
Getting F-Bounded Polymorphism into Shape
Ben Greenman, Fabian Muehlboeck, & Ross Tate

Cornell University

Problem
Type checking with generics,

variance, and recursive
inheritance is challenging.

There are many difficult corner cases and
even subtyping is undecidable [1].

This

Observation Applications
Material-­Shape Separation
simplifies type-­checking.

The restriction provides a solid foundation
for type-­system enhancements.

Ceylon Integration

Materials Shapes

Computable Joins

Type Equivalence

Higher-Kinded Types

Decidable Subtyping

Industry Survey
13.5 million lines of Java code from 60 open-­source projects* show these results.

>> Parameterized shapes were never used as materials
>> Exactly one project used a material in inheritance, but this definition was never used or
exposed by an API.
>> Approximately 30% of projects used raw/wildcarded shapes as materials. Our system can
provide this functionality by creating for each shape a parameterless material superclass.
>> In total, we found 15 project-­specific shapes, each encoding a self type or a type family.

Conclusion: Material-­Shape Separation is compatible with modern industry practices.

*All projects were written for Java 1.5 or later. Thanks to the Qualitas Corpus [2] for hosting many of the projects we used.

Summary: Shapes define the
higher-­level structure of a type via
recursive inheritance.

Used for:
>> Inheritance / Type definitions
>> Type variable constraints

Examples: Clonable<T>, Enum<T>,
Equatable<T>, Comparable<T>,
Addable<T>, GraphEdge<E,V>

Material-­Shape Separation limits the power of recursive type definitions
to match practical use. Cyclic and infinitely expansive inheritance are no
longer possible and we have simple, decidable subtyping.

Our subtyping rules do not rely on syntactic identity, so reliable type
equivalence is a free consequence.

Material-­Shape Separation also eliminates troublesome corner cases.
class Foo extends Array<Foo & Array<Foo>>

is nonsensical because the material Array should never be used to create a
recursive definition.

Joins need only be defined on the acyclic hierarchy of Materials. For
example, the least common supertype of Integer and Float in our system
is Object because Clonable<?> is not a Material.

Separating concepts lets us use a simple join algorithm without sacrificing
the power of recursive type constraints.

[1] Kennedy & Pierce, FOOL/WOOD 2007.

[2] http://qualitascorpus.com/ [3] http://ceylon-­lang.org/

The well-­founded measure we use to prove decidable subtyping and
computable joins generalizes naturally to higher-­kinded types.

The Ceylon [3] team at Red Hat was our primary industry collaborator.
They provided valuable insight and feedback throughout this project.

Material-­Shape Separation is compatible with the entire Ceylon codebase
and will likely be incorporated into Ceylon 2.0.

Ex 4: Imprecise JoinsEx 2: Syntactic Identity

Example 1: Undecidable Subtyping

In type systems with syntactic
identity, intersection commutes

A & B = B & A

but not within type arguments.

Array<A & B> = Array<B & A>

Ex 3: Undecidable Equality

Given the following declaration:
 class Foo extends
 Array<Foo & Array<Foo>>>

We cannot decide if Foo is a
subtype of Array<Foo>.

Ex 5: Imprecise Joins

A language without joins would
incorrectly reject this program:
<T extends Comparable<T>>
void separate(T middle,
 Iterable<out T> elems,
 ArrayList<in T> smaller,
 ArrayList<in T> bigger){
 for (T elt : elems)
 (elt < middle ?
 smaller : bigger).add(elt);
}

Suppose we have three classes:
 class Clonable<out T> { }
 class Integer extends Clonable<Integer> { }
 class Float extends Clonable<Float> { }

The join of Integer and Float does not
exist.

We attempted to provide type-­safe equality on lists by using generics to
enforce that list elements support type-­safe equality.

class List<out T> extends Eq<in List<out Eq<in T>>>

Next, we thought to define n-­ary trees with type-­safe equality by
extending our List interface.

class Tree extends List<out Tree>

But the OpenJDK compiler (version 1.7) crashed when we added variance
annotations and asked if Tree was a subtype of Eq<Tree>.

 Key: = inheritance = covariance = contravariance
Summary: Materials are the data
transmitted and shared by
program components.

Used for:
>> Parameter types
>> Return types
>> Field types
>> Type arguments

Examples: Object, Integer, String,
List<T>, Map<K,V>, HashSet<T>, ...

Read more:

Programmers separate constraints
from data. So should the compiler.

Example: The interface Comparable<T> is very different from
most familiar types.
>> Comparable is only used in inheritance or as a constraint.
>> A programmer never wants a List<Comparable<X>>, but
 rather a List<T> where the T extends Comparable<T>.
Consequence: We recognize two disjoint groups of classes
& interfaces, formalized as Material-­Shape Separation.

 Foo <: Array<Foo>

 Foo & Array<Foo> = Fooiff

iff
...Clonable<?> Clonable

<Clonable<?>>

Float

Integer

 Tree <: List<Eq<Tree>> List<Tree> <: List<Eq<Tree>>

 Tree <: Eq<Tree> List<Tree> <: Eq<Tree>

 Eq<List<Eq<Tree>>> <: Eq<Tree>Infinite Loop!

http://qualitascorpus.com/
http://qualitascorpus.com/
http://ceylon-lang.org/
http://ceylon-lang.org/

