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ABSTRACT

Educators have been concerned about the capability of large lan-
guage models to automatically generate programs in response to
textual prompts. However, little is known about whether and how
students actually use these tools.

In the context of an upper-level formal methods course, we gave
students access to large language models. They were told they could
use the models freely. We built a Visual Studio Code extension to
simplify access to these models. We also paid for an account so
students could use the models for free without worrying about cost.

In this experience report we analyze the outcomes. We see how
students actually do and do not use the models. We codify the dif-
ferent uses they make. Most of all, we notice that students actually
do not use them very much at all, and provide insight into the many
reasons why not. We believe such experiments can help rebalance
some of the public narrative about such tools.
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1 INTRODUCTION

In recent years, the easy availability of large language model-based
tools, such as Copilot [6] and ChatGPT [26], has caused significant
consternation. Educators, researchers, bloggers, social media influ-
encers, opinion piece authors, and others have expressed concern
about the consequences for programming and, especially, for pro-
gramming education [4, 5, 35, 36, 38, 41]. Indeed, it would appear
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that such tools can easily generate correct solutions to conventional
CS1 programming problems [12, 14].

Unfortunately, these concerns have not been matched by an un-
derstanding of what students actually do. At best we hear anecdotal
evidence such as when students ask for help or when they are
caught for plagiarism. However, this does not provide insight into
student practices while working on an assignment. For instance,
students could use an llm to obtain a purported solution, then
massage it so that it avoids detection.

From February to April 2023, we gave students unlimited access
to an llm. We built a plugin for Visual Studio Code so that students
could access the llm without having to leave their programming
buffer.We also paid for access, so that no student would be restricted
by financial circumstances, or feel forced to choose how to use the
free credits given during part of this time by OpenAI. Students were
not required to use the plugin, but were told they could make full
and free use of it and could directly turn in solutions generated by
it just so long as they provided attribution.

Our specific setting was an upper-level (primarily for third- and
fourth-year) post-secondary students in an introductory formal
methods course. The setting makes the task more interesting. First,
the problems are not typical CS1 problems and many use a variant
of the Alloy modeling language. Although prior work shows that
llms can succeed on harder problems and in languages other than
Python [7, 15], success is by no means guaranteed. Second, there
is a mix of activities in the class (sometimes writing programs,
sometimes writing tests, and sometimes writing specifications);
each could fare differently under an llm.

Our goal was to determine the impact of an llm on the course.
If students could make effective use of an llm, it could potentially
alter the nature and content of the course. For instance, it might
enable the course to tackle more difficult, real-world problems. In
particular, if llms made the course trivial (as they threaten to do in
traditional CS1 courses), we felt it essential to rethink the course. In
addition, we assumed that some students would use an llm anyway.
Instead of pretending it would not happen, we wanted to level the
playing field and make the same resources available to all.

This paper examines how students actually used the llm. We see
a large amount of initial attention that is not matched by later use.
We identify the kinds of tasks for which students tried an llm, and
examine how well it did. Most of all, we believe that our findings
are a small antidote to the current panic about llms: they have not
made this course trivial (for now), and students are not rushing to
use it the way some commentators assume they would.

Terminology: In this paper, we use “llm” to refer to tools based
on large language models. Not all of these tools may be built atop

1
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such models in the narrowest sense. However, these details are not
relevant to this paper.

2 RELATEDWORK

llms are an emerging technology and the literature on how pro-
grammers interact with them is in its early stages (see, e.g., [18, 34]).
Several works study Copilot. Barke et al. [2] discover two modes of
interaction with Copilot: exploring a new domain and accelerating
the implementation of a plan. Prather et al. [31] study CS1 students’
first interactions with Copilot and suggest ways to integrate the
llm into a curriculum. Mozannar et al. [25] propose a taxonomy for
llm interactions and use it to guide a study of Copilot use on a 20-
minute coding task. Vaithilingam et al. [40] find that programmers
are enthusiastic about Copilot but do not observe any productivity
boosts on sample tasks. Xu et al. [43] report similar results for a
different tool [42]; programmers are enthusiastic about the llm but
equally productive without it.

Jayagopal et al. [20] contrast six llm tools by assigning small
tasks to student participants. Ross et al. [33] integrate Codex in an
IDE and study its use during roughly hour-long sessions. Kazemitabaar
et al. [22] build an editor that can use Codex to generate code and
test how access to the llm affects novices’ scores on code-camp
modules. Codex often, but not always, leads to a significant im-
provement. None of these works allow the long-term, free-form
student use that we do, which has very high ecological validity.
McNutt et al. [24] and Robe et al. [32] discuss potential interfaces
for llm tools. Participants did not use an existing tool.

Jiang et al. [21] observe programmers who solved two tasks over
one week; they find several issues related to prompt engineering.
While this study does allow free-form use, it takes place over a
relatively short period and its participants were volunteers. By
contrast, our study includes over two months of data on students’
actual coursework (indeed, our conclusions would bemuch different

if we had stopped after 1 week!). Vaithilingam et al. [39] redesign
the user interfaces of Visual Studio IntelliCode for writing code
and for editing one line. They report a 350 % increase in “regular
users” of the writing feature over an unspecified period (perhaps
Nov’22 to Jan’23) and a 29 % increase for the editing feature over
two weeks for a preview release. Our semester-long study raises
questions about whether this increase was sustained over time, as
we have observed major fluctuations.

3 COURSE CONTEXT

We introduced an llm tool in Logic for Systems (l4s), an upper-
level course on applied logic and formal methods. The course took
place in Spring 2023 at a highly selective, private university in the
USA. Students taking the course had prior experience comparable
to CS1 and CS2. Students were not required to know logic or formal
methods; indeed, the purpose of the course is to give a lightweight,
application-driven introduction to these topics.

l4s is built on three learning categories: modeling systems and
designing abstractions; reasoning about systems using logic; and
studying the algorithms that power verification tools. Assignment
topics include property-based testing, solvers for river-crossing
puzzles, and garbage collection. The course is primarily taught in
Forge [9], a pedagogic variant of Alloy [1, 19]. Concretely, Forge

Figure 1: AskGPT textbox interface and example output.

Figure 2:AskGPT inline code selection and example output.

programs use a Java-like syntax to describe systems and their prop-
erties, and the Forge runtime uses a SAT solver to search for coun-
terexamples. The course also uses Python for several assignments,
e.g., to study solver implementation. There are 8 assignments in
total (5 Forge, 3 Python), 4 major projects (all Forge), and 9 labs (6
Forge, 3 Python).

In Spring 2023, the class had 64 students. Student experience lev-
els varied: 8 %were graduate students, 11 %were first-year students,
9 % were second-year, 33 % were third-year, and 39 % were fourth-
year. Due to privacy considerations, we unfortunately cannot match
this experience against llm usage and perceptions.

4 ASKGPT: A VS CODE EXTENSION

VS Code is the standard editor in l4s. We therefore built a VS Code
extension called AskGPT to give students direct access to an llm.
AskGPT supports two kinds of interaction:

textbox (fig. 1) Users may insert text into a single-line box
after pressing a button on the VS Code status background
or entering a keyboard shortcut. The response from the llm
appears in a modal dialog with a copy-to-clipboard button.

inline (fig. 2) Users may send currently-selected text to the
llm by entering a keyboard shortcut. The response appears
inline, right below the prompt.

The extension logged every student prompt and llm response
to a database. Students were made aware of this logging (and the
fact that OpenAI logs as well) in an agreement form (section 5).

2
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AskGPT does not ask students to rate the quality of responses.
Instead, we infer the usefulness of responses from logs. We were
doubtful about ratings for two reasons:

(1) Wemight not receive enough data tomake statistically sound
claims about response quality.

(2) Ratings taken immediately after querying the extension re-
flect only an initial impression of response quality. In partic-
ular, an llm response might appear correct but may actually
have subtle bugs [8]. Collecting ratings at a later time is also
problematic, but for different reasons. Users might forget
the interaction, and they might find the rating process a
frustrating interruption to their work.

5 EXPERIMENTAL SETUP

Student Instruction. A week into the semester (which has about
13 weeks of instruction), a graduate teaching assistant gave a half-
hour lecture on llms, course policies, and the AskGPT extension.
After class, students received a link to an agreement form about
the course policies on llms. Students were required to complete the
form. Automatically upon completion, students received an email
with access tokens and information on how to use AskGPT. The
course syllabus forbade all other llm use.

Later that same week, a 2-hour lab presented a guided tour of
AskGPT. Participants used AskGPT to play tic-tac-toe with the llm
and to specify the rules of tic-tac-toe.

Beyond this one lecture and lab, students received no additional
instruction on AskGPT, llms, or prompt engineering. This was
intentional: our goal was to see what prompts students write in a
relative state of nature. (Of course, some students may have had
independent experience with, say, ChatGPT.)

AskGPT Settings. By default, AskGPT used text-davinci-003,
the “most capable” (and most expensive) model available in Feb.
2023. It was also the only model that produced quality Forge code
during our pre-testing. The default query temperature [27] was 0.3.
Students were free to modify these defaults.

InMarch, OpenAI releasedmodel gpt-3.5-turbo [29].We posted
instructions for how to access the model on the course discussion
forum. Switching to this did not require any new software update;
the new model was available from the AskGPT settings menu. De-
spite the availability of the settings menu and the announcement,
however, no students updated any defaults according to our records.
This is unsurprising in light of the usage logs.

6 USAGE

Between February 1 and April 14 2023 (when we ended the experi-
ment), students sent 293 prompts to AskGPT. Figure 3 presents the
number of prompts per day. In the background, fig. 3 shows a time-
line of labs, course projects, and assignments (the vertical arrange-
ment of these elements has no semantic meaning) and whether
these milestones used Forge or Python.

The majority of prompts occur near the beginning; specifically,
during the tic-tac-toe lab that introducedAskGPT. Afterward, usage
drops to single-digit numbers except for four minor spikes of about
20 prompts each. The biggest minor spike appears in early April,
when the university was on Spring break. The prompts are from
one student and are unrelated to coursework.

Table 1: Counts of prompt type and response medium.

Prompt Type Spec.
Response Medium

Code Text

Write formal specification 72 8 11
Unrelated to coursework 55
Explain coursework concept 3 1 39
Write text specification 33
Write code 18 3
Play tic-tac-toe 13
Explain specification 12
Prompt unclear 1 8
Explain programming concept 3 5
Prompt unclear (spec. only) 1 2
Explain error message 3
Explain program 1 1

Based on generous but reasonable estimates of maximum stu-
dent use, we had allocated USD 2,500 for student AskGPT use. We
expected modest use throughout the semester and increased use
during one midterm project and the final project, as these tasked
students with exploring how to model a domain of their choosing.
In reality, students rarely used AskGPT. Our OpenAI bill for the
length of the study totaled USD 1.16 [sic].

Codebook. Using techniques from grounded theory [17], two
coders analyzed a sample of student AskGPT interactions and de-
veloped a rubric for labeling them (overall Cohen κ score: 0.86).
The rubric included three axes:

Prompt Type (Cohen κ: 0.90) What sort of question did the
student ask? Choices include: write specification, explain
specification, and play tic-tac-toe.

Response Medium (Cohen κ: 0.91) What sort of response did
the llm give? There are four choices: formal specification,
program, text, and other.

Response Relevance (Cohen κ: 0.80) Is the response relevant
to the prompt? Choices are: yes, no, llm declined to respond,
and other. We did not use the other category.

Student Prompts and Responses. Once we had developed these
rubrics, one coder analyzed the full dataset of student interactions.
Responses from the llmwere generally relevant to student prompts
(86 % of the time). Table 1 presents the relationship between prompt
type and response medium. We summarize the data below:

• The majority of student interactions (81 %) with AskGPT
were related to coursework.

• The most common prompt type (31 %) was to write a formal
specification. AskGPT responded with a relevant formal
specification 78 % of the time.

• 43 prompts (15 %) asked to explain assignment-related con-
cepts. Nearly all (91 %) responses to these were relevant.

• 33 prompts (11 %) asked for a text specification. Nearly all
(97 %) responses were relevant.

• 21 prompts (7 %) asked for a program. The responses were
often relevant (76 %).

• 12 prompts (4 %) were unclear or lacked a objective.
3
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Figure 3: Number of student prompts to AskGPT per day, overlaid on an course schedule.

7 WHY DIDN’T STUDENTS USE ASKGPT?

The extremely low volume of usage logs shows that students rarely
used the AskGPT extension. To learn more, we created a retrospec-
tive survey asking students aboutAskGPT and llms more generally.
The survey did not disclose that usage was far lower than we had
expected; it simply asked for details about where AskGPT was and
was not useful.

During lecture on April 21 (after ending the experiment), the
instructor explained the survey and gave students ample time to
complete it. Students could also submit for a few days afterward
(this was important for those who happened to be absent). The
survey was described as mandatory. In total, 52 students (81 %)
completed the survey. Because students received course credit for
submitting it, some studentsmay have felt the credit was insufficient
to do the work, or may have simply missed it. Students received
credit irrespective of the quality of their response, and students
who did not submit were not penalized beyond the loss of credit.

There were 25 questions on the survey, half of which asked
yes/no questions about whether AskGPT was useful on specific
course milestones. Only one question was required. For us, the most
interesting question is the following optional question:

Q. If you did not use the extension often, please tell us why?
Optional, select all choices that apply.

Table 2 summarizes the responses. We use these as the starting
point for further discussion in the paragraphs below. The discus-
sions incorporate responses from the entire survey, not just the
question above. In particular, only two students checked the box
for “Concerns about AI” but a few others demonstrated concerns
in their responses to other questions.

May Interfere with Learning. Over half the students who took the
survey felt that using AskGPT would interfere with their learning.
Students were given the option of providing a more detailed answer.
One student wrote:

P52: “A large part of what I enjoy in CS is figuring out

solutions and bugs on my own”

Another responded:

Table 2: Reasons students did not use AskGPT.

Reason Count % Responses

May interfere with learning 25 57 %
Fear of breaking course rules 12 27 %
Awkward UI 9 20 %
Concerns about logging 7 16 %
Worse than alternatives 6 14 %
Responses were not useful 6 14 %
Did not want to use 4 9 %
Fear of overuse 4 9 %
Installation issues 2 5 %
Concerns about AI 2 5 %
Did not use VS Code 1 2 %

P2: “I learn better through struggling to find an answer.

If it comes too easy, it’s hard for me to remember any

information I’ve learned.”

Fear of Breaking Course Rules. The course had explicitly allowed
students to use AskGPT. Nevertheless, students seemed to worry
about the consequences of doing so. However, students did not
provide narrative responses that could help us understand their
concern. The closest we got was this comment:

P51: “I didn’t know in what capacity it was meant to

be used.”

Awkward UI. Many students said that they did not use AskGPT
because the interface is awkward. The usage logs suggest three
reasons for the awkwardness:

(1) Unfamiliarity with llms: Responses from llms have a certain
style that takes getting used to. They usually present a lot of
text with a few subtle errors mixed in. Spotting the errors is
a bit of an art that takes practice.

(2) Lack of conversation context: AskGPT has no memory of past
interactions. It accepts one prompt, responds, and forgets the
interaction. This is in contrast to ChatGPT, which uses prior
interactions to inform its responses (P45: “a huge feature”).
The closest work-around in AskGPT is to include the text

4
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of past interactions in the current prompt. Though the intro
lab (section 5) gave a demo, the work-around is unwieldy
and students may not have remembered it.

(3) Lack of code context: In inline mode (fig. 2), AskGPT bases its
responses on currently-selected text. It does not see the rest
of the file that contains the text, nor the rest of the codebase.
Furthermore, it does not know that the text is being written
for a l4s assignment. Relevant details must appear in the
prompt; AskGPT does not insert a preamble [10, 33].

The lack of code context is the most significant roadblock. For
example, the prompt “What does one mean?” was asking about a
Forge keyword called one, but received a long-winded definition
of the word “one” in English. Other students summarized the issue:

P35: “It seemed like assignments were specific enough

that gpt wouldn’t be able to provide something useful.”

P18: “I have to give too much context for it to be helpful.”

A few students commented that Copilot is easier to use thanAskGPT
because it works well in-flow. Prior studies confirm the importance
of in-flow AI suggestions [24, 39]. However, we do not know the
context in which our students used Copilot. Course policy forbade
the use of any llm tools other than AskGPT. (We chose not to
investigate whether these survey comments were indeed because
of policy violations.)

Despite the awkwardness of AskGPT, few students (10 %) re-
ported any familiarity with other llm tools. Of course, this number
could be heavily underreported because course policy forbade the
use of such tools on coursework.

It is also worth noting a sense in which AskGPT is less awkward
than tools likeChatGPT: its direct integration into the ide. Students
do not have to switch to a browser, deal with distractions (such
as notification badges) from other tabs, lose their sense of spatial
familiarity with their code, etc. However, these effects do not seem
have been very important.

Concerns about Logging. Students were aware that we were log-
ging their work in AskGPT, and a few were concerned about this:

P51: “I have concerns about having interactions logged.”

Other Concerns. Students expressed a variety of other concerns,
which are summarized in table 2. These included:

Alternatives As noted above, some students found AskGPT
unattractive to use. Presumably these students had gotten
used to the interaction styles of tools like ChatGPT and
Copilot. AskGPT is less sophisticated than either of these.

Utility Usage logs substantiate these concerns; see table 1.
Undesired This is related to the interference with learning.
Overuse Some students were concerned about the cost in-

curred by using AskGPT. Our agreement form had warned
students about runaway costs from overuse, which may have
caused anxiety for some students. In retrospect, there was
nothing to worry about (section 6). Students may have also
been concerned about the overall environmental impact of
llms, though none said so directly in the survey.

AI Students were simply concerned or unhappy about AI:
P11: “I have a vitriolic hatred toward AI.”

P17: “I didn’t want AI doing my homework. I also didn’t

feel like it was trustworthy anyway, and I didn’t want to

waste time debugging its answers.”
P39: “Really never felt like I would benefit from using it.

Usually never even crossed my mind to use it, and if it did,

I would rather go to office hours and understand from a

person than from ChatGPT.”
P38: “I’m not generating lots of "boiler plate" code in this

course. Every line is carefully crafted and AI models just

don’t get the details right enough to make it easier to use

AskGPT. Some sort of Forge syntax autocomplete would

be much more helpful. . . . it isn’t worth my time debugging

gpt output when I could have just written the line”
Installation Some students used older versions of VS Code.
No VS Code One student used Emacs instead.

8 OTHER STUDENT OPINIONS ON LLM USE

The final two survey questions asked for general comments on
AskGPT and its use in the course. Both were optional:

Q. Do you have any other thoughts on the use of AskGPT?
Q. If you were in charge of [this course], how would you use

tools like AskGPT?

Several students did identify positive uses and a few suggested
ways to refine its use. Three wanted to prohibit its use.

Keep It. In the retrospective survey, students listed several situa-
tions in which they found the tool useful:

• generating code (N=9)
• generating creative ideas or inspiration (N=6)
• improving code quality (N=3)
• understanding existing code (N=3)

Though these numbers are small, they do reflect the ways in which
programmers have been employing llms. These quotes shed addi-
tional light:

P52: “Normally they were questions I would just Google

(“how do I add a key value pair to a dict in Python”) but

instead I could get the answer without leaving VS Code

and I wouldn’t have to sort through (possibly too ver-

bose) results myself.”

P16: “It greatly helped with getting familiar with Forge’s

syntax. It helped not having to write simple things.”

P14: “gpt really improved code quality. If I used it after

I wrote my implementation of the assignment, it could

provide me with more intuitive or simpler ways to solve

the algorithm.”

Some students also played with the llm, asking it to generate
jokes or social security numbers (it refused the latter ask, despite
several attempts). These activities are not only frivolous, technically
they also violate the course’s usage policy, which said that AskGPT
should only be used for course-relevant queries. (We did not, how-
ever, penalize the students for this in any way.) However, we should
consider the value of being able to have a little fun within the ide
while doing work. Perhaps all ides should have a joke generator
that a student can turn to for a little stress relief!
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Refine It. It is now understood (e.g., [7, 10, 13, 21, 44]) that to
make effective use of llm tools, we need to develop a new kind of
computational literacy: prompt engineering. This was not taught
in this course. Multiple students asked for some basic instruction:

P45: “One main reason I did not use it for this class

is because I did not have a structured way of learning

what the tool might be capable of.”

P12: “I think it’s a good idea to provide students with
access and encourage them to learn to use the tool if

they’re interested, but maybe more structured guidance

on how it can be helpful would be useful.”

P10: “I would make an assignment just for AskGPT,

and require that all other assignments do not use it. I

am scared of breaking course rules, so the expectations

will be clearly set in this format.”

Prohibit It. A few students wanted the tool eliminated entirely:

P11: “I think it provides a crutch in these bottled exam-

ples that will get people too comfortable an unable to

think on their feet in real, active coding situations.”

P19: “Students should be submitting their own work,

not that of a llm.”

9 VALIDITY & GENERALIZABILITY THREATS

As the paper discusses (section 7), there are many issues such as
the quality of the AskGPT interface or desire to not be logged that
could have resulted in students using other llm tools in ways that
we could not observe.

As we note in section 8, llms engender a new skill: prompt-
engineering. Informally, we see that our students have some diffi-
culty in designing good prompts. As students improve at writing
prompts and obtaining quality responses, they may be much more
likely to use an llm.

Any results in the llm space are very dependent on the exact
models in use. Though revolutionary for their time, gpt-3 and gpt-
3.5 are already significantly weaker than the claimed powers of
gpt-4 [28]. There are also models more specialized to individual
tasks such as programming, and a growing interest in llms Modulo
Theories [16, 37], by analogy to Satisfiability Modulo Theories [3,
11]. The performance of those models could well change how and
how much students use llms.

Nevertheless, this work has extremely high ecological validity.
We studied students in an actual course over a good portion of
a semester. Students were given unfettered use in multiple ways:
integration into their ide, free-of-cost access, and the freedom to
use the results directly in their homework. Furthermore, the class
had many kinds of activities (section 3), including tasks for which
llms are generally considered quite good, such as writing Python
and explaining errors [7, 23].

Generalizability is naturally weak because we studied only one
course offering. Besides the specific factors of that student body, we
also used an upper-level course in formal methods. Naturally, there
is no reason to believe the findings of this work will generalize
to, say, a CS1 course. We have not taken any steps to be able to
generalize our knowledge; that is why we submit this work as an

experience report. Rather, we believe this is useful preliminary infor-
mation, and encourage other educators to try the same experiment
in their classes. Our software will be available for them to use.

However, the above caveats must be put in context. Computing
education is much broader than just CS1. Furthermore, our findings
still have use as a view into student attitudes: e.g., students saying
that they want to get an education or want to talk to humans for
help are relatively independent of the course level or topic.

10 DISCUSSION

Much ink has been spilt on the effect of llms. We have little novel
to add to that discussion. We simply note that student use of llms
may be governed by two opposing forces. On the one hand, compe-
tition for jobs may cause students to feel they must have “perfect”
transcripts, which can be aided by leaning on an llm. On the other,
students may realize that getting an attractive job is hard, and
decide they need to learn more in order to pass interviews and
perform well to retain their positions.

A seemingly minor issue that we think has consequences from
an equity perspective is the cost of using llms. What might seem
like a modest or even trivial amount to a well-paid professional
programmer may be a prohibitive amount to a poor student. Of
course, these inequities are already rampant in the system: one
student can afford to pay someone else to do their work for them,
but another can’t. It is important to consider the ways in which
they will get further entrenched with paid subscriptions for llms,
and how educational institutions might try to mitigate them.

11 DATA COLLECTION AND AVAILABILITY

Our data came from two sources: AskGPT logs (section 6) and a
retrospective survey (section 7).

Our Institutional Review Board (IRB) did not consider this work
human subjects research because the logs gathered information
about the use of the AskGPT tool, not about students themselves.
Nevertheless, to use the extension, students had to sign an agree-
ment form that informed them that we were tracking identity and
use. At the end of the semester, student logs were deidentified
with random, persistent IDs. All analysis was carried out on these
anonymized logs.

Similarly, our IRB did not consider the retrospective survey as
human subjects research because the students were considered “key
informants” about the AskGPT tool. Nevertheless, we ensured the
privacy and confidentiality of the data. While the survey software
collected student email addresses, this information was anonymized
before conducting the paper’s analysis.

TheAskGPT extension, initial agreement form, relevant syllabus
excerpts, and full codebooks (section 6) are available online [30].
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