trouble. The question is whether the academically investigated run-time checks for gradual
type systems assist programmers with debugging such mistakes. This paper provides a �rst, surprising answer
to this question via a rational-programmer investigation: run-time checks alone are typically less helpful
than the safety checks of the underlying language. Combining Natural run-time checks with blame, however,
provides signi�cantly superior debugging hints.

CCS Concepts: • Software and its engineering→ Empirical software validation; • Theory of compu-

tation→ Program speci�cations.

Additional Key Words and Phrases: gradual typing, blame

ACM Reference Format:

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. How to Evaluate Blame
for Gradual Types, Part 2. Proc. ACM Program. Lang. 7, ICFP, Article 194 (August 2023), 28 pages. https:
//doi.org/10.1145/3607836

1 GRADUAL TYPES CAN BE AND OFTEN AREWRONG

TypeScript is the most well-known and widely-used implementation of gradual typing, with over
500k dependent packages on GitHub.1 It adds a syntax for optional type annotations to JavaScript
and a type checker for those annotations. Importantly, TypeScript programs mix seamlessly with
JavaScript libraries due to the De�nitelyTyped repository,2 which supplies crowd-sourced type

interfaces for thousands of JavaScript libraries. More precisely, the repository contains declaration
�les for the types of the exports of libraries, which the type checker employs to con�rm the
(type-)consistency between the main program and its libraries.

Unsurprisingly, the authors of these type interfaces, who are often not the authors of the
corresponding libraries, make mistakes. Indeed, academic researchers have published a fair number
of results identifying, analyzing, and cataloging these mistakes [Cristiani and Thiemann 2021;

1https://github.com/microsoft/TypeScript/network/dependents?dependent_type=PACKAGE
2https://github.com/De�nitelyTyped/De�nitelyTyped

Authors’ addresses: Lukas Lazarek, PLT @ Northwestern University, Evanston, Illinois, USA, lukas.lazarek@eecs.
northwestern.edu; Ben Greenman, PLT @ Brown University, Providence, Rhode Island, USA, benjaminlgreenman@gmail.
com; Matthias Felleisen, PLT @ Northeastern University, Boston, Massachusetts, USA, matthias@ccs.neu.edu; Christos
Dimoulas, PLT @ Northwestern University, Evanston, Illinois, USA, chrdimo@northwestern.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/8-ART194
https://doi.org/10.1145/3607836

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0000-6484-5270
HTTPS://ORCID.ORG/0000-0001-7078-9287
HTTPS://ORCID.ORG/0000-0001-6678-1004
HTTPS://ORCID.ORG/0000-0002-9338-7034
https://doi.org/10.1145/3607836
https://doi.org/10.1145/3607836
https://github.com/microsoft/TypeScript/network/dependents?dependent_type=PACKAGE
https://github.com/DefinitelyTyped/DefinitelyTyped
https://orcid.org/0009-0000-6484-5270
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-6678-1004
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0002-9338-7034
https://doi.org/10.1145/3607836

194:2 Lazarek, Greenman, Felleisen, Dimoulas

Feldthaus and Møller 2014; Hoe�ich et al. 2022; Kristensen and Møller 2017b; Williams et al. 2017].
The problem is not unique to TypeScript. Typed Racket, a language with a similar type system
plus a crowd-sourced set of type interfaces for libraries, su�ers from similar mistakes, even in the
run-time library [St-Amour and Toronto 2013].
This situation raises a natural question:

How well does a gradual type system assist developers with diagnosing errors due to

mistakes in type interfaces for untyped libraries?

Formulated this way the question points once again to the di�erences between industrial uses of
gradual types and academic research. While the �rst insists on erasing types when the program
runs, the second has investigated various approaches to run-time checking the boundary between
typed and untyped pieces of code.
TypeScript, as an industrial product, erases types and thus does not o�er any special support

to help programmers in the face of wrong type interfaces. The point is to keep type annotations
from interfering with performance, or as the TypeScript website advertises, “TypeScript becomes
JavaScript via the delete key” [Microsoft [n. d.]].

By contrast, academic implementations of gradual typing, (e.g., Typed Racket [Tobin-Hochstadt
and Felleisen 2006, 2008, 2010; Tobin-Hochstadt et al. 2017] and Reticulated Python [Vitousek et al.
2014, 2019, 2017]) compile types to run-time checks that aim to discover impedance mismatches

between types imposed on untyped code and the latter’s actual behavior. Moreover, when such
run-time checking systems catch an impedance mismatch, they blame the boundary where a type
interface and an untyped value (closure, object, class) are out of sync. The question is whether this
blame information o�ers useful hints, that is, hints that describe the cause of the mismatch and
thus assist the developer with the debugging task.
These explanations suggest re�nements of the above research question:

(1) How often do the run-time checks of the academic semantics (without blame) help with the
diagnosis of mistakes in type interfaces?

(2) How often does blame assignment reduce the debugging work?
(3) Or, how often do the run-time safety checks of the underlying language su�ce to sort out

such problems?

This paper provides some �rst answers to these questions.
Answering the questions means (1) investigating a pragmatics concern and (2) doing so with

an apples-to-apples comparison. Pragmatics is about the relationship between semantics and its
entailed value for a working programmer in a speci�c context, here, debugging type interfaces in a
gradually typed language. For this speci�c context, we need to use a gradually typed syntax that
supports assigning di�erent semantics to the same program.

The answer rests on the pioneering work of Lazarek et al. [2021, 2020], which o�ers a two-step
road map for just such questions. First, it introduces an empirical method for investigating prag-
matics, dubbed the rational programmer. Roughly speaking, a rational-programmer investigation
imagines a programmer as an algorithm that relies on the semantics of the language features it uses
to solve a task scenario. In essence, the method simulates di�erent rational programmers, one per
semantics, on a large collection of task scenarios, plus an analysis of their respective e�ectiveness.
Second, besides this investigative framework, Lazarek et al.’s work supplies an open-source

platform that enables an apples-to-apples comparison: Typed Racket equipped with the three major
semantics of gradual typing [Greenman 2020; Greenman et al. 2022], that is, the academic Natural
and Transient, plus the industrial Erasure semantics. Typed Racket is also a good match for this
investigation because its type system closely resembles the one of TypeScript (minus type Dynamic)
meaning the results may apply to this industrial language; see section 7.5.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:3

Technically speaking, the investigation presented herein applies the rational-programmermethod
to the concrete question:

If a language (Typed Racket) comes with several di�erent semantics for the same syntax

and type system, is one of them better suited than the others for debugging mistakes in

type interfaces?

Since Lazarek et al. [2021] use the method to investigate the pragmatics of debugging mistakes in
code only, the new emphasis on type-interface mistakes demands an adaptation of their investigative
method. Concretely, the investigation of debugging type interfaces asks for the construction of a
new corpus of debugging scenarios tailored to this speci�c context.
In a nutshell, this paper makes two major contributions:

• At the object level, its results suggest that the checks of Natural combined with its blame
mechanism signi�cantly outperform other semantics at debugging type interfaces. In fact,
Natural with blame is the only one that signi�cantly outperforms the industrial approach.
Surprisingly, the investigation reveals that the run-time checks of the academic approaches
on their own, including Natural, do not detect signi�cantly more type interface mistakes, and
moreover they seem to o�er less help with debugging such mistakes than the run-time safety
checks of the underlying language. That is, Erasure is a competitive semantics for gradual
types when it comes to debugging incorrect type interfaces.
• At the meta level, the design of the rational programmer investigation provides the next piece
of evidence concerning the applicability of the method. In particular, the rational programmer
investigation of this paper mostly manages to reuse the design of the investigation of Lazarek
et al. in a new context by swapping in only one signi�cant component, the corpus of debugging
scenarios; see section 4 for additional, minor di�erences. Our approach to constructing this
corpus should o�er guidance to other researchers on how to reapply this method to other
languages or yet-di�erent contexts.

The remainder of the paper is organized as follows. Section 2 illustrates concretely the landscape
of gradual typing checks and error reporting mechanisms, and introduces with examples the context
of debugging mistakes in interface types. Section 3 reviews the rational programmer method and
instantiates its key ideas in the setting of the paper. Section 4 provides a detailed account of our
experimental design while section 5 explains how we overcome the challenge of creating a new
suitable corpus of debugging scenarios. Section 6 presents the results of the investigation and
section 7 discusses their implications and limitations. The paper concludes with a survey of related
work in section 8, and a few closing thoughts in section 9.

2 ONE TYPE INTERFACE MISTAKE, THREE FLAVORS OF GRADUAL TYPING

This rational-programmer investigation uses three di�erent approaches to gradual typing: (1)
Erasure, which discards types entirely and runs the program as-if untyped; (2) Natural, which uses
higher order contracts to enforce behavioral properties of types [Findler and Felleisen 2002]; and
(3) Transient, which rewrites typed code to inline type assertions. Each of these three approaches
provide signi�cantly di�erent information to a developer working with an incorrect type interface.
Figure 1 sketches a program that illustrates the di�erences among the three semantics. The

program is organized with a client-interface-library architecture: the top third is the client side, the
bottom third is the library side, and there is a type interface in the middle. Speci�cally,

(1) client/main (top left) is the untyped entry point of the program. It uses a library to restruc-
ture some JSON user data and then summarizes part of the data.

(2) client/summarize (top right) is a typed component that implements one helper function,
summarize-ages. It works with the types that the type interface declares.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:4 Lazarek, Greenman, Felleisen, Dimoulas

(3) json-unpack-interface (middle) is the type interface (like those in De�nitelyTyped) that
declares types for an untyped library.

(4) json-unpack-lib (bottom) is the untyped library.

The type interface mistakenly declares that the result type of json-unpack is a list of hash
tables. A close look at the library—speci�cally the purpose statement of json-unpack-lib—shows
that the function returns a list of associations. The client, however, has been programmed using
the interface type because the client programmer has no knowledge about the (possibly large)
implementation of the library. That is, summarize-ages accesses user-data as a list of hash tables.
With the Erasure semantics, the impedance mismatch causes the program to crash. A safety

check in the runtime fails while applying hash-ref in client/summarize, and the resulting error
informs the developer that hash-ref received something other than a hash table. That error also
carries a stacktrace to help the developer understand where it happened; it has client/summarize
at the top, followed by client/main. Thus the error information suggests to the developer that
there is a problem with the client.

client/main : racket

(require json)

(require json-unpack-interface)

(require client/summarize)

;; read user data from files, analyze

(define user-data

(json-unpack (read-json "profiles")

"details"))

(define summary

(summarize-ages user-data))

....

client/summarize : typed/racket

(provide summarize-ages)

(define-type UserInfo (HashTable String Any))

(: summarize-ages ((Listof UserInfo) -> Integer))

(define (summarize-ages user-data)

(define ages : (Listof Integer)

(for/list ([user-info (in-list user-data)])

(define age (hash-ref user-info "age"))

(cast age Integer)))

(apply max ages))

json-unpack-interface : typed/racket

(require/typed/provide json-unpack-lib

[json-unpack (JSExpr String ->

(Listof (HashTable String JSExpr)))])

json-unpack-lib : racket

(provide json-unpack)

;; Find JSON objects mapped by `key`, and convert them into

;; association lists

(define (json-unpack a-json key)

(define selected-objects (find-objects-with-key a-json key))

(map json-object->assoc selected-objects))

;; json-object->assoc : JSExpr -> (Assoc String Any)

(define (json-object->assoc j))

....

The type in json-unpack-interface does not match json-unpack’s actual type; see comments in the latter.

Fig. 1. One program with an incorrect type interface, three interpretations.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:5

With the Natural semantics, the json-unpack function from the type interface is wrapped
in a contract-proxy that enforces the interface-imposed types with dynamic checks and tracks
responsibilities for those types [Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt et al. 2017].
Since the function comes from an untyped component, the proxy assigns responsibility for its result
type to the boundary between the type interface and json-unpack-lib. Analogously, since the
function is exported to an untyped component, the proxy assigns responsibility to the boundary
with client/main for supplying arguments of the appropriate types. Hence, when json-unpack

returns from its application in client/main, the proxy checks that the result is a list of hash tables,
which fails, and it blames the type interface/json-unpack-lib boundary.

Finally, with the Transient semantics, typed code is rewritten to verify the shapes of function
arguments and results [Vitousek et al. 2017]. The shape roughly corresponds to the outermost
constructor of a value; for example, a (Listof String) parameterized type turns into a check
that the argument is a list. Compound data is deconstructed via function calls, so the contents of a
value have their shape checked as the pieces are extracted. Thus summarize-ages is rewritten to
assert at the function-entry point that user-data is a list and in the loop-entry point to assert that
user-info is a hash table. The second check fails and blames the boundary between client/main

and client/summarize—suggesting a problem in the client component.
Thus, when a developer debugs the code in �gure 1, the chosen semantics matters, because three

di�erent semantics deliver three di�erent hints. The following section describes how the rational
programmer method can help us understand how the three semantics compare.

3 THE KEY IDEAS OF THE RATIONAL PROGRAMMER INVESTIGATION

In the abstract, the central idea of the rational programmer is gleaned from the long established
scienti�c tradition of studying economic phenomena through so called rational agents [Henrich et al.
2001; Mill 1874]. Similar to an agent that abstracts over the behavior of participants in economic
transactions to enable the study of the mechanisms, a rational programmer is a method for studying
linguistic mechanisms through an abstract model of a programmer. Whereas economic agents are
described with game theory and other mathematical tools, a rational programmer is described as
an algorithm that prescribes how to use a language feature to satis�ce [Simon 1947] the demands
of a task. Human programmers can use the results of such a study to assess the bene�ts of rational
behavior—that is, to decide whether to act like the algorithm when faced with a similar task.
Here the objective is to track down an incorrect type interface. To this end, the rational pro-

grammer exploits feedback from the gradual type system and the error messages it produces in a
satis�cing manner, modifying the program in the process. The modi�cations aim to directly identify
the incorrect type interface or to make a change that provides new information.

The modi�cation strategy is based on the theory of gradual typing. The central blame theorem
of gradual typing states that, assuming types are correct, a blamed component must always be
untyped [Tobin-Hochstadt and Felleisen 2006; Wadler and Findler 2009]. Therefore equipping that
component with types should either (1) allow the type checker to discover a mismatch between
the type interface and the component or (2) result in a blame assignment of some other untyped
component. In the �rst case, the process has uncovered a �aw in the type interface.
Hence the rational programmer adds type annotations to a blamed component; re-runs the

resulting program if it type checks; and repeats this process until it obtains a program that does
not type check. By testing this process on a large corpus of realistic scenarios, we can collect data
about how blame information aligns with the theoretical predictions that inform its design. Those
scenarios where blame information translates eventually to a static type error constitute evidence
that validate the design rationale behind the semantics; scenarios where the rational programmer

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:6 Lazarek, Greenman, Felleisen, Dimoulas

does not obtain useful hints from blame about how to further modify the program form examples
where blame information does not live up to its intended role.

To make this discussion concrete, take a second look at the program in �gure 1. Under the
Natural semantics, the program terminates with this error:

json-unpack: broke its own contract

promised: hash?

produced: '(("age" . 42))

in: an element of

the range of

(-> any/c any/c (listof (and/c hash?)))

contract from: (interface for json-unpack)

blaming: (interface for json-unpack)

(assuming the contract is correct)

at: json-unpack-interface

The key to deciphering the error message is the phrase “interface for json-unpack.” It says that the
Natural semantics has discovered an impedance mismatch between the untyped json-unpack and
the declaration of its type in json-unpack-interface, the type interface of json-unpack-lib.

The information clearly identi�es the problem: json-unpack’s result type doesn’t match the val-
ues it actually returns. A human programmermay deduce that the type in json-unpack-interface
must be wrong, for instance by knowing that the underlying, untyped library has been in use for
a long time. To analyze the issue and conclude for sure what is going on, the programmer may
attempt to construct the function’s correct type from the source of json-unpack-lib or submit a
bug report to the developers of the type interface.
The rational programmer indirectly simulates this process. Speci�cally, it acts on the phrase

“assuming the contract is correct” in the blame assignment issued by the Natural semantics and
temporarily gives the interface the bene�t of the doubt. That is, the rational programmer assigns
blame to json-unpack-lib. In response, it adds types to this library, mimicking a programmer
that attempts to provide a type interface for the library. Of course, equipping json-unpack-lib

with type annotations allows the type checker to statically identify the mismatch between the
correct type in json-unpack-lib and the incorrect one in the interface.

If the rational programmer were to use the Transient semantics instead, the process would follow
the same pattern, only using Transient’s �avor of blame instead. With Transient, the original
program terminates with blame on the boundary between client/main and client/summarize.
The rational programmer therefore equips client/main, the untyped of the two, with types
and runs the resulting program. That, in turn, terminates with blame on the boundary between
json-unpack-lib and the type interface. Again the rational programmer gives the interface the
bene�t of the doubt, annotates json-unpack-lib, and reaches a type error.

The rational programmer using Erasure is out of luck. The Erasure semantics exclusively relies
on the safety checks and failure messages of the untyped language, mostly stacktraces. The rational
programmer must therefore interpret the trace as blame assignment, which we operationalize by
selecting the topmost untyped module to annotate. The Erasure semantics of the original program
is a stack identifying �rst client/summarize and then client/main. Equipping client/main

with types does not produce a type error, and since the types are simply erased, the additional
annotations do not change the exception information. In short, the rational programmer using
Erasure is stuck at this point.

An Experiment Sketch. The rational programmer represents a systematic process for chasing
down an impedance mismatch, which can be implemented and tested on realistic scenarios. With
a large number of such debugging scenarios, the rational programmer’s aggregate results o�er a

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:7

big picture view of the helpfulness of the blame information for locating impedance mismatches.
Furthermore, by performing the same process on the same scenario for each of the three semantics,
we can compare how often and under what circumstances one approach is better than another.
The large scale collection of this data constitutes a rational programmer experiment.

The results of such an experiment, i.e. how well the rational programmer is able to locate bugs
in real programs, o�er insight into the validity of the design rationale underlying a gradually-
typed semantics. In particular they help to understand if these tools o�er practical bene�ts in
accomplishing a task when used in a systematic way. Of course, human programmers do not always
use tools in systematic ways. Hence, this kind of investigation shows how well “tools” work in real
programs, not how people work with tools.3

Realizing the experiment requires overcoming two di�culties:

(1) The �rst is the adaption of the experimental framework of Lazarek et al. [2021] to this new
setting of incorrect type interfaces. A foundational assumption of that prior work is that types
do not contain mistakes, but the premise here is that such mistakes are not only possible but
common. As it turns out, the high-level protocol of Lazarek et al. can be reused as-is with
only a few adjustments (sec. 4).

(2) The second concerns the component of Lazarek et al.’s setup that cannot be reused. Studying
mistakes in type interfaces requires the construction of a new, large and diverse corpus
of interesting debugging scenarios. Summing up the intuition from section 2, interesting
debugging scenarios have a client-interface-library architecture, where the type interface
describes an incorrect type for some export(s) of the library, and the client is programmed to
that type interface. No collection of such programs is available; the only option is to construct
one, which is a challenging task demanding novel insights (sec. 5).

4 FROM THE KEY IDEAS TO A RATIONAL PROGRAMMER EXPERIMENT

An implementation of the rational programmer experiment requires the precise de�nition of
how the rational programmer reacts to error messages. In essence, section 3 sketches a rational
programmer that uses run-time type-error information to migrate a program component-by-
component in order to debug it. However, despite recent progress [Campora et al. 2017; Garcia
and Cimini 2015; Kristensen and Møller 2017a; Migeed and Palsberg 2019; Miyazaki et al. 2019;
Phipps-Costin et al. 2021; Rastogi et al. 2012], gradual type migration remains largely an open
problem. Following Lazarek et al. [2021], we circumvent this problem by pre-constructing the type
migration lattices [Takikawa et al. 2016] for the program corpus of the experiment. Hence, with the
help of this domain knowledge, the rational programmer becomes a search algorithm that starts
from a �awed mix-typed version of a program, dubbed a debugging scenario, and attempts to �nd a
path, dubbed a blame trail, through the program’s migration lattice to a version that identi�es the
cause of the problem.
Following the sketch of section 2, we de�ne several modes of the rational programmer. Each

mode acts upon di�erent sources of error information, so they may chart di�erent blame trails for
the same debugging scenario. Collecting and analyzing the di�erences between these trails for
a large number of scenarios is the central idea of the experiment. The remainder of the section
makes the experimental idea precise. First, we de�ne two key terms: (1) the migration lattice of
a program and (2) a debugging scenario (sec. 4.1). Second, we characterize the search for blame
trails according to each mode (secs. 4.2 to 4.4). With these de�nitions in hand, we formalize the
experimental questions from section 1 and the experimental procedure to answer them (sec. 4.5).

3Understanding the interactions of programmers with tools in the wild demands a separate study involving people.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:8 Lazarek, Greenman, Felleisen, Dimoulas

4.1 Migration La�ices and Debugging Scenarios

From the perspective of our rational programmer experiment, a program P is a set of components.
Intuitively, some of these components implement a library that the rest use. Independent of their
role, some of the components are untyped, i.e., they do not have type annotations, and some are
typed. In particular, one of the typed components, I, plays the role of the (wrong) type interface
between the library and its clients as described in sections 1 and 2.

The typed components of a program P , excludingI, constitute a con�guration s of P ; conversely, a
con�guration s determines a syntactic variant of P with some typed and some untyped components.
The con�gurations of P are ordered by the subset relation and form a lattice L⟦P⟧ with 2

|P |−1

elements—the migration lattice. The bottom of L⟦P⟧ is the empty set, the top one consists of typed
versions of all components in P (except I). The con�gurations in between these two extremes
determine the mixed-typed variants of P .

In the context of L⟦P⟧, a blame trail is simply an ascending chain of con�gurations of P starting
at a debugging scenario. Any con�guration s0 of L⟦P⟧ can be a debugging scenario. If running a
scenario si detects an impedance mismatch, i.e., a run-time type error, the rational programmer
uses the error information to decide which component to equip with types next. This choice shifts
the attention of the rational programmer to a scenario si+1, and extends the blame trail.
While extending the trail, the rational programmer eventually encounters a scenario sn that is

the end of the trail. There are three such cases:

(1) When the rational programmer reaches a scenario sn where the type checker rejects the
program, the rational programmer has managed to identify the source of the impedance
mismatch. The trail ends in success. See section 3 for an example.

(2) Due to the actual implementation of the experiment, the rational programmer may succeed in
a di�erent way. Namely, running sn may terminate with a run-time type error that identi�es
a boundary between the type interface I and itself. This situation may arise because the
implementation realizes type interfaces as three modules: two typed ones surrounding an
untyped adapter module. Section 5.3 explains this design and its rationale in detail.

(3) When the trail ends because the run-time error from sn does not identify one of the untyped
components of P (nor the components of I), the rational programmer has failed. In essence,
the trail goes cold and provides no further hints about how to migrate the program in order
to get additional information about the impedance mismatch.

4.2 The Natural Rational Programmer

The Natural semantics produces two kinds of run-time error information: blame information due
to a failed run-time type check, and stacktrace information due to a raised exception. The two are
not equivalent in a strict sense. On one hand, Natural’s blame information identi�es at most one
boundary between a typed and an untyped component, and implies that the untyped side of the
boundary is responsible for an impedance mismatch. This information is a direct hint to the rational
programmer about how to extend the blame trail: swap out the untyped component with its typed
counterpart and obtain a new con�guration. On the other hand, the stacktrace information points
to all the components that happen to be on the call stack of the underlying language when an
exception is raised. In the absence of blame information, the Natural rational programmer can
fall back on the stacktrace information and interpret it as blame information in order to continue
the debugging session: swap out the �rst untyped component in the stacktrace with its typed
counterpart and obtain a new con�guration.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:9

Mode de�nition: Natural blame
A Natural blame trail is a sequence of scenarios s0, ...sn of a program P such that for all

0 ≤ i ≤ n − 1, si ⊂ si+1 and

si+1 \ si =

{
{blame ⟦P , si⟧} if (the program for) si produces blame

{exception
Natural

⟦P , si⟧} otherwise

where

(1) blame ⟦P , s⟧ denotes the component (of P) that s blames under the Natural semantics,

and

(2) exception
Natural

⟦P , s⟧ denotes the �rst untyped component in the stacktrace produced

by s under the Natural semantics.

As the Natural rational programmer extends a blame trail it may encounter a scenario that does
not type-check or blames I in P . Both situations mean that the rational programmer has located
the source of the bug in P . The blame trail ends in success. In contrast, a Natural blame trail ends
in failure if the rational programmer reaches a scenario that does not reveal the bug statically, yet
its terminating exception also does not point to an untyped module (either as blame information or
as part of the stacktrace information). Thus the rational programmer has no further hints on how
to continue the search for the bug.

A Natural blame trail s0, ...sn in a lattice L⟦P⟧ is successful i� error ⟦P , sn⟧ ≡ I or (the

program for) sn does not type check,

where error ⟦P , sn⟧ is the component identi�ed either by blame or exception information

produced by sn under the Natural semantics.

A Natural blame trail s0, .., sn in a lattice L⟦P⟧ is failing i� sn type checks and the trail

cannot be extended further.

Since every exception results in a stacktrace, including those from failed run-time type checks, a
mode of the rational programmer that ignores blame and always extends its trail based on stacktrace
information can serve as the baseline for determining the actual role of blame in the successes of
the Natural rational programmer.

Mode de�nition: Natural exceptions
A Natural exception trail is a sequence of scenarios s0, ...sn of a program P such that for

all 0 ≤ i ≤ n − 1, si ⊂ si+1 and si+1 \ si = {exceptionNatural ⟦P , si⟧}.

With this baseline, the usefulness of Natural blame boils down to the comparison between
Natural blame trails and Natural exception trails that start at the same scenario s0.

Given a program P and a debugging scenario s0 in L⟦P⟧, Natural blame is more useful
than Natural exceptions for debugging s0 i� the Natural blame trail that starts at s0 is

successful while the Natural exception trail that starts at s0 is failing.

4.3 The Transient Rational Programmer

Formulating the de�nition of a Transient blame trail is more complex than that for Natural blame
trails. The Transient semantics assigns blame to a sequence of components instead of one side
of a single boundary. Speci�cally, the Transient blame sequence, denoted multiblame ⟦P , s⟧, says
that the value-witness of the impedance mismatch may have crossed the boundaries between
neighboring components in the sequence, and that the same run-time type check could have
detected the mismatch upon each crossing.

To resolve this ambiguity, we pick two di�erent ways of interpreting blame sequences as blame
information. The �rst choice is that the rational programmer isolates the untyped component added

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:10 Lazarek, Greenman, Felleisen, Dimoulas

to the blame sequence �rst. The second isolates the component added last. The intuition for the
two choices is that the �rst aims to �nd the earliest point in the evaluation of a program that could
have detected the impedance mismatch, while the second interprets the blame sequence as a stack.
Besides these two di�erent interpretations of blame sequences, the de�nition of Transient blame
trails largely follows that for Natural blame trails.

Mode de�nition: Transient �rst blame
A Transient-�rst blame trail is a sequence of scenarios s0, ...sn of P such that for all

0 ≤ i ≤ n − 1, si ⊂ si+1 and

si+1 \ si =

{
{�rst ⟦multiblame ⟦P , si⟧⟧} if si produces blame

{exception
Transient

⟦P , si⟧} otherwise

where

(1) �rst ⟦multiblame ⟦P , s⟧⟧ is the �rst untyped module that Transient adds to the blame

sequence for s under the Transient semantics, and

(2) exception
Transient

⟦P , s⟧ denotes the �rst untyped component in the stacktrace produced

by s under the Transient semantics.

Mode de�nition: Transient last blame
A Transient-last blame trail is analogous to a Transient-�rst blame trail, but selects the
last untyped module from multiblame ⟦P , si⟧ that Transient adds to the blame sequence

rather than the �rst.

Also similar to the Natural rational programmer, a Transient exception trail can serve as a baseline
for isolating the usefulness of Transient-�rst and Transient-last blame. The de�nitions of Transient
exception trails and the usefulness of the two interpretations of Transient blame are analogous to
those formulated for Natural.

Mode de�nition: Transient exceptions
A Transient exception trail is analogous to a Natural exception trail, but using the

Transient semantics rather than Natural.

4.4 The Erasure Rational Programmer

In contrast to the Natural and Transient semantics, the Erasure semantics produces no blame
information. The only kind of error information from Erasure is a stacktrace, so the Erasure rational
programmer has a single exception mode.

Mode de�nition: Erasure
An Erasure trail is analogous to a Natural exception trail, but using the Erasure semantics

rather than Natural.

4.5 The Experimental�estions

The de�nitions of when blame is useful in the context of the di�erent modes of the rational
programmer o�ers the vocabulary for stating the research question from section 1 in precise terms:

Q1 Is blame information useful in the context of Natural for type interface mistakes?
Q2 Is �rst-blame useful in the context of Transient for type interface mistakes?
Q3 Is last-blame useful in the context of Transient for type interface mistakes?
Q∗ Is blame in the context of X more useful than blame in the context of Y for type interface

mistakes (where X, Y in [Natural, Transient, Erasure])?

Answering Q1 requires comparing the success of Natural blame and Natural exception trails for
all debugging scenarios. If there are any scenarios for which the Natural blame trail succeeds but

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:11

the Natural exception trail does not, then Q1 has a positive answer. Those scenarios are evidence
that Natural’s blame information improves the debugging e�ectiveness of the rational programmer
over the information available from just Natural’s stacktrace information. That said, if there are no
such scenarios, Natural blame may still be useful if it reduces the number of modules the rational
programmer needs to inspect in order to locate a bug. That number is equal to the length of the
blame trail, so comparing the length of Natural-blame and Natural-exceptions trails provides a
secondary metric of utility. Along those lines, we can also compare the length of both mode’s
trails to those of a mode that randomly types modules to understand in some absolute sense if the
information from Natural translates to shorter trails than selection by chance. The answers to Q2

and Q3 are similar, using the corresponding modes.
Q∗ requires comparing the proportion of scenarios where one mode fares better than the other,

and the inverse. Better here means that, for the same debugging scenario, one mode’s trail succeeds
and the other’s does not. For example, to determine if the Natural blame mode fares better that
Erasuremode, we compare the percentage of Natural blame trails that succeed but the corresponding
Erasure trail does not, and vice versa. These two proportions may be similar, in which case the
answer to Q∗ may not be clear cut; trail length may again o�er more information to understand
the trade o�s between the two modes in that case.
Thus the process to answer the experimental questions boils down to the following plan:

(1) Create a large and diverse corpus of debugging scenarios;
(2) Collect the blame trails for each mode of the rational programmer;
(3) Compare the successes and failures of each mode’s blame trails.

5 THE CHALLENGE OF A LARGE AND DIVERSE CORPUS OF SCENARIOS

While there are plenty of wrong type interfaces for untyped libraries in the wild, they are not
a suitable basis for a corpus of debugging scenarios. In addition to a library and a wrong type
interface, a debugging scenario consists of clients that interact with the library as if the type
interface were correct and in such a way that the impedance mismatch manifests itself. However,
no curated collection of such buggy programs with client-interface-library architecture exists.
To create a corpus of such debugging scenarios, we proceed in four steps. First, we identify a

diverse set of fully-typed correct Racket programs as the seed for the scenario corpus (section 5.1).
These programs can be naturally split into components that implement a library, a thin component
that plays the role of the library’s type interface, and the library’s clients that interact with the
library through the interface. This architecture matches the needs of our experimental design.
Second, we mutate each seed program to inject mistakes into its type interface. Historically, though,
mutation analysis does not provide mutators for types. We therefore invent type mutators and
validate their e�ectiveness (section 5.2). Third, we add dynamic adaptors to each mutated program
so that client components interact with the program’s library according to the mutated type
interface rather than the original one (section 5.3). Importantly, all these adapted mutants have
the same migration lattices because they all share the same type-able components. Moreover,
these lattices can be computed in a straightforward manner from the type annotations of their
corresponding fully-typed seed program. Finally, we sample the extensive space of generated
debugging scenarios to obtain a su�ciently large and diverse but computationally feasible corpus
for the rational programmer experiment (section 5.4).

5.1 The Seed of the Scenario Corpus

Our starting point is Greenman et al. [2019b]’s GTP collection of Typed Racket programs. Originally
created as a benchmark suite for evaluating the performance of gradual typing with Typed Racket,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:12 Lazarek, Greenman, Felleisen, Dimoulas

GTP contains fully typed, correct programs authored by various people for various practical
purposes. The programs vary in size, style, and complexity; they employ a variety of Typed Racket
features; and they are all deterministic. For details, see Greenman et al. [2019b]. Finally, each
program in GTP comes with interchangeable typed and untyped versions of every component,
which renders the construction of its migration lattice straightforward.

Table 1. Summary of the seed GTP programs.

name description author loc mod.

acquire object-oriented board game implementation M. Felleisen 2332 9
gregor utilities for calendar dates J. Zeppieri 2641 13
kcfa functional implementation of 2CFA for λ calculus M. Might 406 7
quadT converter from S-expression source code to PDF M. Butterick 7813 14
quadU converter from S-expression source code to PDF B. Greenman 7558 14
snake functional implementation of the Snake game D. Van Horn 305 8
synth converter of notes and drum beats to WAV V. St-Amour 1060 10
take5 mixin-based card game simulator M. Felleisen 761 8
tetris functional implementation of Tetris D. Van Horn 445 9
suffixtree algorithm for longest common subsequences between strings D. Yoo 718 6

Table 1 provides an overview of the ten GTP programs chosen to serve as generators of debugging
scenarios. These are the programs in the suite with the densest dependency graphs. We exclude
programs with sparse dependency graphs because they exhibit limited run-time interactions
between their components and thus result in simplistic debugging scenarios.

In their existing state, the ten chosen programs are not suitable for generating debugging scenar-
ios. Speci�cally, they lack dichotomous client and library sides, with a type interface component
between those. It is easy, however, to identify library and client portions in all of them and to
modify them to consolidate the connections between the two in a new type interface component.
While a simple modi�cation of the GTP programs thus su�ces to obtain programs with a

client-interface-library architecture, many of the resulting type interfaces lack a key feature of
interesting type declarations. In particular, they cannot include data structure de�nitions, i.e.,
Racket’s structs. The reason is that structs in Racket are by default generative. Hence, on one
hand, the type interface cannot be their de�nition site because typically library components depend
on the data type too, not just the library’s clients. On the other hand, due to generativity, the type
interface cannot duplicate the data type de�nitions. In sum, as Greenman et al. [2019b] describe, data
types used by multiple components must reside in a so-called adaptor module. Greenman’s adaptor
modules make it impossible, however, to mutate the data type de�nitions, a kind of mutation that
is an essential ingredient for the generation of non-trivial debugging scenarios. With this mutation,
the library equipped with a type interface and its client components get di�erent views of the same
data type.
Fortunately, Racket o�ers a work-around that is applicable to most of the chosen programs.4

The key is to change all structs to so called pre-fabricated structs. These are non-generative
data types which are equivalent to any other pre-fabricated data type with the same structure. In
other words, a pre-fabricated struct allows every component that uses instances of the data type
to re-declare its type de�nition. Thus, the type interface can also contain de�nitions for the data
types, which opens up their mutation for the creation of incorrect views for client components.

4Unfortunately, this change is not feasible for the acquire, kcfa, and suffixtree programs; contracts generated by Typed
Racket for prefabricated structs result in impractical slowdowns for those programs. Hence, we use adaptor modules and
do not mutate their data type de�nitions.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:13

5.2 Mutating Interface Types

With suitable seed programs in hand, we use mutation to transform them into debugging scenarios.
Recall that in a debugging scenario, the type interface ascribes an incorrect type to some value(s)
that cross from the library to the client components. Therefore turning the seed programs into
debugging scenarios requires mutating type annotations in their type interfaces.
Standard mutation operators are useless for this purpose, for they mutate code rather than

types. Instead, we develop a new set of operators targeting the language of types. The goal of
these new operators, listed in table 2, is to make small syntactic changes to a type interface
so as to create an inconsistency between the mutated interface and the actual types of library
components. The operators’ design draws inspiration both from the authors’ own experience in
making mistakes in type speci�cations and their observations about mistakes students make in a
variety of programming-oriented courses.

Table 2. Summary of mutators.

name description example

base->Any swaps a base type with Any Integer→ Any

composite->Any swaps a composite type with Any (List Player)→ Any

arg-swap swaps two of a function’s (or
method’s) argument types

(A B C -> D)

→ (C B A -> D)

result-swap swaps two of a function’s (or
method’s) result types

(A -> (Values B C D))

→ (A -> (Values C B D))

struct-swap swaps two of a struct’s �eld
types

(struct pair ([id : Natural] [content : String]))

→ (struct pair ([id : String] [content : Natural]))

class-swap swaps two of a class’s �eld types (Class (field [id : Natural] [content : String]))

→ (Class (field [id : String] [content : Natural]))

Table 2 presents the mutators:

• The �rst two capture the generic situation where the programmer has accidentally used the
wrong type in some place, for example, ascribing (Integer -> String) to a function from
Integer to Integer. Rather than arbitrarily picking an alternative type, these mutators use
the type Any to generically represent some other (incompatible) type than the one originally
in the same place at the interface.
• The second pair, arg-swap and result-swap, correspond to the speci�c mistake when the
programmer forgets the proper order of positional arguments or results of a function and
thus puts the types in the wrong order.5

• The last two swap �elds in a structure type or class type de�nition.

The question is

whether these mutators create suitable mutants.

The answer has two distinct dimensions. The �rst is a philosophical dimension. It questions how
these mutators correspond to the mistakes programmers actually make or encounter in type
interfaces. The second is a technical one, namely, whether the mutators create variants of GTP

5In Racket, expressions may produce multiple values. Typed Racket’s type language therefore supports describing the types

of each result in function types.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:14 Lazarek, Greenman, Felleisen, Dimoulas

programs whose type interfaces ascribe the wrong type to values such that a program-run signals
a type-related exception.
Along the �rst dimension, these mutators e�ectively simulate the kinds of mistakes that, ac-

cording to recent work by Hoe�ich et al. [2022] and Williams et al. [2017], actually appear in
De�nitelyTyped type interfaces. For instance, Hoe�ich et al. [2022] found that one of the most
common mistakes is the misspelling of �eld names in record types. This mistake means that clients
attempt to access a non-existent �eld, only to �nd out that it is missing. In JavaScript this failed ac-
cess results in undefined, a special and useless placeholder. The base->Any and composite->Any
mutators simulate this scenario as they transform �eld types, thereby rendering the �eld unusable
by client components. Similarly, the typical o�-by-one function arity mistake is simulated by
transforming the last argument of a function’s type to the opaque Any type, because in JavaScript
missing arguments are �lled in with undefined opaque values.
Along the second dimension, it is necessary to run the mutants produced by the mutators in

order to understand their quality. Unsurprisingly, our mutators do not always create type interfaces
that cause impedance mismatches. For example, replacing a type with Any typically causes a type
error, because Any is the top type encompassing all types, but not always. Fortunately, the GTP
benchmarks make it easy to check whether a particular mutant is ill-typed. Speci�cally, if the
mutation introduces an impedance mismatch, the type checker signals a static type error for the
top configuration of the migration lattice for the mutant. This type error identi�es the mismatch
between the interface and the corresponding library component.
Once an ill-typed mutant is identi�ed, the next step is to con�rm its suitability as a source

of debugging scenarios. An impedance mismatch alone may not change the run-time behavior
of a program. For instance, the mismatch may be in the type of a function that is never used.
The Natural semantics provides an appropriate �lter for such mismatches. Since Natural is a
complete monitor and signals strictly more errors than Transient or Erasure [Greenman et al.
2019a], it guarantees to signal an error if the impedance mismatch a�ects the program’s behavior.
We therefore further select only those mutants for which the Natural semantics signals an error in
the bottom configuration of the migration lattice. After all, any error arising while running this
con�guration must be due to a contract resulting from the type interface, because those types are
the only ones enforced. That said, this choice introduces a small degree of bias against the other
semantics, which sections 6 and 7.1 quantify and discuss.

All told, themutators create just under one thousandmutants from the ten selected GTP programs.
Of those around 400 are ill-typed, and 294 have observable changes in dynamic behavior. Hence
we end up with 294 suitable mutants for the rational programmer experiment.

Figure 2 illustrates that these mutants form a diverse population, capturing a wide array of
mistakes in many di�erent shapes of types. Each bar depicts the number of mutants where the
mutation falls into the category named on the x-axis. The categories correspond to a path down
the spine of the mutated type, from the outermost level down to the location and speci�c change
introduced. For example, the category (-> struct base) collects mutations that change the base
type (to Any) of a struct �eld which is the argument or result of a function type.

5.3 Adapting Mutants to Debugging Scenarios

Mutating the type interface of the GTP programs alone does not su�ce to create interesting
debugging scenarios. In particular, since the programs are correct with respect to the types of the
original interface, mutating the interface creates a disconnect between the client components and
the types described by the mutated interface. Figure 3 illustrates the problem with a simplistic
example. While the interface has been mutated to swap the argument types of f, the client uses f
according to its original type. An interesting debugging scenario requires, however, that the client’s

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:15

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

c
o
u

n
t

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(s
tr

uct
-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(f
un-s

w
ap

)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(s
tr

uct
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(->
 b

as
e)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(c
la

ss
-m

td
 fu

n-s
w

ap
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(s
tr

uct
 c

om
pos

ite
)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(t
yp

ed
ef

 c
om

pos
ite

)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(->
 c

om
pos

ite
)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 c
la

ss
-s

w
ap

)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(t
yp

ed
ef

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(s
tr

uct
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-fld

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(s
tr

uct
 ->

 c
om

pos
ite

)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 ->

 b
as

e)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 c
om

pos
ite

)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(->
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
la

ss
-m

td
 fu

n-s
w

ap
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(t
yp

ed
ef

 c
on

ta
in

er
 c

om
pos

ite
)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(s
tr

uct
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
on

ta
in

er
 b

as
e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(c
on

ta
in

er
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 c
om

pos
ite

)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(->
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(s
tr

uct
 ->

 c
on

ta
in

er
 b

as
e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-m

td
 ->

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
on

ta
in

er
 c

on
ta

in
er

 b
as

e)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

(t
yp

ed
ef

 c
la

ss
-fld

 ->
 c

om
pos

ite
)

000000000

101010101010101010

202020202020202020

303030303030303030

404040404040404040

505050505050505050

606060606060606060

path tag meaning

base a base->Any mutation
composite a composite->Any mutation
fun-swap a arg-swap or result-swap mutation

struct-swap a struct-swap mutation
class-swap a class-swap mutation

struct in a struct �eld type
-> in a function argument or result type

class-mtd in a class method type
typedef in a type de�nition

container in a data structure type (e.g. Listof)
class-�d in a class �eld type

Fig. 2. Type mistakes captured by final mutant population.

code aligns with the mutated interface types. Fixing this mutation-induced discrepancy represents
the key technical challenge for the design of our rational programmer experiment.

client : typed/racket

(require ti)

(f #\c 5)

ti : typed/racket

(require/typed/provide lib

;; arguments are swapped

[f (Integer Char -> Integer)])

lib : racket

(provide f)

(define (f ch n)

(+ (char->integer ch) n))

Fig. 3. A simple program illustrating the need for adaptors.

We solve this challenge with the introduction of mutation adaptors. Conceptually, a mutation
adaptor adjusts the client to align with the mutated type interface. From an architectural perspective,
it is an interposition layer between the mutated interface and the client side of the program, and it
consists of a typed and untyped part:

(1) a variant of the original type interface, with which the client interacts.
This variant imports the adaptor module and re-exports all elements at the original and
correct type. It thus decouples the clients from the mutated interface. Speci�cally, this type
interface ensures that all client components type-check according to their existing type
annotations from the GTP benchmark suite.

(2) the �ow adaptor, an untyped module between the original interface and the mutated one.
The �ow adaptor adjusts the �ow of values at run time from the original type signatures to
the mutated ones, respectively. It simulates a client that uses an exported value according to
the mutated type.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:16 Lazarek, Greenman, Felleisen, Dimoulas

The behavior of �ow adaptors is speci�c to the mutation of the type interface. For swapping
mutators, the �ow adaptor swaps the values of concern. For mutators that replace types with
Any, the adaptors replace the corresponding value with an opaque sealed value to represent
a value of unexpected type.

Concerning the experiment, the faulty type interface in a debugging scenario therefore consists
of three modules: the mutated type interface, the �ow adaptor, and a variant of the original type
interface.
Let us return to the example in �gure 3. Adapting this program requires the injection of: a

function that swaps the Char and the Integer argument to adjust the �ow of values; the mutated
type interface; and the modi�cation of the original type interface to import values from the �ow
adaptor. The diagram in �gure 4 represents the result of these program modi�cations.

client : typed/racket

(require ti)

(f #\c 5)

ti : typed/racket

(require/typed/provide adaptor

[f (Char Integer -> Integer)])

lib : racket

(provide f)

(define (f ch n)

(+ (char->integer ch) n))

x

y

adaptor : racket

(require mutated-type-interface)

(define wrapped-f (λ (ch n) (f n ch)))

(provide (rename-out [wrapped-f f]))

←−−−−−−−−−−−−−

mutated-type-interface : typed/racket

(require/typed/provide lib

;; arguments are swapped

[f (Integer Char -> Integer)])

The adaptor creates the wrapper function wrapped-f and exports it as f, so that the rest of the components are
oblivious to the wrapper. The adaptor and the two interfaces (in blue) form the actual interface of the library in
the debugging scenario for the purposes of the experiment.

Fig. 4. Adapting the program of figure 3.

While adaptors for the swapping mutators have a fairly obvious rationale, those for base->Any
and composite->Any demand some explanation. The point of replacing a type with Any is to hand
the library a value of a completely unknown and unexpected type. The existing library code cannot
deal with such a value, and it signals an error when it uses any elimination operations on such a
value. The �ow adaptors therefore simulate this situation by placing the value of the mutated type
in an opaque container, ensuring that the library is unable to inspect or use it in any way.
Implementing these program modi�cations—speci�cally the �ow adaptors—is mostly straight-

forward. The experiment framework generates �ow adaptors that boil down to either swapping or
sealing. Technically speaking, the framework exploits Racket’s support for interposition through
impersonators and chaperones [Strickland et al. 2012] or makes adapted copies of values. The one
exception to this approach are mutations that swap class and object �elds. Since Racket does not
provide a mechanism for interposing on �eld accesses, we manually changed the benchmarks to
make all external �eld accesses go through new getter and setter methods for which Racket does
o�er interposition features. This manual change does not a�ect the behavior of the programs.
Finally, it is time to explain the remark (2) in section 4.1. The program modi�cations described

here do not a�ect the generation of the migration lattice. Recall that the lattice of a GTP program
is built from the components that are either typed or untyped. And, as speci�ed in section 4.1,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:17

the construction of the lattice ignores the type interface, which in this experiment consists of the
mutated type interface, the �ow adaptor, and the variant of the original type interface. Consequently,
the lattices for all mutants are exactly the same as the lattices of the corresponding original program.

5.4 Sampling Debugging Scenarios

The 294 usable mutants across the selected GTP programs yield over two million di�erent mutant
× con�guration pairs, which in turn, are the debugging scenarios that the rational programmer
can explore. Hence, to perform the experiment within a feasible time-frame, we must sample this
scenario space to obtain a reduced yet representative population. “Representative sampling” means
that the results of the experiment on the sample generalize to the whole population. To ensure
that the sample is representative, we use a strati�ed random sampling approach, breaking the
population into strata based on source program, mutators, and mutants, in that order. This choice
means we can generalize with high con�dence, given that each of the strati�cation criteria captures
relevant groupings within the population.
In more detail, within each suitable mutant’s lattice of con�gurations, we sample from those

con�gurations that do not correspond to trivial debugging scenarios. A trivial scenario is one for
which the type checker directly identi�es the impedance mismatch between the mutated interface
and the library. Such trivial scenarios come about whenever the con�guration uses the typed
variant of a library component that provides a value whose interface type has been mutated. In
this situation, the type checker discovers the con�ict between the type annotations of the library
and the interface. After �ltering out the trivial scenarios, the interesting scenarios for a given
mutant actually form a sub-lattice of the migration lattice, in which no con�guration contains
a typed variant of the library component with faulty interface types. As a result, the sub-lattice
is computable. With the sub-lattice in hand, we uniformly sample 100 interesting scenarios per
mutant — in other words, we make no assumptions about the di�culty of debugging scenarios
based on their position in the lattice. Thus we arrive at a �nal population of 29,400 debugging
scenarios for the rational programmer experiment.
While sampling scenarios lightens the computational burden on the rational programmer, it

has consequences for our ability to generalize the results of the experiment to the full population
of interesting scenarios. Statistical principles tell us that our results are representative of the full
population with 95% con�dence and within some margin of error, depending on the size of the
sample. To remind readers of this uncertainty in generalization, the next section describes the
results of our experiment with a note alongside each �gure concerning the corresponding margins
of error.

6 WHAT ARE THE RESULTS OF THE RATIONAL PROGRAMMER EXPERIMENT

We run the experiment giving each debugging scenario a 10 minute timeout and a 6 GB memory
limit. In aggregate, following all trails required thousands of compute hours.
Figure 5 shows the high level success rate estimates of each rational programmer mode for the

debugging scenarios of the experiment. These success rates illustrate points that form the basis of
the rest of our analysis.
First, the Natural blame mode far outperforms all other modes: the rational programmer that

heeds blame information from the Natural semantics explores successful blame trails in nearly 90%
of the scenarios. Second, the next closest modes, both at nearly 70% of the scenarios, are the two
Transient blame modes. The Erasure mode follows close behind with just under 65%. Finally, the
Transient exceptions mode performs ever so slightly worse than Erasure, around 5% worse than
its corresponding blame modes. Nonetheless, they all far outpace the Natural exceptions mode
that is only successful for about 45% of the scenarios. Clearly, there are signi�cant di�erences in

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:18 Lazarek, Greenman, Felleisen, Dimoulas

the utility of the error information the rational programmer relies upon—across both the di�erent
semantics and sources of error information within each.

%
 o

f
s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
000000000

101010101010101010

202020202020202020

303030303030303030

404040404040404040

505050505050505050

606060606060606060

707070707070707070

808080808080808080

909090909090909090

100100100100100100100100100

The upper bound margin of error is 0.08%.

Fig. 5. Percentage rates of success.

Digging deeper into the causes of failed trails for each
of the modes o�ers some insight into these di�erences.
In the Natural blame mode, the rational programmer fails
to reach a static error in about 3,400 scenarios, all for
the same reason, namely, running the scenario results in
an exception from the underlying language rather than
blame. In the absence of blame, the Natural blame mode
falls back on stacktrace information to make progress; in
these scenarios, however, the stack contains no untyped
modules in the program, giving the rational programmer
no indication of where to look next, so it is stuck.

Similarly the stacktrace information does not help the
Natural exceptions mode in about 15,000 scenarios. Of
those, 3,400 scenarios are the same as those that stymie
the Natural blame mode. In around 11,500 additional sce-
narios the Natural run-time type checks do signal an
impedance mismatch, but the Natural exceptions mode ignores the blame information, and the
stack is unhelpful. This is not altogether surprising, however, because the checks likely occurred
while a value of incorrect type passed across the boundary of the type interface; at that point, the
only modules likely to be on the stack are client components. None of the client components (in
any of the benchmarks) can ever cause a mismatch to be statically detected, since the mismatch is
by construction between the interface and one or more library components. Thus, in the setting of
this experiment, the Natural checks produce unhelpful stack information most of the time.

The two Transient blame modes fail in the same ways, spread over a few broad causes. Principal
among them is unhelpful stack information, accounting for just under 6,500 failures. More inter-
estingly, over 1,000 failures occur because Transient checks fail to detect the mismatch at all: the
program completes (most probably with incorrect results). Finally, around 600 scenarios end in
failure when Transient checks signal an error, but Transient blame is unhelpful. Speci�cally, the
blame sequence is empty. The corresponding scenarios are instances where Transient’s collabora-
tive blame algorithm fails due to a fundamental limitation in tracking blame for built-in higher
order functions. Lazarek et al. [2021] report the exact same problem; the interested reader may
wish to consult that paper for further details.

Finally, the Erasure mode fails in two ways: either the stacktrace information available from the
exceptions of the underlying language are unhelpful, or the program terminates without any error.
Unhelpful stacktrace information account for 8,700 of the Erasure mode’s failures, and the program
terminates with no error information in 1,200 of the scenarios (again, likely with incorrect results).
Figure 6 gives a head-to-head account of the success rates of the modes to shed light on the

comparative utility of the sources of error information available to the rational programmer.
Speci�cally, the �gure names one plot per mode, where the plot compares the estimated percentage
of scenarios where the named mode uses more (and less) useful information than each mode named
along the x-axis. For instance, the top left plot illustrates that there are no scenarios where any of
the other modes have more useful information than Natural blame mode for the same scenario.
And while the Natural exceptions mode performs the worst in terms of overall success rates, the
bottom left plot clari�es that there are in fact scenarios where the Natural exceptions mode is more
successful than each of the other modes except for the Natural blame mode.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:19

Natural blame

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Transient last blame

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Transient first blame

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Natural exceptions

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Transient exceptions

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Erasure

%
 o

f
s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 l
e
s
s
 u

s
e
fu

l

 %

 o
f

s
c
e
n

a
ri

o
s
 m

o
re

 u
s
e
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
454545454545454545

404040404040404040

353535353535353535

303030303030303030

252525252525252525

202020202020202020

151515151515151515

101010101010101010

555555555

000000000

555555555

101010101010101010

151515151515151515

202020202020202020

252525252525252525

303030303030303030

353535353535353535

404040404040404040

454545454545454545

Each plot compares the mode named above the plot to every other mode. The green bars above 0 depict the
estimated percentage of scenarios where the named mode has more useful information than the other. The red
bars below 0 conversely depict the estimated percentage where the named mode has less useful information.
The upper bound margin of error is 0.08%.

Fig. 6. Head to head usefulness comparisons.

These results o�er answers to the experimental question from section 4.5. Concretely, we can
answer question Q1 in the a�rmative: blame is useful in the context of Natural. There are a wealth
of scenarios where the Natural blame mode improves over the Natural exceptions mode, and none
to the contrary; indeed, the same is clear for the Natural blame mode compared to all others,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:20 Lazarek, Greenman, Felleisen, Dimoulas

Random

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444 555555555 666666666 777777777 888888888 999999999 101010101010101010
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Natural
blame

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Transient
last blame

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Transient
first blame

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Natural
exceptions

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Transient
exceptions

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Erasure

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

%
 o

f
tr

a
il

s
 w

it
h

 l
e
n

g
th

000000000 111111111 222222222 333333333 444444444
000000000

202020202020202020

404040404040404040

606060606060606060

808080808080808080

100100100100100100100100100

Each plot depicts the distribution of trail lengths for the mode named above. The proportion of
successful trails (bottom of each stacked bar) and failed trails (top) are also indicated by color
(green for success and red for failure). The upper bound margin of error is 0.01%.

Fig. 7. Trail length distributions per mode.

answering the Q∗ questions concerning the Natural blame mode as well. Questions Q2 and Q3

are similarly answered in the a�rmative, though there is a tiny proportion of scenarios where
Transient exceptions improve over each interpretation of Transient blame. Both Transient blame
modes improve over Erasure in a small proportion of scenarios, and the converse is only true in
a tiny proportion. Thus the Q∗ questions concerning Transient and Erasure can be answered in

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:21

favor of Transient’s blame, though not by much. However, neither Transient blame mode appears
preferable over the other.
The length of successful trails helps to clear some of that uncertainty. Figure 7 depicts the

distribution of trail lengths for eachmode, where each bar is also colored according to the proportion
of successful and failing trails. The main takeaway from this data is that the Q∗ questions about
Transient �rst and last blame can be answered slightly in favor of the last blame interpretation,
since it has a signi�cantly higher proportion of successful trails with length zero.

7 WHAT CAN PROGRAMMERS LEARN FROM THE RATIONAL PROGRAMMER

An intuitive understanding of the rational programmer’s workings is instrumental to interpreting
the aggregate results of the previous section. Figure 8 provides a detailed account of one scenario
from the GTP program synth, which o�ers a useful illustration of how each mode of the rational
programmer works. The top left of the �gure illustrates the program’s dependency graph, and the
rest of the �gure details the trails that each mode explores.
In this scenario, the type interface has been mutated so that the type of an Integer �eld in an

Array data structure de�nition is replaced with Any. Locating this mistake takes the modes of the
rational programmer on �ve di�erent paths through the migration lattice of the (adapted) mutant,
illustrated in the top right of the �gure.

The table in the middle of the �gure details how each of those paths play out, step by step. Each
row of the table corresponds to a mode. Each column describes a point in the trail, starting from the
root debugging scenario, with the result of running the corresponding con�guration. The following
column to the right then describes the con�guration the rational programmer examines next in
response to those results, and the results of that new con�guration respectively; and so on. Finally,
the OK? column summarizes whether the trail ends in success or failure.
For instance, compare the �rst and third rows of the table. The �rst row, for the Natural blame

mode, shows that the root con�guration results in blame on the array-struct module. So the
rational programmer types that module to obtain the con�guration in the next column, which does
not type check. In contrast, the Transient-last-blame mode’s row shows that the root con�guration
does not result in blame but in stacktrace information, where synth is the top module. The rational
programmer types that module, and the result of that new con�guration is blame on the type
interface. Readers familiar with the Transient semantics may wonder how blame can land on the
interface, because it is a typed module. In fact, due to the adaptation described in section 5.3, the
interface really consists of two typed modules sandwiching the untyped �ow-adaptor module. This
latter component is what Transient blames, and we interpret that as successfully identifying the
interface. In practice, this situation corresponds to one where there is an untyped library module in
between the buggy type interface and the typed library module that detects the mismatch, which
would be blamed, and which, once annotated, would make the mismatch apparent to the type
checker. Thus the two modes take di�erent paths to success in this scenario.

7.1 Interpreting the Results

The experimental results suggest a few takeaways about the value of blame when types are
mistakenly ascribed in gradually-typed programs. First, the information from run-time type checks—
sans blame—is on the whole less helpful for the rational programmer than the information that
would have been available from (possibly later) exceptions from the underlying language. This
stands in contrast with Lazarek et al. [2021]’s �nding that gradual run-time type checks o�er the
rational programmer comparable value to the regular safety checks of the underlying language.
Of course, in practice working programmers won’t know a-priori if they have made a mistake in

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:22 Lazarek, Greenman, Felleisen, Dimoulas

type interface

data

array-broadcast

array-struct

array-transform

array-utils

main

sequencer drum

mixer synth

m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

xx

Natural-blame

m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

x
m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

xx

m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

xx

m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

xx x

m
a
i
n

d
r
u
m

m
i
x
e
r

s
e
q
u
e
n
c
e
r

s
y
n
t
h

d
a
t
a

a
r
r
a
y
-
b
r
o
a
d
c
a
s
t

a
r
r
a
y
-
s
t
r
u
c
t

xx

a
r
r
a
y
-
t
r
a
n
s
f
o
r
m

a
r
r
a
y
-
u
t
i
l
s

xxx

Natural-exceptions

Erasure,

Transient-exceptions,

Transient-last-blame,

Transient-first-blame

Transient-first-blameErasure,

Transient-exceptions

x

xx x

xx

the dependency graph the paths taken by each mode through the con�guration lattice

Root Step 1 Step 2 OK?

Mode con�g result stack con�g result stack con�g result

Natural xx xx drum xx xxx τ× ✓
-blame array-struct

Transient xx xx synth xx xx x synth xx xx xx τ× ✓
-�rst-blame main array-struct main

Transient xx xx synth xx xx x synth ✓
-last-blame main type-interface main

Erasure xx xx synth xx xx x synth xx xx x x x
main main

Natural xx xx drum xx xx x drum x
-exceptions

Transient xx xx synth xx xx x synth xx xx x x x
-exceptions main main

Legend

con�g Each box corresponds to a module and indicates (with x) if it is typed. The gray box is the type interface.

result symbol denotation

the con�guration signals a dynamic type check failure, blaming the module(s) below

τ× the con�guration does not type check
the con�guration fails a check by the runtime system
the con�guration signals a dynamic type check failure for which blame is ignored

Fig. 8. An example scenario from synth, with the trails that each mode explores.

types or code, so the contrast raises the question of whether run-time type checks without blame
o�er debugging value for working programmers.

Unlike run-time type checks without blame, those with blame o�er clearly valuable information,
across all semantics. However, speci�cally in the context of mistakes in interface types, Natural
blame outpaces that of Transient signi�cantly. Indeed, �gure 6 shows that Natural blame o�ers
better information than all other modes in large proportions of the scenarios. In contrast, Transient’s

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:23

blame information improves over Erasure’s stacktrace information on some occasions and on others
is worse, making it overall a marginal improvement over Erasure.

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

%
 o

f
s
c
e
n

a
ri

o
s
 p

ro
d

u
c
in

g
 e

rr
o
r

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
000000000

101010101010101010

202020202020202020

303030303030303030

404040404040404040

505050505050505050

606060606060606060

707070707070707070

808080808080808080

909090909090909090

100100100100100100100100100

The upper bound margin of error is 0.01%.

Fig. 9. Estimated percentage rates of bug

detection (i.e. halting with an error).

While Natural with blame thus appears the most use-
ful in terms of the debugging information it o�ers, its
high overhead is well-known to be prohibitive for use
in deployment. At the same time, the more performant
options that perform type checks at run time but with-
out blame do not appear to o�er debugging bene�ts over
Erasure. So what should a working programmer do? The
results suggest a dual strategy: use Erasure for deploy-
ment, and—if available—a Natural blame debugging mode
during reproduction and debugging of mistakes discov-
ered in deployed software. This strategy requires that not
too many impedance mismatches go entirely unnoticed
when using Erasure, and the data in �gure 9 suggests that
is probably the case.

7.2 Threats to Validity

The validity of these conclusions are subject to two categories of threats. The �rst category of
threats concern the experimental setup. Some of those are described in preceding sections, namely:
(i) the GTP programs we use may not be truly representative of all programs in the wild; (ii) our
synthetic type mistakes may not be truly representative of all mistakes programmers make in
ascribing types; and (iii) our adaptation of client-side behavior does not match exactly the reality
of program behavior with clients programmed against incorrect type interfaces. While the design
of the experiment attempts to mitigate these threats with the careful design and analysis of the
scenario generation (sec. 5), the reader must keep them in mind when drawing conclusions.
The second category consists of external threats due to the philosophical underpinnings of the

experimental design. Most fundamentally, the rational programmer itself does not necessarily re�ect
the way real programmers use gradual types or debug mistakes in type interfaces (section 7.3). At
a more technical level, the experiment design assumes that the rational programmer can inspect
and annotate library components, which real programmers may not be able to do (section 7.4).
Finally, the experiment aims to answer the research questions in the restricted context of a single
language with one syntax and type system but di�erent semantics. While this is necessary for the
apples-to-apples comparison of a scienti�c experiment, it also raises the question of how the results
of the experiment transfer to other linguistic settings (section 7.5).

7.3 Threat: The Rational Programmer is not a Human Programmer

Programming language researchers know quite well that despite their simpli�ed nature, models
have an illuminating power. Consider Standard ML, the language with the most rigorous, extensive
formal de�nition [Milner et al. 1998, 1990]. The model simpli�es the language to an extremely small
kernel, excluding most of what programmers �nd useful (e.g., the libraries, the runtime). Yet, many
theory papers use models like this to prove theorems about their designs and thus guide language
evolution (think Classic Java [Flatt et al. 1998], Featherweight Java [Igarashi et al. 2001]). Similarly,
empirical PL research has also relied on highly simpli�ed mental models of program execution
for a long time. As Mytkowicz et al. [2009] report, ignorance of these simpli�cations can produce

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:24 Lazarek, Greenman, Felleisen, Dimoulas

wrong data—and did so for decades. Despite this problem, the simplistic model acted as a compass
that helped compiler writers improve their product substantially over the same time period.
Like such models, the rational programmer is a simpli�ed one. While the rational programmer

experiment assumes that a programmer takes all information into account and sticks to a well-
de�ned, possibly costly process, a human programmer may make guesses, follow hunches, and
take shortcuts. Hence, the conclusions from the rational-programmer investigation may not match
the experience of working programmers. Further research that goes beyond the scope of this paper
is necessary to establish a connection between the behavior of rational and human programmers.

That said, the behavioral simpli�cations of the rational programmer are analogous to the strategic
simpli�cations that theoretical and practical models make, and like those, they are necessary tomake
the rational programmer experiment feasible. Despite all simpli�cations, section 6 demonstrates
that the rational programmer method produces results that o�er a valuable lens for the community
to understand some pragmatic aspects of the semantics of blame and gradual type checking, and it
does so at scale and in a quanti�able manner.

7.4 Threat: Typing Library-side Modules

In the experiment, the rational programmer opens up and ascribes types to library components in
the process of hunting down an impedance mismatch. When working programmers �nd themselves
in the same situation, however, it is far from clear that they would be willing or able to do the
same. This is especially relevant in settings like De�nitelyTyped, where the library in question is
some third-party package on npm. In that case, the programmer relies on the authors of the type
declaration �le or the package to respond to a bug report and pick up the search of the bug. While
anecdotal evidence suggests that it is common for programmers to issue bug reports, and type
declaration and package authors to respond with �xes quickly [Hoe�ich et al. 2022], assuming that
they do so all the time is an experimental simpli�cation.

%
 o

f
s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l
%

 o
f

s
c
e
n

a
ri

o
s
 s

u
c
c
e
s
s
fu

l

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l b

la
m

e

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

N
at

ura
l e

xc
ep

tio
ns

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t l

as
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t fi

rs
t b

la
m

e

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Tra
nsi

en
t e

xc
ep

tio
ns

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re

Era
su

re
000000000

101010101010101010

202020202020202020

303030303030303030

404040404040404040

505050505050505050

606060606060606060

707070707070707070

808080808080808080

909090909090909090

100100100100100100100100100

The upper bound margin of error is 0.04%.

Fig. 10. Estimated percentages of trails that

succeed without typing library modules.

Hence, the simpli�cation naturally raises the question
of what the results would look like if the rational pro-
grammer only modi�ed client components. Figure 10 of-
fers some indication of the answer to this question based
on the data already available. It depicts the estimated
overall success rates of each mode where the criteria for
extending a blame trail excludes adding types to library
components. That is, the rational programmer fails when
error information points to a library component as the
next point of focus of the investigation.

This data draws a signi�cantly di�erent picture. While
the Natural blame mode remains by far the most suc-
cessful, Transient-last-blame emerges here as the best
alternative information, and none of the modes using ex-
ception information, including Erasure, have any success.
This is not altogether surprising because, as discussed in
section 6, even if stacktrace information points to client
components, adding types to client components can never turn the impedance mismatch into a
static type error.

This �lter on the data does not tell the whole story, however. While it does suggest that Natural
blame o�ers the best debugging information in this setting too, and by a signi�cant margin, a
followup experiment is necessary to see if that suggestion bears out for true client-side rational
programmer modes. For instance, a true client-side version of each mode would simply �lter library

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

How to Evaluate Blame for Gradual Types, Part 2 194:25

components from stacktrace information and pick the next client component instead of failing
when the top of the stack is a library component. Such modes model programmers that question the
correctness of type declarations and third-party libraries as a last resort, and only after exhausting
all possibilities that the problem stems from their code.

7.5 Threat: Di�erent Languages, Di�erent Types, Di�erent Checks

While the type systems of Typed Racket and TypeScript are quite similar, their run-time safety
checks di�er signi�cantly. The former is well-known for its informative run-time error messages
and stacktrace information (due to its origins in education); the latter is a derivative of JavaScript,
which famously ignores run-time errors as much as possible and often produces sparse stack
traces (if any). Hence, the results for an analogous study of TypeScript may make the Natural and
Transient semantics look much stronger than the Erasure semantics. An attempt to replicate the
experiment in the context of Typescript is needed to clarify whether the conclusions of this paper
transfer from one linguistic setting to another. This paper o�ers a blueprint and techniques to
researchers that would like to take up this challenge. While the ideas and techniques we use should
be useful for replication in any linguistic context, details such as the speci�c mutators that are
relevant and the adaptor implementation approach will vary across contexts.

8 WHAT DOES PRIOR RESEARCH SAY ABOUT THIS PROBLEM

Lazarek et al. [2021] present the only prior work directly related to this one. They introduce the
rational programmer method and evaluate the e�ectiveness of blame information when debugging
code-originated impedance mismatches in a gradually typed language; they leave open the question
of how to study impedance mismatches that are due to mistakes in type interfaces. This paper
validates that the rational-programmer method can be adapted to understand debugging mistakes
in type interfaces (sec. 2), but doing so demands two innovations: a novel approach to create
interesting debugging scenarios (sec. 5) as well as careful adaptation of the key notion of blame
trails (sec. 4). This success may also be a guide for others looking to apply this evaluation method.
There are three signi�cant bodies of adjacent work. First, a number of papers investigate the

prevalence of mistakes in gradual types, their theoretical underpinnings, and ways to mitigate
them [Campora and Chen 2020; Cristiani and Thiemann 2021; Feldthaus and Møller 2014; Green-
man et al. 2019a; Hoe�ich et al. 2022; Kristensen and Møller 2017b; St-Amour and Toronto 2013;
Williams et al. 2017]. Second, others aim to help programmers debug type errors in statically typed

settings [Becker et al. 2016; Chen and Erwig 2014; Pavlinovic et al. 2014; Seidel et al. 2016, 2018;
Zhang and Myers 2014], including some that �nd a signi�cant portion of those errors arise from
incorrect type annotations [Wu and Chen 2017]. Third, there is an extensive area of active research
on developing and applying human-centered approaches to understand the practical aspects of
type system design [Brown et al. 2018; Coblenz et al. 2020, 2021; Denny et al. 2021; du Boulay and
Matthew 1984; Hanenberg 2010; Hanenberg et al. 2014; Lubin and Chasins 2021; Spiza and Hanen-
berg 2014; Wexelblat 1976]. Within this area, Tunnell Wilson et al. [2018] survey programmers
about their general preferences between semantics for gradual typing.
Finally, our debugging scenario corpus incorporates techniques from the software engineering

research world, particularly mutation testing [DeMillo et al. 1978; Lipton 1971] and software
component adaptation [Keller and Hölzle 1998; Mätzel and Schnorf 1997].

9 WHERE TO GO FROM HERE

When it comes to detecting type interface mistakes, all semantics are essentially equally good, at
least for these programs. When it comes to locating those mistakes, however, the Natural-with-
blame mode is the clear winner. In fact, it is the only combination that seems to provide a signi�cant

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

194:26 Lazarek, Greenman, Felleisen, Dimoulas

edge over industry’s Erasure semantics. All other academic semantics with blame o�er limited
bene�ts over Erasure at providing debugging hints. And notably, academic semantics without blame

fare no better, or even worse, than Erasure.
Combining these observations with the results of Lazarek et al. [2021] suggests that in industrial

gradually typed languages, such as TypeScript, Erasure seems to su�ce for deployment. But, these
languages would also signi�cantly bene�t from a Natural-with-blame development mode.
Despite the strong similarities between the type systems of Typed Racket and TypeScript, it

remains open whether the insights concerning the former apply to the latter, too. Con�rming them
will require a new backend for TypeScript and another rational-programmer investigation.

Finally future work should re�ne the cost aspect of the rational-programmer investigation,
speci�cally cost as in developer time. The rational programmer, as instantiated in both this work
and Lazarek et al.’s prior work, does not account for the actual time spent on detecting and locating
bugs. That is, the rational programmer makes no distinction between identifying the bug in ten
seconds or ten hours. Instead the investigations crudely approximate developer time with the
number of type-annotation steps, which in particular hides the reality that some components are
easy to annotate and others are not. Furthermore, they do not consider how early in a program’s
execution a mistake is surfaced, despite the common wisdom that reporting mistakes early rather
than late in a long-running program has signi�cant practical bene�ts. In short, adding dimensions
of time to a rational programmer investigation should become a high priority.

ACKNOWLEDGMENTS

Felleisen and Greenman were partly supported by NSF grant SHF 1763922. Greenman was partly
supported by NSF grant 2030859 to the CRA for the CIFellows program. Lazarek and Dimoulas were
partly supported by NSF Career Award 2237984. We also thank the anonymous ICFP reviewers for
their constructive feedback.

REFERENCES

Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, and Catherine Mooney. 2016. E�ective
Compiler Error Message Enhancement for Novice Programming Students. Computer Science Education 26, 2-3 (2016),
148–175. https://doi.org/10.1080/08993408.2016.1225464

Neil C. C. Brown, Amjad AlTadmri, Sue Sentance, and Michael Kölling. 2018. Blackbox, Five Years On: An Evaluation of a
Large-scale Programming Data Collection Project. In ICER. 196–204. https://doi.org/10.1145/3230977.3230991

John Peter Campora and Sheng Chen. 2020. Taming Type Annotations in Gradual Typing. PACMPL 4, OOPSLA, 191:1–191:30.
https://doi.org/10.1145/3428259

John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. 2017. Migrating Gradual Types. PACMPL 2, POPL
(2017), 15:1–15:29. https://doi.org/10.1145/3158103

Sheng Chen and Martin Erwig. 2014. Counter-Factual Typing for Debugging Type Errors. In POPL. 583–594. https:
//doi.org/10.1145/2535838.2535863

Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2020. Can Advanced Type Systems Be Usable?
An Empirical Study of Ownership, Assets, and Typestate in Obsidian. PACMPL 4, OOPSLA (2020), 132:1–132:28.
https://doi.org/10.1145/3428200

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine, Jonathan
Aldrich, and Brad A. Myers. 2021. PLIERS: A Process That Integrates User-Centered Methods into Programming Language
Design. ACM Trans. Comput.-Hum. Interact. 4, Article 28 (2021), 53 pages. https://doi.org/10.1145/3452379

Fernando Cristiani and Peter Thiemann. 2021. Generation of TypeScript Declaration Files from JavaScript Code. In
International Conference on Managed Programming Languages and Runtimes. 97–112. https://doi.org/10.1145/3475738.
3480941

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing
Programmer. Computer 11, 4 (1978), 34–41. https://doi.org/10.1109/C-M.1978.218136

Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer, Zachary C. Albrecht, and Garrett B. Powell.
2021. On Designing Programming Error Messages for Novices: Readability and its Constituent Factors. In CHI. 55:1–55:15.
https://doi.org/10.1145/3411764.3445696

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

https://cifellows2020.org
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/3428259
https://doi.org/10.1145/3158103
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/3428200
https://doi.org/10.1145/3452379
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1145/3475738.3480941
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/3411764.3445696

How to Evaluate Blame for Gradual Types, Part 2 194:27

Benedict du Boulay and Ian Matthew. 1984. Fatal Error in Pass Zero: How not to Confuse Novices. In Readings on Cognitive

Ergonomics - Mind and Computers, Vol. 178. 132–141. https://doi.org/10.1007/3-540-13394-1_11
Asger Feldthaus and Anders Møller. 2014. Checking Correctness of TypeScript Interfaces for JavaScript Libraries. In OOPSLA.

1–16. https://doi.org/10.1145/2660193.2660215
Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP. 48–59. https://doi.org/10.

1145/581478.581484
Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 1998. Classes and Mixins. In POPL. 171–183. https:

//doi.org/10.1145/268946.268961
Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs. In POPL. 303–315. https:

//doi.org/10.1145/2676726.2676992
Ben Greenman. 2020. Deep and Shallow Types. Ph. D. Dissertation. Northeastern University.
Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019a. Complete Monitors for Gradual Types. PACMPL 3,

OOPSLA (2019), 122:1–122:29. https://doi.org/10.1145/3360548
Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. A Transient Semantics for Typed Racket.

Programming 2, 6. https://doi.org/10.22152/programming-journal.org/2022/6/9
Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen.

2019b. How to Evaluate the Performance of Gradual Type Systems. JFP 29, e4 (2019), 1–45. https://doi.org/10.1017/
S0956796818000217

Stefan Hanenberg. 2010. An Experiment about Static and Dynamic Type Systems: Doubts about the Positive Impact of
Static Type Systems on Development Time. In OOPSLA. 22–35. https://doi.org/10.1145/1869459.1869462

Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter, and Andreas Ste�k. 2014. An empirical study
on the impact of static typing on software maintainability. Empirical Software Engineering 19, 5 (2014), 1335–1382.
https://doi.org/10.1007/s10664-013-9289-1

Joseph Henrich, Robert Boyd, Samuel Bowles, Colin Camerer, Ernst Fehr, Herbert Gintis, and Richard McElreath. 2001. In
Search of Homo Economicus: Behavioral Experiments in 15 Small-Scale Societies. American Economic Review 91, 2 (2001),
73–78. https://doi.org/10.1257/aer.91.2.73

Joshua Hoe�ich, Robert Bruce Findler, and Manuel Serrano. 2022. Highly Illogical, Kirk: Spotting Type Mismatches in
the Large despite Broken Contracts, Unsound Types, and Too Many Linters. PACMPL 6, OOPSLA (2022), 142:1–142:26.
https://doi.org/10.1145/3563305

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and
GJ. TOPLAS 23, 3 (2001), 396–450. https://doi.org/10.1145/503502.503505

Ralph Keller and Urs Hölzle. 1998. Binary component adaptation. In ECOOP. 307–329. https://doi.org/10.1007/BFb0054097
Erik Krogh Kristensen and Anders Møller. 2017a. Inference and Evolution of TypeScript Declaration Files. In FASE. 99–115.

https://doi.org/10.1007/978-3-662-54494-5_6
Erik Krogh Kristensen and Anders Møller. 2017b. Type Test Scripts for TypeScript Testing. PACMPL 1, OOPSLA (2017),

90:1–90:25. https://doi.org/10.1145/3133914
Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to Evaluate Blame for Gradual Types.

PACMPL 5, ICFP (2021), 68:1–68:29. https://doi.org/10.1145/3473573
Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert B. Findler, and Christos Dimoulas. 2020. Does Blame Shifting Work?

PACMPL 4, POPL (2020), 65:1–65:29. https://doi.org/10.1145/3373113
Richard J Lipton. 1971. Fault Diagnosis of Computer Programs. Technical Report. Carnegie Mellon University, Pittsburgh,

PA.
Justin Lubin and Sarah E. Chasins. 2021. How Statically-Typed Functional Programmers Write Code. PACMPL 5, OOPSLA

(2021), 155:1–155:30. https://doi.org/10.1145/3485532
Kai-Uwe Mätzel and Peter Schnorf. 1997. Dynamic component adaptation. Technical Report. Ubilab Technical Report 97.6.
Microsoft. [n. d.]. TypeScript. Retrieved February 23, 2023 from https://www.typescriptlang.org.
Zeina Migeed and Jens Palsberg. 2019. What is Decidable about Gradual Types? PACMPL 4, POPL (2019), 29:1–29:29 pages.

https://doi.org/10.1145/3371097
John Stuart Mill. 1874. Essays on Some Unsettled Questions of Political Economy. Longmans, Green, Reader, and Dyer.
Robin Milner, Robert Harper, David MacQueen, and Mads Tofte. 1998. The De�nition of Standard ML, Revised Edition. MIT

Press.
Robin Milner, Mads Tofte, and Robert Harper. 1990. The De�nition of Standard ML. MIT Press.
Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. 2019. Dynamic Type Inference for Gradual Hindley–Milner Typing.

PACMPL 3, POPL (2019), 18:1–18:29 pages. https://doi.org/10.1145/3290331
Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2009. Producing Wrong Data without Doing

Anything Obviously Wrong! In ASPLOS. 265–276. https://doi.org/10.1145/1508244.1508275

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

https://doi.org/10.1007/3-540-13394-1_11
https://doi.org/10.1145/2660193.2660215
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/3360548
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1017/S0956796818000217
https://doi.org/10.1145/1869459.1869462
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1257/aer.91.2.73
https://doi.org/10.1145/3563305
https://doi.org/10.1145/503502.503505
https://doi.org/10.1007/BFb0054097
https://doi.org/10.1007/978-3-662-54494-5_6
https://doi.org/10.1145/3133914
https://doi.org/10.1145/3473573
https://doi.org/10.1145/3373113
https://doi.org/10.1145/3485532
https://www.typescriptlang.org
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331
https://doi.org/10.1145/1508244.1508275

194:28 Lazarek, Greenman, Felleisen, Dimoulas

Zvonimir Pavlinovic, Tim King, and Thomas Wies. 2014. Finding Minimum Type Error Sources. In OOPSLA. 525–542.
https://doi.org/10.1145/2660193.2660230

Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. 2021. Solver-Based Gradual Type
Migration. PACMPL 5, OOPSLA (2021), 111:1–111:27 pages. https://doi.org/10.1145/3485488

Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. 2012. The Ins and Outs of Gradual Type Inference. In POPL. 481–494.
https://doi.org/10.1145/2103656.2103714

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2016. Dynamic Witnesses for Static Type Errors (or, Ill-Typed Programs
Usually Go Wrong). In ICFP. 228–242. https://doi.org/10.1145/2951913.2951915

Eric L. Seidel, Ranjit Jhala, and Westley Weimer. 2018. Dynamic Witnesses for Static Type Errors (or, Ill-Typed Programs
Usually Go Wrong). 28 (2018), e13. https://doi.org/10.1017/S0956796818000126

Herbert A. Simon. 1947. Administrative Behavior. MacMillan.
Samuel Spiza and Stefan Hanenberg. 2014. Type Names without Static Type Checking Already Improve the Usability of

APIs (as Long as the Type Names Are Correct): An Empirical Study. In Modularity. 99–108. https://doi.org/10.1145/
2577080.2577098

Vincent St-Amour and Neil Toronto. 2013. Experience Report: Applying Random Testing to a Base Type Environment. In
ICFP. 351–356. https://doi.org/10.1145/2500365.2500616

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and Impersonators:
Run-time Support for Reasonable Interposition. In OOPSLA. 943–962. https://doi.org/10.1145/2384616.2384685

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead? In POPL. 456–468. https://doi.org/10.1145/2837614.2837630

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In DLS. 964–974.
https://doi.org/10.1145/1176617.1176755

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In POPL. 395–406.
https://doi.org/10.1145/1328438.1328486

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical Types for Untyped Languages. In ICFP. 117–128. https:
//doi.org/10.1145/1863543.1863561

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent
St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten Years Later. In SNAPL. 17:1–17:17.
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17

Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018. The Behavior of Gradual Types:
a User Study. In DLS. 1–12. https://doi.org/10.1145/3276945.3276947

Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for
Python. In DLS. 45–56. https://doi.org/10.1145/2661088.2661101

Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and Evaluating Transient Gradual Typing. In
DLS. 28–41. https://doi.org/10.1145/3359619.3359742

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and
Collaborative Blame for Gradual Type Systems. In POPL. 762–774. https://doi.org/10.1145/3009837.3009849

Philip Wadler and Robert Bruce Findler. 2009. Well-typed Programs Can’t Be Blamed. In ESOP. 1–15. https://doi.org/10.
1007/978-3-642-00590-9_1

Richard L. Wexelblat. 1976. Maxims for Malfeasant Designers, or How to Design Languages to Make Programming as
Di�cult as Possible. In ICSE. 331–336. https://doi.org/10.5555/800253.807695

Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. 2017. Mixed Messages: Measuring Conformance and
Non-Interference in TypeScript. In ECOOP. 28 pages. https://doi.org/10.4230/LIPIcs.ECOOP.2017.28

Baijun Wu and Sheng Chen. 2017. How Type Errors Were Fixed and What Students Did? PACMPL 1, OOPSLA (2017),
105:1–105:27 pages. https://doi.org/10.1145/3133929

Danfeng Zhang and Andrew C. Myers. 2014. Toward General Diagnosis of Static Errors. In POPL. 569–581. https:
//doi.org/10.1145/2535838.2535870

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 194. Publication date: August 2023.

https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/3485488
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2951913.2951915
https://doi.org/10.1017/S0956796818000126
https://doi.org/10.1145/2577080.2577098
https://doi.org/10.1145/2577080.2577098
https://doi.org/10.1145/2500365.2500616
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1145/3276945.3276947
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.5555/800253.807695
https://doi.org/10.4230/LIPIcs.ECOOP.2017.28
https://doi.org/10.1145/3133929
https://doi.org/10.1145/2535838.2535870
https://doi.org/10.1145/2535838.2535870

	Abstract
	1 Gradual Types Can Be and Often are Wrong
	2 One Type Interface Mistake, Three Flavors of Gradual Typing
	3 The Key Ideas of the Rational Programmer Investigation
	4 From the Key Ideas to a Rational Programmer Experiment
	4.1 Migration Lattices and Debugging Scenarios
	4.2 The Natural Rational Programmer
	4.3 The Transient Rational Programmer
	4.4 The Erasure Rational Programmer
	4.5 The Experimental Questions

	5 The Challenge of a Large and Diverse Corpus of Scenarios
	5.1 The Seed of the Scenario Corpus
	5.2 Mutating Interface Types
	5.3 Adapting Mutants to Debugging Scenarios
	5.4 Sampling Debugging Scenarios

	6 What are the Results of the Rational Programmer Experiment
	7 What Can Programmers Learn from the Rational Programmer
	7.1 Interpreting the Results
	7.2 Threats to Validity
	7.3 Threat: The Rational Programmer is not a Human Programmer
	7.4 Threat: Typing Library-side Modules
	7.5 Threat: Different Languages, Different Types, Different Checks

	8 What Does Prior Research Say About This Problem
	9 Where to Go from Here
	Acknowledgments
	References

