Conceptual Mutation Testing for
Student Programming Misconceptions

Siddhartha Prasad
Ben Greenman

Tim Nelson

Shriram Krishnamurthi

&R ™
B R O W N ‘ (E,:mBnﬁ Research
@ Eﬂ Association

Understanding CS Problems

[Q. median]

Understanding CS Problems

re

L
Made by FREE-VECTORS NET

Understanding CS Problems

[Q. median]

m
L

Understanding CS Problems

[Q. median]
aq O

m —

LY]

Understanding CS Problems

[Q. median]

£3n A3 Saln Sk

Understanding CS Problems

[Q. median]

 —

(OO
S

Understanding CS Problems

[Q. median]

aq ®

 —

(OO
5/

How to communicate?

D.:‘ — \?J

How to communicate?

D?‘ . \EJ

Test Cases

10

[Q. median]

m

Made by FREE-VECTORS NET

11

[Q. median]

(OO
. \L:',J

|
=¥

median [1] is 1

median [1, 2, 3] is 3

median [3, 3, 3] is 3

12

[Q. median]

gt
L8

(OO
I

|
2.
median [1] is 1

median [1, 2, 3] is 3
median [3, 3, 3] is 3

What's wrong with these tests?

13

1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4 v check:

5v median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 3

7+ median([list: 3, 3, 3, 3]) is 3

8

9

10 end

*median-tests.arr

14

1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE

2
9

4 v check:

5v median([list:
6v median([list:
7v median([list:

8
9
10 end

1]) is 1
1, 2, 3]) is 3
3, 3, 3, 3]) is 3

Kk median-tests.arr

INCORRECT

CONSEQUENTLY, THOROUGHNESS IS

UNKNOWN

definitions://:5:2-5:30

median([list: 1, 2, 3]) is 3

15

v

v

v

o\
AR V'median-tests.arr-

include my-gdrive("median-code.arr")
DO NOT CHANGE ANYTHING ABOVE THIS LINE

check:
median([list: 1]) is 1
median([list: 1, 2, 3]) is 2
median([list: 3, 3, 3, 3]) is 3

#Shows that Median is not Mean
median([list: 1, 1, 3]) is 1

Shows that Median is not Mode
median([list: 1, 1, 3, 4, 4]) is 3
end

16

Stop

-

1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4+ check:

5+ median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 2

7+ median([list: 3, 3, 3, 3]) is 3

Kk median-tests.arr

8

9 #Shows that Median is not Mean These tests are valid and consistent with the assignment handout.
10+ median([list: 1, 1, 3]) is 1 They caught 2 of 4 sample buggy programs. Add more test cases to
11 _ improve this test suite's thoroughness.

12 # Shows that Median is not Mode

13+ median([list: 1, 1, 3, 4, 4)]) is 3
14 end

Stop

-

1+ include my-gdrive("median-code.arr")

2 # DO NOT CHANGE ANYTHING ABOVE THIS LINE
3

4 v check:

5v median([list: 1]) is 1

6+ median([list: 1, 2, 3]) is 2

7+ median([list: 3, 3, 3, 3]) is 3

Kk median-tests.arr

8

9 #Shows that Median is not Mean These tests are valid and consistent with the assignment handout.
10+ median([list: 1, 1, 3]) is 1 They caught 2 of 4 sample buggy programs. Add more test cases to
11 improve this test suite's thoroughness.

12 # Shows that Median is not Mode

13+ median([list: 1, 1, 3, 4, 4)]) is 3

14 end

What's wrong with these tests?

[Q. median]

m

Made by FREE-VECTORS NET

19

[Q. median]

re

L
Made by FREE-VECTORS NET

|
=¥

Tests must distinguish:

mean
median VS, mode
middle ...

Valid & Thorough

20

How to check thoroughess?

%

%

Buggy solutions
(mutation testing)

21

RQ. How to design buggies?

- @ @ -

23

RQ. How to design buggies?

- @ @ -

Need to discover misconceptions

24

Prior Work:
Expert-Driven

25

Today, a recipe:
Buggies from Data

- ®

=y ¥) R R
1 A
wmel

1. Design problem

27

1. Design problem

Running example:

Doc Diff

docdiff ['a'] ['A'] 1s 1

docdiff ['one', 'two'] ['one'] 1is 1/2

docdiff ['hello'] ['world] is ©

28

2. Collect invalid tests

29

2. Collect invalid tests

Emedian-tests.arr

INCORRECT

CONSEQUENTLY, THOROUGHNESS IS
UNKNOWN

erradian ests. ar

INCORRECT

Rerrosian tests. ar

INCORRECT

[orrantian lests. ar

INCORRECT

30

2. Collect invalid tests

Doc Diff ==> 1,500 invalids in ~1 week

Emedian-tests.arr

CONSEQUENTLY, THOROUGHNESS IS
INCORRECT [oreco:

INCORRECT

31

3. Cluster tests by feature vector

32

Rerrosan tests ur

INCORRECT

3. Cluster tests by feature vector

ot tists.nr

INCORRECT

Rrrodun lests arr

INCORRECT

|

INCORRECT

Rarrosun tests

INCORRECT

Rarrosn lests

INCORRECT

Rerrosian tests

INCORRECT

33

Feature vectors <== problem characteristics

34

Feature vectors <== problem characteristics

- Case-insensitive

- Words may repeat

- Diff may be a fraction

.. [14 in total]

35

5. Sort clusters

5. Sort clusters

800
68
6
52
4
48

(@))

(o)

37

5. Sort clusters

800
68
6
52
4
48

(@))

(o)

[typos]

diff is always zero

case sensitive

normalize by wrong mag.
normalize by wrong vector

[unknown]

38

5. Sort clusters

6. Make buggies

800

6 HHNHNENEEEEEEEN
66 HHNHNENEEEEREEN
52 HHHNEEEEEEEEEN
49 INEEEEEEEEEEEE

48

[typos]

diff is always zero

case sensitive

normalize by wrong mag.
normalize by wrong vector

[unknown]

39

)) () B) (B B (B
.......

Too many buggies ==> overwhelming
.......

41

6. Make buggies

* Focuson 1-2 8
* Favor narrow characteristics

* Maximize subproblem coverage

4?2

6. Make buggies

* Focuson 1-2 8
* Favor narrow characteristics

* Maximize subproblem coverage

43

6. Make buggies

* Focuson 1-2 M

* Favor narrow characteristics

800

[typos]

68 BB EREREREREERREEE diffis always zero
66 IR REEREREEEERE csesensitive

52
49
48

case sensitive Is more narrow

[unknown]

by wrong mag.

by wrong vector

44

Evaluation

2020

2021

3 tasks

2022

45

2020

3 tasks T

Evaluation

2021

2022

e ¥

46

2020

3 tasks T

e ¥

Evaluation

2021

2020, 2021 ==> test
2022 ==> deploy

47

% explainable invalid tests
explainable = 1-Mor 2- M

30.00%
® DocDiff e Nile & Filesystem
25.00%
@

20.00%
15.00%
10.00% 4
5.00% s |

O .
0.00%

2020 2021 2022

old buggies old buggies new buggies

48

% explainable invalid tests
explainable = 1-Mor 2- M

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

® DocDiff e Nile & Filesystem

Z& New buggies explain more errors l

& a
O o
2020 2021 2022

old buggies old buggies new buggies

49

High Effect Sizes for 2022

e 3

Matchup
2022 vs 2020

2022 vs 2021

20271 vs 2020

Problem
DocDiff
Nile
FileSys
DocDiff
Nile
FileSys
DocDiff
Nile
FileSys

95% Cl
[-0.75, -0.57]
[-0.55, -0.26]
[-0.35,-0.21]
[-0.70, -0.51]
[-0.27,-0.07]
[-0.33,-0.19]
[-0.07/, 0.08]
[-0.39, -0.13]
[-0.06, 0.03]

p value

1.35E-29
9.07E-14
2.35E-10
6.87E-29
1.82E-3
2.32E-9
4.60E-1
1.15E-17

2.52E-1

50

Weeks of g Years of
Data Tuning

e ¥

Promising approach for new problems

51

Recipe to uncover misconceptions

semi-automatic

52

Recipe to uncover misconceptions
semi-automatic

Data ==> better teaching

53

What's next? Hinting

54

What's next? Hinting

CONSEQUENTLY, THOROUGHNESS
INCORRECT | {oneci

These tests do not match the behavior described by the assignment:
definitions://:12:2-12:45

overlap([list: , |, |list: 1) 1s 0

The assignment says:
Overlap must be proportional to the dot product of two vectors.

55

Deep Goal:
Rigorous methods for CS Ed research

56

THE

UNIVERSITY
OF UTAH

oo BROWN

Let's talk!

57

1. design problem

2. identify characteristics

3. collect invalid tests

4. cluster by feature vector

5. analyze top clusters

6. select buggies

58

Future

Data collection is a bottleneck
~1 semester ramp-up

+70% typos! How to reduce?
D4 / Data Druid

59

M Table8 Our 2022 chaffs gave 1-m /2-m outcomes significantly more often than prior
chaffs. The 2021 vs. 2020 results are similar except for Nile, which used D4 in

2021.
Matchup Assignment p value Z score Effect Size [95% CI]
(Cohen’s D)
2022 vs 2020 DocDiff 1.35E-29 -11.24 0.66 [-0.75, -0.57]
Nile 9.07E-14 -7.36 -0.41 [-0.55, -0.26]
Filesystem 2.35E-10 -6.22 -0.28 [-0.35, -0.21]
2022 vs 2021 DocDiff 6.87E-29 -11.09 -0.61 [-0.70, -0.51]
Nile 1.82E-03 -2.91 -0.17 [-0.27, -0.07]
Filesystem 2.32E-09 -5.86 -0.26 [-0.33, -0.19]
2021 vs 2020 DocDiff 4.60E-01 0.1 o [-0.07, 0.08]
Nile I.15E-17 -8.48 -0.26 [-0.39, -0.13]
Filesystem 2.52E-o1 -0.67 -0.02 [-0.06, 0.03]

60

