
How to Evaluate the Performance of

Gradual Type Systems

Ben Greenman

Max S. New

Robert Bruce Findler

Matthias Felleisen

Asumu Takikawa

Daniel Feltey

Jan Vitek

1

Contribution:

Our paper presents the first

systematic method to measure

the performance implications

of a gradual typing system.

2

Notation

Program

Component

Dependency

3

Gradual Typing

Mixed-Typed Program

Statically-typed Component

Dynamically-typed Component

Type Boundary

4

Typed-Untyped Interaction

5

Typed-Untyped Interaction

need Integer

6

Typed-Untyped Interaction

need Integer
42

7

Typed-Untyped Interaction

need Integer
42

8

Typed-Untyped Interaction

9

Typed-Untyped Interaction

need Integer

1�

Typed-Untyped Interaction

need Integer
"NaN"

11

Typed-Untyped Interaction

need Integer
"NaN"

12

Typed-Untyped Interaction

13

Typed-Untyped Interaction

need Listof(String)

14

Typed-Untyped Interaction

need Listof(String)
(list "A" "B" 27)

15

Typed-Untyped Interaction

need Listof(String)
(list "A" "B" 27)

16

Typed-Untyped Interaction

17

Typed-Untyped Interaction

need Bool->Bool

18

Typed-Untyped Interaction

need Bool->Bool
#<procedure>

19

Typed-Untyped Interaction

need Bool->Bool
#<procedure>

Bool?

2�

Typed-Untyped Interaction

Type boundaries impose a run-time cost!

(Some mixed-typed languages do not enforce
 types. For these languages, the performance
 of type boundaries is not an issue.)

21

22

 Q. What is the overall cost

 of boundaries in a gradual

 typing system?

23

 Q. What is the overall cost

 of boundaries in a gradual

 typing system?

Need a method to measure and evaluate
the performance implications of a

gradual typing system

24

The Method

25

26

548 ms

560 ms716,637 ms

721,454 ms

709,770 ms

711,000 ms963 ms

891 ms

592 ms

575 ms829,779 ms

821,285 ms829,048 ms602 ms

529 ms

27

1x

28

1x

1x1,307x1,294x

1,297x1x

1x

1x

1x1,513x

1,498x

1,527x

1,512x1x

0.97x

29

1x

1x1,307x1,294x

1,297x1x

1x

1x

1x1,513x

1,498x

1,527x

1,512x1x

0.97x

3�

D-deliverable

A configuration is D-deliverable if its

performance is no worse than a factor

of D slowdown compared to the baseline

 and D
+

31

Method: exhaustive perf. eval.

1. Typed program

2. Measure all configurations

3. Count D-deliverable cfgs.
+

Repeat for other programs

32

A Method for Presenting the Data

33

+

D

34

+

D

100%

0%

X>11

35

+

D

100%

0%

201

36

+

D

100%

0%

201

37

Scaling the Method

38

Exponential Blowup

39

Exponential Blowup

N components => 2N configurations

4�

Simple Random Sampling

41

Simple Random Sampling

1. Sample O(N) configurations
N = number of components

42

Simple Random Sampling

1. Sample O(N) configurations

2. Count D-deliverable cfgs.
 in the sample +

N = number of components

43

More in Paper

44

• justification for O(N) sampling

• exhaustive method applied to Typed Racket

• comparison: TR v6.2, v6.3, & v6.4

• discussion of pathologies

∘ N = number of components

∘ 20 benchmarks, docs.racket-lang.org/gtp-benchmarks

∘ the method quantifies improvements

45

Thank you

Sam Tobin-Hochstadt

For Typed Racket, and for

significant improvements to

v6.3, v6.4, and beyond.

46

How to Evaluate the Performance of

Gradual Type Systems

Ben Greenman *

Max S. New

Robert Bruce Findler

Matthias Felleisen

Asumu Takikawa

Daniel Feltey

Jan Vitek

47

