MATERIALS & SHAPES

Ben Greenman
December 16,2014

OUTLINE

» Getting F-Bounded Polymorphism Into Shape

« with Fabian Muehlboeck and Ross Tate, PLDI 2014

» and the Ceylon team

* plus some more recent developments

MY GOALS

|. Explain the big discovery of the paper

2. Share the conclusions we drew

3. Convince you that we've acted sensibly

THE PROBLEM

* [ype-safe equality In object-oriented languages

- Cat () == Animal () \/ Cast to common super
« 42 == "forty-two" x Type CRECIS

* Ax.42 == Ax.42 x Type error, undecidable™

THE PROBLEM

. lype safe equality

e L1st<l<T>

e HashMap<T>

S hase on ...

The state of the art! Object.equals ()

java.lang

Class Object

java.lang.Object

public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrayj

Method Summary

1 "7 Instance Methods | Concrete Methods
Modifier and Type Method and Description
protected Object clone()

Creates and returns a copy of this object.

equals(Object obj)

Indicates whether some other object is “equal to® this one.

protected void finalize()
Called by the garbage collector on an object when garbage c{

Class<7> getClass()
Returns the runtime class of this Object.

The state of the art! Object.equals ()

€ Any

abstract class Any

Concrete Value Members)

3 final def !=(arg0: Any): Boolean

Test two objects for inequality.

- final def ##(): Int

Equivalent to x. hashCode except for boxed numeric types ang

final def ==(arg0: Any): Boolean

Test two objects for equality.

final def asInstanceOf[T0]: TO
Cast the receiver object to be of type T0.

def equals(arg0: Any): Boolean

Compares the receiver object (this) with the argument object

- def hashCode(): Int
Calculate a hash code value for the object.

B final def isInstanceOf[T0]: Boolean

Test whether the dynamic type of the receiver object is T0.

WHAT'S WRONG!

* Does not scale.

* Should there be an object.compareTo () !

» Masks errors that the static type-checker could find.

* The concept of "equality” Is not defined for all objects.

» Requires dynamic dispatch

/I Typical implementation

class Foobar extends Obiject {
boolean equals (Object| obj) {
if (obj |[instanceof| Foobar) {
Foobar that = |(Foobar) obj;
/* |Actually compare "“this’

*land “that® */
}

return false;

x Wrong arg. type x Run-time cast
x Dynamic check x Lots of bollerplate

/]It just gets worse

* instanceof checks show up everywhere

» Repetitive, many opportunities for bugs

class BinaryTree<T> ({

boolean contains (T elem) {
if (elem |[instanceof|Comparable) {
/* Implement me! */

}

return false; void remove (T elem) {
} if (elem instanceof|| Comparable) ({
/* Implement me! */

}
}

VWe can do better!

- |deally, declare an interface

* Equatable<T> { boolean equalTo (T that); }

* Replace instanceof and casts with F-Bounded polymorphism

* BinaryTree<T extends Equatable<T>> { ... }

An example: List

» Two lists are equal If their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

v/

—_—p 2.00==2.00 «e=—(2.00

)4 |

—p 3.00 ==3.02€¢—(3.02

1 1

List<Integer> List<Double>

2
|
3

An example: List

» Two lists are equal If their elements are pgatwise equal.

List<T> extends Equatable<List<Equatable<T>>>

v/

—_—p 2.00==2.00 «e=—(2.00

)4 |

—p 3.00 ==3.02€¢—(3.02

1 1

List<Integer> List<Double>

2
|
3

VARIANCE

» Read-only types are covariant (out, +, extends, ...)

* A List<Integer> can safely be treated as a List<Double>
* Write-only types are contravariant (in, -, super, ...)

* A Consumer<Animal> can be treated as a Consumer<Cat>
» Read-Write types are invariant

* An Array<String> should contain exactly strings

VARIANCE

class Adult {}
class Baby extends Adult {}

public class ArrayHack ({
public static void main(String[] args) ({
Baby[] crib = new Baby[l];
Adult[] house = crib;
house[0] = new Adult();
System.out.printf ("Success\n");

EPde=eicron 1n thread "main”
ilet e Lang . Arraystorelxcept Eomasiic il

An example: List

» Two lists are equal If their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

v/

—_—p 2.00==2.00 «e=—(2.00

)4 |

—p 3.00 ==3.02€¢—(3.02

1 1

List<Integer> List<Double>

2
|
3

An example: List

* Two lists are equal If their elements are pointwise equal.

ListkT> extends EquatablekList%EquatablekT>>>

*List IS coyaTanien € get elements out of It)

*Equatable IS contravariant (we supply arguments)

An example: List

* Two lists are equal If their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

This actually works!

THE BIG DISCOVERY

* The Ceylon team wanted to avoid Object.equals ()

* Ross suggested the above solution

* Ceylon's response: N 0
]

THE BIG DISCOVERY

* "A List<Equatable<T>> IS nonsense!"

- Lists contain data, but Equatable IS an abstract concept.

List<Integer>>

List<Equatable<Integer>>>

I (s B

Fasy to Imagine

Eg<l>

—Eqg<2>

_I

understand

Not so easy to

THE BIG DISCOVERY

* "A List<Equatable<T>> IS nonsense!"
qu

- Lists contain data, but Equatable IS an abstract concept.

Equatable IS a constraint on Integers

Integers are a valid instantiation for List<T>

You never want a "list of constraints”

EXPERIMEN T

» Ceylon Is only one project. Ve weren't convinced.

» Surveyed 60 Open-Source Java projects

I lontlines of code (ave. 242,11 | 5 med cCisc
- ~ 100,000 classes (ave: [J625 micdssiory)

+ ~10,000 interfaces (avg. 202 el 4)

@NTLR ' ¢ NetBeans % ;....Boss

EXPERIMEN T

You never want a "list of constraints”

°~

- We can't tell what programmers were thinking
» Or they challenges they faced in development

* But, we can formalize Ceylon's opinion In the Java compiller
without breaking backwards-compatibility

EXPERIMEN T

* ypes like Equatable<Integer> were never used as:
* lype Parameters
* Function arguments or return types

* | ocal variables or fields

What Is a "type like" Equatable<Integer> !

Object

_ : class Object {}
Billfish class Animal {}
class Billfish

extends Animal {}

_ class Marlin
extends Billfish ({}

What Is a "type like" Equatable<Integer> !

Object

> inter Equatable<T> {}

> class Swordfish

Blllflsh

extends Billfish
, Equatable<Swordfish>
Marlln Swordflsh

What Is a "type like" Equatable<Integer> !

Object

Billfish

EXPERIMEN T

(more precisely)

* Parameterized types used to complete cycles in the

inherrtance hierarchy were never used as:
* lype Parameters
* Function arguments or return types

* | ocal variables or fields

RECAP

|. The problem: type-safe equality
2. Proposed solution: Equatable and F-Bounded Polymorphism
3. Strong Reject from industry

4. Equatable Is a constraint, and causes cyclic inheritance

Next Up: the research perspective

[he problem with Equatable<List<...>>

Object

> inter Equatable<T> {}

> class List

extends EgEatable
<List <Equatable <T>>

Tree
> class Tree

extends List<Tree>

<: Equatable<Tree>

Object

o > inter Equatable<T> ({}

> class List
: extends Equatable
" <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

<: Equatable<Tree>

Object

- > inter Equatable<T> ({}

> class List
: extends Equatable
" <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

V‘ <List<Eqg<Tree>>>| <. Equ%able<Tree>

Object
LlSt<T> Equatable<T>
o > inter Equatable<T> ({}
..' > class List
e extends Equatable
e <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

<: List<Equatable<Tree>>

Object

- > inter Equatable<T> ({}

> class List
: extends Equatable
" <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

m <: Lﬂt<Equatable<Tree>>

Object

o > inter Equatable<T> ({}

> class List
: extends Equatable
" <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

-? Tree <: Equatable<Tree> x Cycle!

Object
LlSt<T> Equatable<T>
o > inter Equatable<T> ({}
..' > class List
e extends Equatable
" <List <Equatable <T>>

Tree

> class Tree
extends List<Tree>

PRIOR WORK

* On the Decidability of Nominal Subtyping with Inheritance

* Andrew Kennedy & Benjamin Pierce, FOOL 200/

* I he general problem Is undecidable

» Can recover decidability by removing erther:

|. Contravariance 2. Expansive Inheritance

3. Multiple Instantiation Inheritance™®

PRIOR WORK

| . Remove Contravariance

For all types c<*>, b<*>, and all values X, Y:

C<X> IS a subtype of b<y>
i

X IS a subtype of ¥

PRIOR WORK

2. Remove Expansive Inheritance

Suppose c<x> Inherits b<y>,

Either x=Yy
or

X does not appear In Y

(Y is no "larger" than Xx)

PRIOR WORK

3. Remove Multiple Instantiation Inheritance™

For all types ¢, b<*>, and all values x, ¥:

C cannot Inherit
both

D<X> and D<Y>

* All expansive-recursive type parameters must be invariant and linear

PRIOR WORK

* laming Wildcards in Java's Type System

e RETe \an Leung, Sorin Lerner; REDIFZONE]

No nested contravariance in:

iNhertance clauses
or
type parameters

List<T> extends Eggatable |

<List <Equatable <T>>

x Contravariance

x Nested Contravariance x Bad design

x Expansive Inheritance

t \

—

|

Li1st<T> extends Equatable
<List <Equatable <T>>

Programmers separate data from "constraints on data’.
This separation leads to decidable subtyping.

X Nested Contravariance x Bad design

Material-Shape

Separation
> externc
<Li <Equatable <T>

N/

Programmers syp/ﬁrate data from "constraints on data’.
This separation leads to decidable subtyping.

x Nested Contravariance x Bad design

Programmers separate data from "constraints on data’.
[his separation leads to decidable subtyping.

Materials Shapes
* Object * Equatable<T>
* List<T> * Cloneable<T>
* Swordfish * Addable<T>
Cycle-free inheritance Never used as type

Darameters

SUMMARY

* While studying type-safe equality, we found a strange pattern

* Equatable, Comparable, Hashable are different!

* Following this pattern inturtively gives decidable subtyping

- These Shapes describe the structure and constraints of data

* In contrast, Materials are the data used and exchanged

MATERIALS & SHAPES

SUB-GOALS

.e. "where can we go from here?"

|. Decidable subtyping
2. Type equality, decidable joins

3. Conditional inherrtance

4. Shape shifters

WELL-FOUNDED
INHERITANCE

- Undecidabllity results were caused by cyclic inheritance

* Impossible to predict how type parameters would expand
» Without shapes, inheritance Is well-founded

- No more cycles!

* An object’s Inherrtance graph is known at compile-time

- Many applications

DECIDABLE SUBTYPING

» Strategy: define a measure on judgments X <: Y
- Key idea: Inheritance never introduces new shapes

* lwo components:

he number of shapes appearing in each type

* The maximum number of proof steps until the next shape

1YPE EQUALITY

* Suppose the type system has intersection types, X&Y
* |s List<xsY> equal to List<yex> ! (It should bel)

» Not true In Java

 Not true using Kennedy & Plerce’s technique

BN EiRtRlic Using Jiate et al.is tecanigue

1YPE EQUALITY

» Our subtyping algorithm only depends on recursion
 Never uses syntactic equivalences

» We get equality for free: (A = B) Iff (A <: BandB <: a)

JOINS

* A U BIs the least common supertype of A and B

» Useful for type-checking conditional statements.

*if (C) then A else B hastype A U B

* In many languages, arbitrary joins do not exist

JOINS

interface Addable<out T> {}
class Double implements Addable<Double> ({}

class Integer implements Addable<Integer> {}

Addable<?>
Addable<out Addable<?>>
N

Addable<out Addable<out Addable<?>>>

.

JOINS

» Our system: the join of two materials always exists
» Because material inheritance is decidable

 Note: Addable<*> Wwas never the desired result

* [he result of any computation must be a material

CONDITIONAL INHERITANCE

» Unanswered question: type-safe equality for List<T>

* First solution, again: List<T> extends EQ<List<EgQ<T>>>
- Bad style
 Nested contravariance & expansive Inheritance

* List elements forced to extend Eq -- cannot make a
List<Object>

CONDITIONAL INHERITANCE

* |deally, List<T> Is Equatable If and only If its elements are

List<out T> satisfies Equatable

given T satisfies Equatable

* 'satisfies’ Indicates that shapes are constraints, orthogonal
to material classes and Interfaces

» "given" denotes a condition that holds for certain instances

CONDITIONAL INHERITANCE

» Surprisingly challenging! Consider:

> i1nterface List<out T> satisfies Cloneable
given T satisfies Cloneable

> class Array<inv T> extends List<T>
satisfies Cloneable

given T satisfies Cloneable

> class B satisfies Cloneable

> class A extends B

* What Is the result of INvOoking Array<A>.clone () /

SHAPE SHIFTERS

» Code reuse Is fundamental to object-oriented programming
* Shapes express constraints at the class / interface level

* Shape Shifters are a proposal for type variable-level reasoning

Set<String with CaseInsensitive>

Set<Function<Int, Int> with RefEqual>

The End

