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Contribution:

Our paper presents the first

systematic method to measure

the performance implications

of a gradual typing system.
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Notation

Program

Component

Dependency
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Gradual Typing

Mixed-Typed Program

Statically-typed Component

Dynamically-typed Component

Type Boundary
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Typed-Untyped Interaction
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Typed-Untyped Interaction

need Integer

6



Typed-Untyped Interaction

need Integer
42
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need Integer
42
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Typed-Untyped Interaction
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Typed-Untyped Interaction

need Integer
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Typed-Untyped Interaction

need Integer
"NaN"
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Typed-Untyped Interaction

need Integer
"NaN"
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Typed-Untyped Interaction
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Typed-Untyped Interaction

need Listof(String)
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Typed-Untyped Interaction

need Listof(String)
(list "A" "B" 27)
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Typed-Untyped Interaction

need Listof(String)
(list "A" "B" 27)
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Typed-Untyped Interaction
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Typed-Untyped Interaction

need Bool->Bool
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Typed-Untyped Interaction

need Bool->Bool
#<procedure>
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Typed-Untyped Interaction

need Bool->Bool
#<procedure>

Bool?
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Typed-Untyped Interaction

Type boundaries impose a run-time cost!

(Some mixed-typed languages do not enforce
 types. For these languages, the performance
 of type boundaries is not an issue.)
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 Q. What is the overall cost

 of boundaries in a gradual

 typing system?
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 Q. What is the overall cost

 of boundaries in a gradual

 typing system?

Need a method to measure and evaluate
the performance implications of a

gradual typing system
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The Method
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D-deliverable

A configuration is D-deliverable if its

performance is no worse than a factor 

of D slowdown compared to the baseline

  and  D
+
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Method: exhaustive perf. eval.

1. Typed program

2. Measure all configurations

3. Count D-deliverable cfgs.
+

Repeat for other programs
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A Method for Presenting the Data
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Scaling the Method

38



Exponential Blowup
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Exponential Blowup

N components => 2N configurations
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Simple Random Sampling
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Simple Random Sampling

1. Sample O(N) configurations
N = number of components
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Simple Random Sampling

1. Sample O(N) configurations

2. Count D-deliverable cfgs.
   in the sample +

N = number of components
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More in Paper
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• justification for O(N) sampling

• exhaustive method applied to Typed Racket

• comparison: TR v6.2, v6.3, & v6.4

• discussion of pathologies

∘ N = number of components

∘ 20 benchmarks, docs.racket-lang.org/gtp-benchmarks

∘ the method quantifies improvements
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Thank you

Sam Tobin-Hochstadt

For Typed Racket, and for

significant improvements to

v6.3, v6.4, and beyond.
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