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How to communicate?
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How to communicate?
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Test Cases
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median [1] is 1

median [1, 2, 3] is 3

median [3, 3, 3] is 3
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median [1] is 1

median [1, 2, 3] is 3
median [3, 3, 3] is 3

What's wrong with these tests?
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1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4 v check:

5v median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 3

7+ median([list: 3, 3, 3, 3]) is 3

8

9

10 end

*median-tests.arr
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1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE

2
9

4 v check:

5v median([list:
6v median([list:
7v median([list:

8
9
10 end

1]) is 1
1, 2, 3]) is 3
3, 3, 3, 3]) is 3

Kk median-tests.arr

INCORRECT

CONSEQUENTLY, THOROUGHNESS IS

UNKNOWN

definitions://:5:2-5:30

median([list: 1, 2, 3]) is 3
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include my-gdrive("median-code.arr")
# DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
median([list: 1]) is 1
median([list: 1, 2, 3]) is 2
median([list: 3, 3, 3, 3]) is 3

#Shows that Median is not Mean
median([list: 1, 1, 3]) is 1

# Shows that Median is not Mode
median([list: 1, 1, 3, 4, 4]) is 3
end
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-

1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4+ check:

5+ median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 2

7+ median([list: 3, 3, 3, 3]) is 3

Kk median-tests.arr

8

9 #Shows that Median is not Mean These tests are valid and consistent with the assignment handout.
10+ median([list: 1, 1, 3]) is 1 They caught 2 of 4 sample buggy programs. Add more test cases to
11 _ improve this test suite's thoroughness.

12 # Shows that Median is not Mode

13+ median([list: 1, 1, 3, 4, 4)]) is 3
14 end




Stop
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1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4 v check:

5v median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 2

7+ median([list: 3, 3, 3, 3]) is 3

Kk median-tests.arr

8

9 #Shows that Median is not Mean These tests are valid and consistent with the assignment handout.
10+ median([list: 1, 1, 3]) is 1 They caught 2 of 4 sample buggy programs. Add more test cases to
11 improve this test suite's thoroughness.

12 # Shows that Median is not Mode

13+ median([list: 1, 1, 3, 4, 4)]) is 3

14 end

What's wrong with these tests?
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Tests must distinguish:

mean
median VS, mode
middle ...

Valid & Thorough
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How to check thoroughess?

%

%

Buggy solutions
(mutation testing)
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RQ. How to design buggies?
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RQ. How to design buggies?

- @ @ -

Need to discover misconceptions
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Prior Work:
Expert-Driven
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Today, a recipe:
Buggies from Data

- ®

=y ¥ ) R R
1 A
wmel




1. Design problem
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1. Design problem

Running example:

Doc Diff

docdiff ['a'] ['A'] 1s 1

docdiff ['one', 'two'] ['one'] 1is 1/2

docdiff ['hello'] ['world] is ©
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2. Collect invalid tests
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2. Collect invalid tests

Emedian-tests.arr

INCORRECT

CONSEQUENTLY, THOROUGHNESS IS
UNKNOWN

erradian ests. ar

INCORRECT

Rerrosian tests. ar

INCORRECT

[orrantian lests. ar

INCORRECT
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2. Collect invalid tests

Doc Diff ==> 1,500 invalids in ~1 week

Emedian-tests.arr

CONSEQUENTLY, THOROUGHNESS IS
INCORRECT  [oreco:

INCORRECT
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3. Cluster tests by feature vector
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Rerrosan tests ur

INCORRECT

3. Cluster tests by feature vector

ot tists.nr

INCORRECT

Rrrodun lests arr

INCORRECT

|

INCORRECT

Rarrosun tests

INCORRECT

Rarrosn lests

INCORRECT

Rerrosian tests

INCORRECT
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Feature vectors <== problem characteristics
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Feature vectors <== problem characteristics

- Case-insensitive

- Words may repeat

- Diff may be a fraction

.. [14 in total]
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5. Sort clusters




5. Sort clusters
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5. Sort clusters

800
68
6
52
4
48

(@))

(o)

[typos]

diff is always zero

case sensitive

normalize by wrong mag.
normalize by wrong vector

[unknown]
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5. Sort clusters

6. Make buggies

800
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[typos]

diff is always zero

case sensitive

normalize by wrong mag.
normalize by wrong vector

[unknown]
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Too many buggies ==> overwhelming
.......
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6. Make buggies

* Focuson 1-2 8
* Favor narrow characteristics

* Maximize subproblem coverage
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6. Make buggies

* Focuson 1-2 8
* Favor narrow characteristics

* Maximize subproblem coverage
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6. Make buggies

* Focuson 1-2 M

* Favor narrow characteristics

800

[typos]

68 BB EREREREREERREEE diffis always zero
66 IR REEREREEEERE csesensitive

52
49
48

case sensitive Is more narrow

[unknown]

by wrong mag.

by wrong vector
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Evaluation

2020

2021

3 tasks

2022
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2020

3 tasks T

Evaluation

2021

2022

e ¥
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2020

3 tasks T

e ¥

Evaluation

2021

2020, 2021 ==> test
2022 ==> deploy
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% explainable invalid tests
explainable = 1-Mor 2- M

30.00%
® DocDiff e Nile & Filesystem
25.00%
@

20.00%
15.00%
10.00% 4
5.00% s |

O .
0.00%

2020 2021 2022

old buggies old buggies new buggies
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% explainable invalid tests
explainable = 1-Mor 2- M

30.00%
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5.00%
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® DocDiff e Nile & Filesystem

Z& New buggies explain more errors l
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2020 2021 2022

old buggies old buggies new buggies
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High Effect Sizes for 2022

e 3

Matchup
2022 vs 2020

2022 vs 2021

20271 vs 2020

Problem
DocDiff
Nile
FileSys
DocDiff
Nile
FileSys
DocDiff
Nile
FileSys

95% Cl
[-0.75, -0.57]
[-0.55, -0.26]
[-0.35,-0.21]
[-0.70, -0.51]
[-0.27,-0.07]
[-0.33,-0.19]
[-0.07/, 0.08]
[-0.39, -0.13]
[-0.06, 0.03]

p value

1.35E-29
9.07E-14
2.35E-10
6.87E-29
1.82E-3
2.32E-9
4.60E-1
1.15E-17

2.52E-1
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Weeks of g Years of
Data Tuning

e ¥

Promising approach for new problems
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Recipe to uncover misconceptions

semi-automatic
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Recipe to uncover misconceptions
semi-automatic

Data ==> better teaching
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What's next? Hinting
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What's next? Hinting

CONSEQUENTLY, THOROUGHNESS
INCORRECT | {oneci

These tests do not match the behavior described by the assignment:
definitions://:12:2-12:45

overlap([list: , |, |list: 1) 1s 0

The assignment says:
Overlap must be proportional to the dot product of two vectors.
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Deep Goal:
Rigorous methods for CS Ed research
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Let's talk!
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1. design problem

2. identify characteristics

3. collect invalid tests

4. cluster by feature vector

5. analyze top clusters

6. select buggies
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Future

Data collection is a bottleneck
~1 semester ramp-up

+70% typos! How to reduce?
D4 / Data Druid
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M Table8 Our 2022 chaffs gave 1-m /2-m outcomes significantly more often than prior
chaffs. The 2021 vs. 2020 results are similar except for Nile, which used D4 in

2021.
Matchup Assignment  p value Z score Effect Size [95% CI]
(Cohen’s D)
2022 vs 2020 DocDiff 1.35E-29 -11.24 0.66 [-0.75, -0.57]
Nile 9.07E-14 -7.36 -0.41 [-0.55, -0.26]
Filesystem  2.35E-10 -6.22 -0.28 [-0.35, -0.21]
2022 vs 2021 DocDiff 6.87E-29 -11.09 -0.61 [-0.70, -0.51]
Nile 1.82E-03 -2.91 -0.17 [-0.27, -0.07]
Filesystem  2.32E-09 -5.86 -0.26 [-0.33, -0.19]
2021 vs 2020 DocDiff 4.60E-01 0.1 o [-0.07, 0.08]
Nile I.15E-17 -8.48 -0.26 [-0.39, -0.13]
Filesystem  2.52E-o1 -0.67 -0.02 [-0.06, 0.03]
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