Getting F-Bounded Polymorphism into Shape

Ben Greenman, Fabian Muehlboeck, & Ross Tate

Type checking with generics,
variance, and recursive
inheritance is challenging.

There are many difficult corner cases and
even subtyping is undecidable [1].

-

Example 1: Undecidable Subtyping

We attempted to provide type-safe equality on lists by using generics to
enforce that list elements support type-safe equality.

class List<out T> extends Eg<in List<out Eg<in T>>>

Next, we thought to define n-ary trees with type-safe equality by
extending our List interface.

class Tree extends List<out Tree>

But the OpenJDK compiler (version 1.7) crashed when we added variance
annotations and asked if Tree was a subtype of Eq<Tree>.

Key: —=inheritance = covariance -» = contravariance

Tree <: Eq<Tree> |—)

List<Tree> <: Eqg<Tree>

!

Infinite Loop!

Eg<List<Eqg<Tree>>> <: Eq<Tree>

N I

List<Tree> <: List<Eqg<Tree>> <—|Tree <: List<Eqg<Tree>>

j

N

~

Ex 2: Syntactic Identity

s

Ex 4: Imprecise Joins

~

In type systems with syntactic
identity, intersection commutes

A language without joins would
incorrectly reject this program:

<T extends Comparable<T>>
void separate (T middle,
Iterable<out T> elems,
ArraylList<in T> smaller,
ArrayList<in T> bigger) {
for (T elt : elems)
(elt < middle ?
smaller : bigger) .add(elt);

A &§B =B &A

but not within type arguments.

X Array<A & B> = Array<B & A>

L}

j
~

J 0

-
-

\-

-

Ex 3: Undecidable Equality Ex 5: Imprecise Joins

\-

Given the following declaration: || Suppose we have three classes:

class Clonable<out T> { }
class Integer extends Clonable<Integer> { }
class Float extends Clonable<Float> { }

The join of Integer and rFiocat does not
exist.

class Foo extends
Array<Foo & Array<Foo>>>

We cannot decide if Foo is a
SuU btype Oof Array<Foo>.

iff

Foo <: Array<Foo>

Clonable

l I—) Clonable<?> |-)

<Clonable<?>> N -

iff

Foo & Array<Foo> = Foo

.

Observation

Programmers separate constraints
from data. So should the compiler.

-

Example: The interface comparabie<t> is very different from
most familiar types.

>> comparable IS Only used in inheritance or as a constraint.
>> A programmer never wants a List<Comparable<x>>, DUt
rather a List<t> where the T extends comparable<T>.

~

j

Consequence: We recognize two disjoint groups of classes

& interfaces, formalized as Material-Shape Separation.

-

N\ ([

Materials Shapes

Summary: Shapes define the
higher-level structure of a type via
recursive inheritance.

Summary: Materials are the data
transmitted and shared by
program components.

Used for:
>> Inheritance / Type definitions
>> Type variable constraints

Used for:

>> Parameter types
>> Return types

>> Field types

>> Type arguments

Exam plES: Clonable<T>, Enum<T>,

Equatable<T>, Comparable<T>,
Addable<T>, GraphEdge<E,V>

Examples: Object, Integer, String,
List<T>, Map<K,V>, HashSet<T>,

Industry Survey

13.5 million lines of Java code from 60 open-source projects* show these results.

>> Parameterized shapes were never used as materials

>> Exactly one project used a material in inheritance, but this definition was never used or
exposed by an API.

>> Approximately 30% of projects used raw/wildcarded shapes as materials. Our system can
provide this functionality by creating for each shape a parameterless material superclass.

>> |n total, we found 15 project-specific shapes, each encoding a self type or a type family.

Conclusion: Material-Shape Separation is compatible with modern industry practices.

*All projects were written for Java 1.5 or later. Thanks to the Qualitas Corpus [2] for hosting many of the projects we used.

Applications

Material-Shape Separation
simplifies type-checking.

The restriction provides a solid foundation
for type-system enhancements.

Decidable Subtyping

\-

Material-Shape Separation limits the power of recursive type definitions
to match practical use. Cyclic and infinitely expansive inheritance are no

longer possible and we have simple, decidable subtyping.
&

-

Type Equivalence

Our subtyping rules do not rely on syntactic identity, so reliable type
equivalence is a free consequence.

Material-Shape Separation also eliminates troublesome corner cases.

X class Foo extends Array<Foo & Array<Foo>>

Is nonsensical because the material array should never be used to create a
recursive definition.

Computable Joins

\-

Joins need only be defined on the acyclic hierarchy of Materials. For
example, the least common supertype of integer and rioat in our system
IS Object because clonable<?> IS Not a Material.

Separating concepts lets us use a simple join algorithm without sacrificing
the power of recursive type constraints.

Higher-Kinded Types

N

The well-founded measure we use to prove decidable subtyping and

computable joins generalizes naturally to higher-kinded types.
&

-

Ceylon Integration

N

The Ceylon [3] team at Red Hat was our primary industry collaborator.
They provided valuable insight and feedback throughout this project.

Material-Shape Separation is compatible with the entire Ceylon codebase
and will likely be incorporated into Ceylon 2.0.

.

\

1] Kennedy & Pierce, FOOL/WOOQOD 2007. Read more: i o]

2] http://qualitascorpus.com/ [3] http://ceylon-lang.org/

http://qualitascorpus.com/
http://qualitascorpus.com/
http://ceylon-lang.org/
http://ceylon-lang.org/

