
A Misconception-Driven Adaptive Tutor
for Linear Temporal Logic

Siddhartha Prasad1[0000−0001−7936−8147], Ben Greenman2[0000−0001−7078−9287],
Tim Nelson1[0000−0002−9377−9943], and

Shriram Krishnamurthi1[0000−0001−5184−1975]

1 Brown University, USA
2 University of Utah, USA

Abstract. Linear Temporal Logic (LTL) is used widely in verification,
planning, and more. Unfortunately, users often struggle to learn it. To
improve their learning, they need drill, instruction, and adaptation to
their strengths and weaknesses. Furthermore, this should fit into what-
ever learning process they are already part of (such as a course).
In response, we have built a misconception-based automated tutoring
system. It assumes learners have a basic understanding of logic, and
focuses on their understanding of LTL operators. Crucially, it takes ad-
vantage of multiple years of research (by our team, with collaborators)
into misconceptions about LTL amongst both novices and experts.
The tutor generates questions using these known learner misconceptions;
this enables the tutor to determine which concepts learners are strong
and weak on. When learners get a question wrong, they are offered imme-
diate feedback in terms of the concrete error they made. If they consis-
tently demonstrate similar errors, the tool offers them feedback in terms
of more general misconceptions, and tailors subsequent question sets to
exercise those misconceptions.
The tool is hosted for free on-line, is available open source for self-hosting,
and offers instructor-friendly features.

Keywords: LTL, misconceptions, adaptive tutor

1 Introduction

Linear Temporal Logic is a cornerstone of verification [60], and is also used for
synthesis [3,4,9,12,43,47,56,64], robotics [6,7,11,23,31,33,34,39,54,61,63], embed-
ded systems [10,57], business processes [1,14,16,17,42], and more [45,58].

Since an incorrect specification can cause bugs to go undetected or derail
a system’s functionality, it is critical that users (from students to profession-
als) can write and understand LTL specifications correctly. This has spurred a
growing body of research focused on improving the process of authoring and
interpreting LTL specifications. These efforts include tools designed to represent
specifications in terms of alternate formalisms (e.g., Büchi automata [8,19]), ex-
plain formulae via visualization [35,62], and generate specifications from natural
language [15,24].

2 S. Prasad et al.

Another way to tackle the problem is to better understand what aspects of
LTL are difficult. For several years [27,30], with collaborators, we have focused on
this question. Our findings have resulted in a catalog of common misconceptions,
and these have been distilled into multiple-choice question/answer sets.

However, simply deploying a question/answer sheet as, say, an electronic sur-
vey is not enough. To learn well, learners need lots of examples and periodic drill
(even refreshers). When they make mistakes, they need feedback to understand
what they got wrong. This feedback should occur at two levels. On individual
questions, learners may have made a mistake. Though they need concrete feed-
back (e.g., showing traces), the error could also be due to a lack of attention
or even a slip of the finger. If, however, they make the same kind of error con-
sistently, they may have a misconception; addressing that requires correcting
conceptual knowledge. In turn, they need additional questions that target their
errors to confirm that they have internalized the feedback.

We have operationalized all of the above into an on-line, adaptive tutor, the
LTL Tutor. It is hosted for free online:

https://ltl-tutor.xyz
To be privacy-protecting, the tutor does not gather any identifying information.
Educators can create a “course” and get aggregated data of how students in it are
performing. For those who have additional data privacy concerns, the software is
also available open source and designed for self-hosting. The tutor also supports
both the classical LTL syntax (used in this paper) as well as variants used by
recent tools [13,44] that use keywords (e.g., always, after).

Some tutoring systems are designed to teach a topic from scratch. As ed-
ucators, we recognize this can be very disruptive because it assumes a specific
context, preparation, amount of available time, and so on. Instead, the LTL Tutor
is designed to be a companion that complements whatever pedagogy is already
in use, rather than a substitute. We assume students have a basic grounding in
formal logic, and may have heard a lecture or two about LTL in the instructor’s
preferred style. What the LTL Tutor does is save the instructor from having to
provide drill, feedback, and corrections; and it leverages our extensive catalog
of LTL difficulty without the instructor needing to learn it in depth themselves.
Effectively, the LTL Tutor tries to learn, and then correct, the latent conceptual
model of LTL that the student has in their mind—however it is obtained.

Finally, we note the increased interest in LTL in industrial settings. It can be
especially difficult for industrial practitioners to get assistance the way a student
in a course can from instructors and teaching assistants. Thus, the LTL Tutor
should be of particular value to practitioners.

This paper describes the design and implementation of the LTL Tutor. After
providing a high-level overview (section 3), it especially focuses on two aspects:

– A misconception driven process for generating novel question sets tailored
to individual learners (section 4).

– Mechanisms designed to provide learners with insight both into the questions
they get wrong and the underlying misconceptions that may be driving these
errors (section 5).

https://ltl-tutor.xyz

LTL Tutor 3

2 Related Work

Our work is inspired by the seminal work on concept inventories [32] from physics
education. A concept inventory is a collection of multiple-choice questions where
each wrong answer (often called a distractor) is not merely wrong, but corre-
sponds to a specific misconception. Thus, if students choose a certain distractor,
the instructor can be confident about what the student’s confusion is. Our prior
work [27,28,29,30] effectively created such an instrument, alongside a catalog of
misconceptions, for LTL, which this work leverages to make generative.

To make it generative, we need a way to not only create new problems but also
create misconception-based distractors. While mutation testing [2] is appealing
here, the mutants created may be trivial, redundant [52], or even functionally
identical to the original [41]. We thus draw inspiration from Prasad et al. [49]’s
work on “conceptual” mutation to address these problems. Their work (not for
LTL!), however, is only partially automated and requires significant expert in-
tervention. A key technical contribution of this work (section 4) is to perform
conceptual mutation in a completely automated way.

When learners make conceptual errors, we have to provide high-level feedback
(section 5.2). We draw on the literature of conceptual change [48], specifically
using refutation texts, which has been found effective in many settings [53]. (The
SMoL Tutor for programming language semantics [40] also uses these, and is
also driven by misconceptions.)

Our tutor is inspired by vanLehn’s two-loop model for tutoring systems [59].
In both, the inner loop provides immediate feedback during a task. There, the
outer loop chooses the next task; ours additionally targets misconceptions (fig. 5).

We are also inspired by the work on cognitive tutoring [5,46,55], which cap-
ture how an expert would solve a problem and try to get learners to mimic that
approach. This approach is too resource-intensive for our lightweight setting, as
it requires extensive effort to model and encode expert problem-solving methods.

Finally, we describe existing tutors for formal logic. These systems rely on
hand-crafted questions or generate questions without a guiding principle (akin
to conventional mutation testing). In contrast, the LTL Tutor stands out by
generating novel questions based on an inventory of conceptual errors.

Iltis is a web-based tutor designed to teach learners about the logical founda-
tions of computer science [25,26]. The system has two primary focuses: allowing
instructors to easily construct, compose, and pipeline questions and question
sets, and the ability to provide students with instant meaningful feedback and
explanations for errors. Unlike the LTL Tutor, this means that Iltis modules
are designed to be closely tied to specific courses of study (e.g., a modal logic
module [18]).

Lodder et al. have developed logic tutors [36,37,38]. Rather than requiring
experts to specify the steps of a solution, the tutors automatically generate
authoritative step-by-step proofs for instructor-specified problems. Students are
given feedback when their proof steps diverge from the generated authoritative
proof. However, this work is (a) proof-, not model-theoretic and (b) not for LTL.

4 S. Prasad et al.

Fig. 1: An English-to-LTL question, with feedback about a learner’s mistake.
Here (A) the learner selects an incorrect answer, associated with the Implicit
G misconception, and is shown (B) a concrete example of why their answer is
incorrect, and the relationship between their answer and the correct solution.

3 The LTL Tutor

A user of the LTL Tutor sees a series of multiple-choice questions. There are two
kinds of problems:

English-to-LTL questions ask learners to identify which LTL formula best cap-
tures a given English description. Figure 1 shows an example of a question
and the feedback for a wrong answer.

Trace Satisfaction questions ask learners to decide whether a temporal trace
satisfies a given LTL formula. These questions come in two forms: yes/no
questions (fig. 3) in the style of the quizzes we used to build the miscon-
ception catalog [28,29], or a multiple-choice variant that asks learners to
choose the one satisfying trace from among several possibilities (fig. 2). The
LTL Tutor also provides an LTL Stepper (fig. 4), where learners can step
through a formula and trace simultaneously to develop a better operational
understanding of the language.

Because of the nature of generated formulas (section 4), when learners make
mistakes, we can associate these with known misconceptions. Therefore, over
time, the LTL Tutor builds a model of the learner’s overall understanding of
LTL. Each learner mistake is given a score, with recent mistakes weighted more
heavily using a decay function inversely proportional to the time elapsed since the
mistake. Starting from a uniform prior, each misconception’s relative likelihood
is then calculated from the sum of the associated mistake scores. The effect of
this is that the predicted likelihood of a learner having a misconception is higher
if they have made recent mistakes associated with that misconception.

Each time the tutor generates a question set, it uses these predictions to
inform the kinds of questions it generates. If learners consistently demonstrate a
misconception, then the tutor provides concept-level feedback, which we discuss
in section 5.2. The overall flow is shown in fig. 5.

LTL Tutor 5

Fig. 2: A Trace Satisfaction (Multiple Choice) (A) question, with (B) feedback
about a learner’s mistake.

Fig. 3: A Trace Satisfaction (Y/N) (A) question, with (B) feedback about a
learner’s mistake. Figure 4 shows how the stepper can help shed further light on
the mistake.

Fig. 4: LTL Stepper: The syntax tree (top) shows how each sub-formula of
G(s ⇐⇒ (Xa)) is satisfied (green border) or not satisfied (orange double
border) at a given trace step. The trace (bottom) highlights the trace step un-
der study and shows the assignment of truth values to literals at each step.

6 S. Prasad et al.

Question set

Question set results

Misconception
model

(section 5.2)Misconception likelihoods

Conceptual
feedback

(section 5.2)

Misconception likelihoods

Question
Generator
(section 4)

Question
(figs. 1 to 3)

Mistake
feedback

(section 5.1)

Next question

Learner response

Fig. 5: The overall flow of the LTL Tutor.

4 Generating Problems

From the above description, we can see that the heart of the tutor lies in gener-
ating good sets of related formulas. Thus, both kinds of questions are generated
from a seed formula. This formula is randomly generated by the SPOT randltl
tool [19], with the likelihood of each operator’s occurence determined by the
learner’s predicted likelihood of having a related misconception. For example, if
the learner has a high likelihood of the Implicit G misconception, the formula
generation process will bias the seed formula towards the G operator.

For English-to-LTL, the LTL Tutor generates a simple English description
of the seed formula, which is used as the question prompt. We describe this
translation process in section 7. The seed formula represents the correct answer
to the question. It is mutated to create distractors, as we describe below.

For trace satisfaction, the seed formula serves as the question prompt. Traces
accepted by the seed formula and its mutants are then used as candidate answers
and distractors, respectively. These traces are generated by the SPOT tool for ω-
automata manipulation [19,20].

Generating Good Mutants The key to generating useful problems comes down to
creating good mutants. Doing so well is a central contribution of the LTL Tutor.

An English-to-LTL question, for example, might be founded in the following
seed formula and English sentence pair:

G(e =⇒ (Fh))
Whenever the engine is on, the headlight will be
on then or at some point in the future.

LTL Tutor 7

Table 1: Conceptual mutation rules for the Implicit G, Implicit F , and Bad
State Quantification misconceptions. Arbitrary LTL formulae are represented
by α and β. Conceptual mutation rules for all misconceptions are available in
appendix A.
Misconception Mutation Rules
Implicit G Gα

mutate−−−−→ α

Implicit F Fα
mutate−−−−→ α

Bad State Quantification Gα
mutate−−−−→ Fα

Fα
mutate−−−−→ Gα

αUβ
mutate−−−−→ (Fα)Uβ

αUβ
mutate−−−−→ αU(Fβ)

αUβ
mutate−−−−→ (Gα)Uβ

αUβ
mutate−−−−→ αU(Gβ)

αUβ
mutate−−−−→ (βUα)

As we have noted, it is natural to mutate this seed formula to create mutants.
Because LTL equality is decidable [60], we can easily rule out syntactic variants
that are not semantically different. Thus, we could adapt typical syntactic mu-
tation techniques from programming to LTL formulae: for instance, we might
randomly change logical operators (eq. (1)), change operands (eq. (2)), or swap
operand order (eq. (3)):

G(e =⇒ (Fh))
mutate−−−−→ G(e ∧ (Fh)) (1)

G(e =⇒ (Fh))
mutate−−−−→ ((Ge) =⇒ (Fh)) (2)

G(e =⇒ (Fh))
mutate−−−−→ G((Fh) =⇒ e) (3)

While these syntactic mutants of the original formula could be used as distrac-
tors in a multiple choice question, they are very unlikely to capture the actual
difficulties that learners have. For example, since the and operator is nowhere in
the English sentence to be translated, it is highly unlikely that a learner would
pick G(e∧ (Fh)) (the mutant in eq. (1)) as an answer. Furthermore, if a learner
were to select this option, it is unclear why they did so. This limits the kinds of
feedback that can be provided to the learner.

Instead, the LTL Tutor uses our well-substantiated catalogs of LTL mis-
conceptions [27,30] to guide the mutation process. This process of conceptual
mutation is achieved by associating each misconception with mutation rules (a
sample of these is given in table 1, while all are available in appendix A). Ap-
plying any of these mutation rules to a given LTL formula (or sub-formula)
generates a mutant that embodies the corresponding misconception. The seed
formula above, for example, could be mutated to explicitly embody multiple
misconceptions, with the misconception given as a label:

8 S. Prasad et al.

G(e =⇒ (Fh))
mutate−−−−→ e =⇒ (Fh) (Implicit G)

G(e =⇒ (Fh))
mutate−−−−→ G(e =⇒ h) (Implicit F)

G(e =⇒ (Fh))
mutate−−−−→ F (e =⇒ h) (Bad State Quantification)

Crucially, each distractor is now associated with a known misconception.3 Not
only do these distractors reflect the actual difficulties that learners are known to
have, when chosen, they also provide insight into the underlying misconceptions.
Thus, for instance, if a learner selects the first conceptual mutant above (as
shown in fig. 1), it is likely that they have the Implicit G misconception. We
next discuss how we operationalize this insight.

5 Helping Learners Learn

As mentioned in section 1, we draw a meaningful distinction between learner
mistakes and misconceptions. While mistakes can be addressed via feedback in
terms of the problem at hand (section 5.1), misconception feedback must be
provided in terms of the misunderstood concept (section 5.2).

5.1 Addressing Learner Mistakes

The first thing the LTL tutor does is give feedback at the question level. When a
learner selects a distractor to an English-to-LTL question (e.g., fig. 1), they are
shown a concrete example of why their answer is incorrect and the relationship
between their answer and the correct solution. Feedback for trace satisfaction
questions involves the formula used to generate the (incorrect) trace alongside
the correct formula (fig. 2, fig. 3). If the learner wants further insight, they can
walk through the evaluation of the trace they selected over the correct formula
trace using an interactive trace stepper. Figure 4 shows how the stepper can help
shed light on the learner’s mistake in fig. 3.

5.2 Addressing Learner Misconceptions

A single mistake, however, is not enough to identify a pervasive misconception.
A learner could have misread the question, mis-clicked, or just had a minor
misunderstanding. However, if a learner consistently makes the same mistake, it
is likely that they have a misconception.

As described in section 3, the LTL Tutor models the likelihood of a learner
having a misconception based on their previous mistakes. This model informs
seed formula generation, and thus the likelihood of a learner encountering a
question that exercises a particular misconception.
3 When multiple mutants are syntactically equal, we present only one to the learner,

but associate all relevant misconceptions with that distractor.

LTL Tutor 9

Fig. 6: Feedback for the Implicit G misconception.

Once the learner has got at least 5 questions incorrect, the tutor also provides
them textual feedback about their most highly likely misconceptions. Crucially,
this feedback does not refer to a specific question encountered by the learner,
but rather the general misconception itself. Using the refutation text format
(section 2), this feedback confronts the learner with their misconception and
provides a rebuttal to it. For example, the feedback for the Implicit G miscon-
ception (fig. 6) presents a hypothesis of the learner’s idea of how the G operator
behaves, explains the correct semantics of the operator, and provides an example
to illustrate the difference.

6 Instructor Support

Many of our existing users are instructors who employ the LTL Tutor in the
context of a course. They would benefit from having feedback on how their
students are doing, not only to track progress but also to detect class-wide
persistent misconceptions (which may suggest weaknesses in their materials).

Therefore, the LTL Tutor provides instructors the option of creating a notion
of a “course”. This generates a code that students use when submitting work. In-
structors can then use the course instance to track student progress by identifier
or class progress via aggregate statistics.

Because we host the LTL Tutor, this can create discomfort or problems for
some instructors regarding student privacy. For that reason, the tutor is available
as an open-source system [51] with instructions for running local copies [50].
While we appreciate instructors providing us with summary statistics (which
help us keep track of both global student understanding of LTL4 and the tutor’s
performance), we do not require this.

4 Because LTL operators are tied to natural language, it is conceivable that different
linguistic backgrounds would have different performance and misconceptions.

10 S. Prasad et al.

Table 2: Example patterns used to translate LTL to English.
LTL Pattern English Translation
G(α =⇒ (Fβ)) Whenever α (holds), eventually β will (hold)
G(Fα) There will always be a point in the future where α (holds)
F (G¬α) Eventually, it will never be the case that α (holds)
XX...Xα In n states, α (will hold)
G(α =⇒ (X(βUδ))) Whenever α (happens), β (will hold) until δ (holds)

7 LTL to English

The creation of English-to-LTL questions requires the translation of a seed for-
mula into English. To do this, the LTL Tutor first attempts to match the LTL
formula to a set of common patterns (inspired by Dwyer et al.’s work on patterns
in property specifications [21,22]), some of which are described in table 2.

All remaining untranslated sub-formulae are then recursively translated via
a description of their logical operators. For instance, a formula like G(p ∧Xq)
might be broken into “Globally, p and Xq,” where Xq is further translated as “in
the next state, q.” This ensures even complex or unconventional formulae receive
a systematic, if literal, English description. The demands of the educational
context require that English translations never be incorrect. Thus, while stilted
or non-idiomatic English could be improved with language models, we are wary
of potential “hallucinations” that could lead to incorrect translations.

8 Limitations

Given the tutor’s support for English-to-LTL, it is natural to wonder why it does
not also support LTL-to-English. This is particularly relevant since the work we
build upon [28,29] identified misconceptions in both directions. However, LTL-
to-English requires the ability to check English output. Naturally, it may be
possible to employ language models for this. However, we have not done this
because of our desire for reliability in evaluating output, which seems hard to
achieve. Furthermore, in prior work, people demonstrated strong performance
in this direction [30], reducing its priority. In addition, language models can
significantly drive up computational costs (complicating our hosting) or require
use of external paid services (which is difficult at scale).

A natural weakness of the current tutor is that it centers around our existing
catalog of misconceptions. Though this has been built up over many years, there
may yet be other misconceptions in the wild. One of our goals is to adapt the
tutor to be more open to these: e.g., using some of the purely syntactic mutants
that we rejected earlier (section 4) to see whether they yield unexpected answers.
The reason we have not done this already is that turning these mistakes into
misconceptions ideally requires learners to provide textual explanations of their
choices, and making the interface for this useful to us while not irritating to
them is a challenge.

LTL Tutor 11

References

1. Van der Aalst, W.M., de Beer, H.T., van Dongen, B.F.: Process mining and ver-
ification of properties: An approach based on temporal logic. In: On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confed-
erated International Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa,
Cyprus, October 31-November 4, 2005, Proceedings, Part I. pp. 130–147. Springer
(2005)

2. Acree, A., Budd, T., Demillo, R., Lipton, R., Sayward, F.: Mutation analysis. Tech.
Rep. ADA076575 (09 1979), https://apps.dtic.mil/sti/citations/ADA076575

3. Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: A framework for transforming
specifications in reinforcement learning. In: Principles of Systems Design - Essays
Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday. pp.
604–624. Springer (2022). https://doi.org/10.1007/978-3-031-22337-2_29

4. Amram, G., Bansal, S., Fried, D., Tabajara, L.M., Vardi, M.Y., Weiss, G.: Adapting
behaviors via reactive synthesis. In: CAV. pp. 870–893. Springer (2021). https:
//doi.org/10.1007/978-3-030-81685-8_41

5. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors:
Lessons learned. The journal of the learning sciences 4(2), 167–207 (1995)

6. Antoniotti, M., Mishra, B.: Discrete events models + temporal logic = supervisory
controller: Automatic synthesis of locomotion controllers. In: ICRA. pp. 1441–1446.
IEEE (1995). https://doi.org/10.1109/ROBOT.1995.525480

7. Araki, B., Li, X., Vodrahalli, K., DeCastro, J.A., Fry, M.J., Rus, D.: The log-
ical options framework. In: ICML. vol. 139, pp. 307–317. PMLR (2021), http:
//proceedings.mlr.press/v139/araki21a.html

8. Babiak, T., Křetínskỳ, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: Fast and more deterministic. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 95–109. Springer
(2012)

9. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y., Wells, A.: Model checking strategies
from synthesis over finite traces. In: ATVA. pp. 227–247. Springer (2023). https:
//doi.org/10.1007/978-3-031-45329-8_11

10. Benny, A., Chandran, S., Kalayappan, R., Phawade, R., Kurur, P.P.: faRM-LTL:
A domain-specific architecture for flexible and accelerated runtime monitoring of
LTL properties. In: International Conference on Runtime Verification. pp. 109–127.
Springer (2024)

11. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with tem-
poral goals. In: ICRA. pp. 2689–2696. IEEE (2010). https://doi.org/10.1109/
ROBOT.2010.5509503

12. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012).
https://doi.org/10.1016/j.jcss.2011.08.007

13. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The Electrum analyzer: Model
checking relational first-order temporal specifications. In: ASE. pp. 884–887. ACM
(2018)

14. Ciccio, C.D., Montali, M.: Declarative process specifications: Reasoning, discovery,
monitoring. In: Process Mining Handbook, Lecture Notes in Business Information
Processing, vol. 448, pp. 108–152. Springer (2022). https://doi.org/10.1007/
978-3-031-08848-3_4

https://apps.dtic.mil/sti/citations/ADA076575
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1007/978-3-031-22337-2_29
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1109/ROBOT.1995.525480
https://doi.org/10.1109/ROBOT.1995.525480
http://proceedings.mlr.press/v139/araki21a.html
http://proceedings.mlr.press/v139/araki21a.html
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/978-3-031-08848-3_4

12 S. Prasad et al.

15. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: Interac-
tively translating unstructured natural language to temporal logics with large lan-
guage models. In: CAV. pp. 383–396. Springer (2023). https://doi.org/10.1007/
978-3-031-37703-7_18

16. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: BPM. pp.
1–17. Springer (2014). https://doi.org/10.1007/978-3-319-10172-9_1

17. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi, F.: On the disruptive effec-
tiveness of automated planning for LTLf-based trace alignment. In: Artificial In-
telligence. pp. 1–7. AAAI (2017). https://doi.org/10.1609/aaai.v31i1.11020

18. Dortmund, T.U.: Logic WiSe 2022 (2022), https://iltis.cs.tu-dortmund.de/
Logic-WiSe2022-external/en/#chapterB1

19. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Proceedings of
the 11th International Symposium on Automated Technology for Verification and
Analysis (ATVA’13). pp. 442–445. Springer (2013). https://doi.org/10.1007/
978-3-319-02444-8_31

20. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse, A.G., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From
Spot 2.0 to Spot 2.10: What’s new? In: Proceedings of the 34th International
Conference on Computer Aided Verification (CAV’22). Lecture Notes in Computer
Science, vol. 13372, pp. 174–187. Springer (Aug 2022). https://doi.org/10.1007/
978-3-031-13188-2_9

21. Dwyer, M.B.: Patterns for LTL translation (2025), https://matthewbdwyer.
github.io/psp/patterns/ltl.html, accessed: 2025-01-08

22. Dwyer, M., Avrunin, G., Corbett, J.: Patterns in property specifications for finite-
state verification. In: Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No.99CB37002). pp. 411–420 (1999). https://doi.org/
10.1145/302405.302672

23. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning
for mobile robots. In: ICRA. pp. 2020–2025. IEEE (2005). https://doi.org/10.
1109/ROBOT.2005.1570410

24. Fuggitti, F., Chakraborti, T.: NL2LTL — a Python package for converting natural
language (NL) instructions to linear temporal logic (LTL) formulas. AAAI Confer-
ence on Artificial Intelligence 37(13), 16428–16430 (2023). https://doi.org/10.
1609/aaai.v37i13.27068

25. Geck, G., Ljulin, A., Peter, S., Schmidt, J., Vehlken, F., Zeume, T.: Introduction to
Iltis: an interactive, web-based system for teaching logic. In: ITiCSE. pp. 141–146.
ACM (2018). https://doi.org/10.1145/3197091.3197095

26. Geck, G., Quenkert, C., Schmellenkamp, M., Schmidt, J., Tschirbs, F., Vehlken,
F., Zeume, T.: Iltis: Teaching logic in the Web. CoRR abs/2105.05763 (2021)

27. Greenman, B., Prasad, S., Di Stasio, A., Zhu, S., De Giacomo, G., Krishnamurthi,
S., Montali, M., Nelson, T., Zizyte, M.: Misconceptions in finite-trace and infinite-
trace linear temporal logic. In: International Symposium on Formal Methods. pp.
579–599. Springer (2024)

28. Greenman, B., Prasad, S., Stasio, A.D., Zhu, S., De Giacomo, G., Krishnamurthi,
S., Montali, M., Nelson, T., Zizyte, M.: Artifact for misconceptions in finite-trace
and infinite-trace linear temporal logic (Jul 2024). https://doi.org/10.5281/
zenodo.12770102

29. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Accepted Artifact for
Little Tricky Logic: Misconceptions in the Understanding of LTL (Aug 2022).
https://doi.org/10.5281/zenodo.6988909

https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1609/aaai.v31i1.11020
https://doi.org/10.1609/aaai.v31i1.11020
https://iltis.cs.tu-dortmund.de/Logic-WiSe2022-external/en/##chapterB1
https://iltis.cs.tu-dortmund.de/Logic-WiSe2022-external/en/##chapterB1
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-319-02444-8_31
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.1007/978-3-031-13188-2_9
https://matthewbdwyer.github.io/psp/patterns/ltl.html
https://matthewbdwyer.github.io/psp/patterns/ltl.html
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1145/3197091.3197095
https://doi.org/10.1145/3197091.3197095
https://doi.org/10.5281/zenodo.12770102
https://doi.org/10.5281/zenodo.12770102
https://doi.org/10.5281/zenodo.12770102
https://doi.org/10.5281/zenodo.12770102
https://doi.org/10.5281/zenodo.6988909
https://doi.org/10.5281/zenodo.6988909

LTL Tutor 13

30. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Little tricky logic:
Misconceptions in the understanding of LTL. Programming 7(2), 7:1–7:37 (2023).
https://doi.org/10.22152/programming-journal.org/2023/7/7

31. Gundana, D., Kress-Gazit, H.: Event-based signal temporal logic synthesis for sin-
gle and multi-robot tasks. IEEE Robotics and Automation Letters 6(2), 3687–3694
(2021). https://doi.org/10.1109/LRA.2021.3064220

32. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. The Physics
Teacher 30(3), 141–158 (1992). https://doi.org/10.1119/1.2343497

33. Kantaros, Y., Zavlanos, M.M.: STyLuS∗: A temporal logic optimal control synthe-
sis algorithm for large-scale multi-robot systems. International Journal of Robotics
Research 39(7), 812–836 (2020). https://doi.org/10.1177/0278364920913922

34. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L., Vardi, M.: This time the
robot settles for a cost: A quantitative approach to temporal logic planning
with partial satisfaction. In: AAAI. pp. 3664–3671. AAAI Press (2015), https:
//shaull.github.io/pub/LAFKV15.pdf

35. Li, R., Gurushankar, K., Heule, M.J., Rozier, K.Y.: What’s in a name? linear
temporal logic literally represents time lines. In: 2023 IEEE Working Conference
on Software Visualization (VISSOFT). pp. 73–83. IEEE (2023)

36. Lodder, J., Heeren, B., Jeuring, J.: A comparison of elaborated and restricted feed-
back in LogEx, a tool for teaching rewriting logical formulae. Journal of Computer
Assisted Learning 35(5), 620–632 (2019)

37. Lodder, J., Heeren, B., Jeuring, J.: Providing hints, next steps and feedback in a
tutoring system for structural induction. arXiv preprint arXiv:2002.12552 (2020)

38. Lodder, J., Heeren, B., Jeuring, J., Neijenhuis, W.: Generation and use of hints and
feedback in a Hilbert-style axiomatic proof tutor. International Journal of Artificial
Intelligence in Education 31, 99–133 (2021)

39. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multi-agent motion tasks
based on LTL specifications. In: CDC. pp. 153–158. IEEE (2004). https://doi.
org/10.1109/CDC.2004.1428622

40. Lu, K.C., Krishnamurthi, S.: Identifying and correcting programming language
behavior misconceptions. Proceedings of the ACM on Programming Languages
8(OOPSLA1), 334–361 (2024)

41. Madeyski, L., Orzeszyna, W., Torkar, R., Jozala, M.: Overcoming the equivalent
mutant problem: A systematic literature review and a comparative experiment of
second order mutation. IEEE Transactions on Software Engineering 40(1), 23–42
(2013)

42. Maggi, F.M., Montali, M., Westergaard, M., Van Der Aalst, W.M.: Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In: Business Process Management: 9th International Conference, BPM
2011, Clermont-Ferrand, France, August 30-September 2, 2011. Proceedings 9. pp.
132–147. Springer (2011)

43. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. TOPLAS 6(1), 68–93 (1984). https://doi.org/10.1145/357233.
357237

44. Nelson, T., Greenman, B., Prasad, S., Dyer, T., Bove, E., Chen, Q., Cutting, C.,
Vecchio, T.D., LeVine, S., Rudner, J., Ryjikov, B., Varga, A., Wagner, A., West, L.,
Krishnamurthi, S.: Forge: A tool and language for teaching formal methods. Pro-
ceedings of the ACM on Programming Languages 8(OOPSLA1), 613–641 (2024)

45. O’Connor, L., Wickström, O.: Quickstrom: Property-based acceptance testing with
LTL specifications. In: PLDI. pp. 1025–1038. ACM (2022). https://doi.org/10.
1145/3519939.3523728

https://doi.org/10.22152/programming-journal.org/2023/7/7
https://doi.org/10.22152/programming-journal.org/2023/7/7
https://doi.org/10.1109/LRA.2021.3064220
https://doi.org/10.1109/LRA.2021.3064220
https://doi.org/10.1119/1.2343497
https://doi.org/10.1119/1.2343497
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1177/0278364920913922
https://shaull.github.io/pub/LAFKV15.pdf
https://shaull.github.io/pub/LAFKV15.pdf
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1145/3519939.3523728

14 S. Prasad et al.

46. Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of Cognitive
Tutor Algebra I at scale. Educational Evaluation and Policy Analysis 36(2), 127–
144 (2014)

47. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL. pp. 179–
190. ACM (1989). https://doi.org/10.1145/75277.75293

48. Posner, G.J., Strike, K.A., Hewson, P.W., Gertzog, W.A.: Accommodation of a
scientific conception: Toward a theory of conceptual change. Science education
66(2), 211–227 (1982)

49. Prasad, S., Greenman, B., Nelson, T., Krishnamurthi, S.: Conceptual mu-
tation testing for student programming misconceptions. The Art, Science,
and Engineering of Programming 8(2) (2023). https://doi.org/10.22152/
programming-journal.org/2024/8/7

50. Prasad, S., Greenman, B., Nelson, T., Krishnamurthi, S.: Hosting the LTL Tutor
(2024), https://github.com/brownplt/LTLTutor/wiki/Hosting-the-LTL-Tutor

51. Prasad, S., Greenman, B., Nelson, T., Krishnamurthi, S.: Ltl tutor (2024), https:
//github.com/brownplt/ltltutor

52. Rojas, J.M., White, T.D., Clegg, B.S., Fraser, G.: Code Defenders: Crowdsourc-
ing effective tests and subtle mutants with a mutation testing game. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). pp.
677–688. IEEE (2017)

53. Schroeder, N.L., Kucera, A.C.: Refutation text facilitates learning: A meta-analysis
of between-subjects experiments. Educational Psychology Review 34(2), 957–987
(2022)

54. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS. pp. 3808–3817 (2018)

55. Sieg, W.: The AProS project: Strategic thinking & computational logic. Logic
Journal of the IGPL 15(4), 359–368 (2007)

56. Tabajara, L.M., Vardi, M.Y.: LTLf synthesis under partial observability: From
theory to practice. In: GandALF. p. 1–17. Open Publishing Association (2020).
https://doi.org/10.4204/eptcs.326.1

57. Tracy II, T., Tabajara, L.M., Vardi, M., Skadron, K.: Runtime verification on
FPGAs with LTLf specifications. In: FMCAD. pp. 36–46. IEEE Computer Society
(2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10

58. Umili, E., Capobianco, R., De Giacomo, G.: Grounding LTLf specifications in
images. In: KR. pp. 45–63. ACM (2023). https://doi.org/10.24963/kr.2023/65

59. VanLehn, K.: The behavior of tutoring systems. International journal of artificial
intelligence in education 16(3), 227–265 (2006)

60. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: 1st Symposium in Logic in Computer Science (LICS). IEEE Com-
puter Society (1986)

61. Wang, Y., Figueroa, N., Li, S., Shah, A., Shah, J.: Temporal logic imitation: Learn-
ing plan-satisficing motion policies from demonstrations. In: Conference on Robot
Learning, CoRL. pp. 94–105. PMLR (2022), https://proceedings.mlr.press/
v205/wang23a.html

62. Wickström, O.: LTL visualizer (2023), https://github.com/quickstrom/
ltl-visualizer

63. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental tempo-
ral logic synthesis of control policies for robots interacting with dynamic agents. In:
IROS. pp. 229–236. IEEE (2012). https://doi.org/10.1109/IROS.2012.6385575

64. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI. pp. 1362–1369 (2017). https://doi.org/10.24963/ijcai.2017/189

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.22152/programming-journal.org/2024/8/7
https://doi.org/10.22152/programming-journal.org/2024/8/7
https://doi.org/10.22152/programming-journal.org/2024/8/7
https://doi.org/10.22152/programming-journal.org/2024/8/7
https://github.com/brownplt/LTLTutor/wiki/Hosting-the-LTL-Tutor
https://github.com/brownplt/ltltutor
https://github.com/brownplt/ltltutor
https://doi.org/10.4204/eptcs.326.1
https://doi.org/10.4204/eptcs.326.1
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.24963/kr.2023/65
https://doi.org/10.24963/kr.2023/65
https://proceedings.mlr.press/v205/wang23a.html
https://proceedings.mlr.press/v205/wang23a.html
https://github.com/quickstrom/ltl-visualizer
https://github.com/quickstrom/ltl-visualizer
https://doi.org/10.1109/IROS.2012.6385575
https://doi.org/10.1109/IROS.2012.6385575
https://doi.org/10.24963/ijcai.2017/189
https://doi.org/10.24963/ijcai.2017/189

LTL Tutor 15

A Conceptual Mutation Rules

This section describes all conceptual mutation rules used by the LTL Tutor,
alongside their associated misconceptions. Arbitrary LTL formulae are repre-
sented by α, β, and δ. Arbitrary binary operators are represented by ▷◁, and
arbitrary unary operators are represented by ⋉.
Misconception Mutation Rules
Implicit G Gα

mutate−−−−→ α

Implicit F Fα
mutate−−−−→ α

Bad State Gα
mutate−−−−→ Fα

Quantification Fα
mutate−−−−→ Gα

αUβ
mutate−−−−→ (Fα)Uβ

αUβ
mutate−−−−→ αU(Fβ)

αUβ
mutate−−−−→ (Gα)Uβ

αUβ
mutate−−−−→ αU(Gβ)

αUβ
mutate−−−−→ (βUα)

Precedence α ▷◁ (β ▷◁ δ)
mutate−−−−→ (α ▷◁ β) ▷◁ δ

Exclusive U αU(¬α ∧ β)
mutate−−−−→ αUβ

Weak U αUβ
mutate−−−−→ (αUβ) ∧ Fβ

Bad State δU(α ∧ (Fβ))
mutate−−−−→ (δUα) ∧ (Fβ)

Index δU(α ∧ (Gβ))
mutate−−−−→ (δUα) ∧ (Gβ)

δU(α ∧ (Fβ))
mutate−−−−→ (δUα) ∧ (Fβ)

δU(α ∨ (Gβ))
mutate−−−−→ (δUα) ∨ (Gβ)

δU(α =⇒ (Fβ))
mutate−−−−→ (δUα) =⇒ (Fβ)

δU(α =⇒ (Gβ))
mutate−−−−→ (δUα) =⇒ (Gβ)

X(α ∧ β)
mutate−−−−→ (Xα) ∧ β

X(X(X . . .Xα))
mutate−−−−→ Xα

Other Implicit (¬αUα)
mutate−−−−→ Fα

(αU(Gα))
mutate−−−−→ α ∧ (F (Gα))

(Fα) ∧ (G(β =⇒ (X(Gβ))))
mutate−−−−→ α ∧ (X(Gβ))

Xα
mutate−−−−→ Fα

α ▷◁ β
mutate−−−−→ α

α ▷◁ β
mutate−−−−→ β

¬α mutate−−−−→ α

	A Misconception-Driven Adaptive Tutor for Linear Temporal Logic

