
MATERIALS & SHAPES

Ben Greenman
December 16, 2014

OUTLINE

• Getting F-Bounded Polymorphism Into Shape

• with Fabian Muehlboeck and Ross Tate, PLDI 2014

• and the Ceylon team

• plus some more recent developments

MY GOALS

1. Explain the big discovery of the paper

2. Share the conclusions we drew

3. Convince you that we've acted sensibly

THE PROBLEM

• Type-safe equality in object-oriented languages

• Cat() == Animal()

• 42 == "forty-two"

• λx.42 == λx.42

Cast to common super

Type error

Type error, undecidable*

THE PROBLEM

•

• List<T>

• HashMap<T>

• and so on ...

Type safe equality on arbitrary data structures

The state of the art? Object.equals()

The state of the art? Object.equals()

WHAT'S WRONG?
• Does not scale.

• Should there be an Object.compareTo() ?

• Masks errors that the static type-checker could find.

• The concept of "equality" is not defined for all objects.

• Requires dynamic dispatch

// Typical implementation

Wrong arg. type

Dynamic check

Run-time cast

Lots of boilerplate

• instanceof checks show up everywhere

• Repetitive, many opportunities for bugs

// It just gets worse

• Ideally, declare an interface

• Equatable<T> { boolean equalTo(T that); }

• Replace instanceof and casts with F-Bounded polymorphism

• BinaryTree<T extends Equatable<T>> { ... }

We can do better!

An example: List

• Two lists are equal if their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

List<Integer> List<Double>

2

3 3.02

2.002.00 == 2.00

3.00 == 3.02

An example: List

• Two lists are equal if their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

List<Integer> List<Double>

2

3 3.02

2.002.00 == 2.00

3.00 == 3.02

Almost!

• Read-only types are covariant (out, +, extends, ...)

• A List<Integer> can safely be treated as a List<Double>

• Write-only types are contravariant (in, -, super, ...)

• A Consumer<Animal> can be treated as a Consumer<Cat>

• Read-Write types are invariant

• An Array<String> should contain exactly Strings

VARIANCE

Exception in thread "main"
 java.lang.ArrayStoreException: Adult

VARIANCE

An example: List

• Two lists are equal if their elements are pointwise equal.

List<T> extends Equatable<List<Equatable<T>>>

List<Integer> List<Double>

2

3 3.02

2.002.00 == 2.00

3.00 == 3.02

• Two lists are equal if their elements are pointwise equal.

An example: List

•List is covariant (we get elements out of it)

•Equatable is contravariant (we supply arguments)

List<T> extends Equatable<List<Equatable<T>>>

• Two lists are equal if their elements are pointwise equal.

An example: List

List<T> extends Equatable<List<Equatable<T>>>

This actually works!

THE BIG DISCOVERY
• The Ceylon team wanted to avoid Object.equals()

• Ross suggested the above solution

• Ceylon's response: NO.

THE BIG DISCOVERY
• "A List<Equatable<T>> is nonsense!"

• Lists contain data, but Equatable is an abstract concept.

List<Integer>> List<Equatable<Integer>>>

1 2 Eq<1> Eq<2>

Easy to imagine Not so easy to
understand

<:

THE BIG DISCOVERY
• "A List<Equatable<T>> is nonsense!"

• Lists contain data, but Equatable is an abstract concept.

Equatable is a constraint on Integers

Integers are a valid instantiation for List<T>

 You never want a "list of constraints"

EXPERIMENT
• Ceylon is only one project. We weren't convinced.

• Surveyed 60 Open-Source Java projects

• ~13.5 million lines of code (avg. 242,113 med. 60,062)

• ~100,000 classes (avg. 1,962 med. 487)

• ~10,000 interfaces (avg. 202 med. 41)

EXPERIMENT

• We can't tell what programmers were thinking

• Or they challenges they faced in development

• But, we can formalize Ceylon's opinion in the Java compiler
without breaking backwards-compatibility

You never want a "list of constraints" ?

EXPERIMENT

• Types like Equatable<Integer> were never used as:

• Type Parameters

• Function arguments or return types

• Local variables or fields

What is a "type like" Equatable<Integer> ?

Object

Animal

Billfish

Marlin

> class Object {}
> class Animal {}
> class Billfish
 extends Animal {}
> class Marlin
 extends Billfish {}

What is a "type like" Equatable<Integer> ?

Object

Animal

Billfish

Marlin Swordfish

Equatable<T>

> > inter Equatable<T> {}
> class Swordfish
 extends Billfish
 , Equatable<Swordfish>

What is a "type like" Equatable<Integer> ?

Object

Animal

Billfish

Marlin Swordfish

Equatable<T>

Equatable

EXPERIMENT

• Parameterized types used to complete cycles in the
inheritance hierarchy were never used as:

• Type Parameters

• Function arguments or return types

• Local variables or fields

(more precisely)

RECAP

1. The problem: type-safe equality

2. Proposed solution: Equatable and F-Bounded Polymorphism

3. Strong Reject from industry

4. Equatable is a constraint, and causes cyclic inheritance

Next Up: the research perspective

Object

List<T>

Tree

Equatable<T>

> > inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

The problem with Equatable<List<...>>

> class Tree
 extends List<Tree>

Equatable

Equatable List

List

Equatable

List Equatable

Object

List<T> Equatable<T>

Equatable

List

Equatable

List Equatable

-? Tree <: Equatable<Tree>

List<T>

Tree

Equatable List

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

Object

List<T> Equatable<T>

Equatable

List

Equatable

List Equatable

-? List<Tree> <: Equatable<Tree>

List<T>

Tree

Equatable List

Equatable<T>

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

Object

Tree

Equatable

List

Equatable

List Equatable

-? Eq<List<Eq<Tree>>> <: Equatable<Tree>

List<T>

Equatable List

Equatable<T>

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

Object

List<T>

Equatable

List

Equatable

List Equatable

-? Tree <: List<Equatable<Tree>>

List<T>

Tree

Equatable List

Equatable<T>

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

Object

List<T>

Equatable

List

Equatable

List Equatable

-? List<Tree> <: List<Equatable<Tree>>

Tree

Equatable List

Equatable<T>

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

Object

List<T>

Tree

Equatable

List

Equatable

List Equatable

-? Tree <: Equatable<Tree> Cycle!

Equatable List

Equatable<T>

> inter Equatable<T> {}
> class List
 extends Equatable
 <List <Equatable <T>>

> class Tree
 extends List<Tree>

PRIOR WORK

• On the Decidability of Nominal Subtyping with Inheritance

• Andrew Kennedy & Benjamin Pierce, FOOL 2007

• The general problem is undecidable

• Can recover decidability by removing either :

1. Contravariance 2. Expansive Inheritance

3. Multiple Instantiation Inheritance*

PRIOR WORK

1. Remove Contravariance

For all types C<*>, D<*>, and all values X, Y:

C<X> is a subtype of D<Y>
if

X is a subtype of Y

PRIOR WORK

2. Remove Expansive Inheritance

Suppose C<X> inherits D<Y>,

Either X=Y
or

X does not appear in Y

(Y is no "larger" than X)

PRIOR WORK

3. Remove Multiple Instantiation Inheritance*

C cannot inherit
both

D<X> and D<Y>

For all types C, D<*>, and all values X, Y:

* All expansive-recursive type parameters must be invariant and linear

PRIOR WORK

• Taming Wildcards in Java's Type System

• Ross Tate, Alan Leung, Sorin Lerner, PLDI 2011

No nested contravariance in:

inheritance clauses
or

type parameters

<List <Equatable <T>>
List<T> extends Equatable

Contravariance

Nested Contravariance

Expansive Inheritance

Bad design

<List <Equatable <T>>
List<T> extends Equatable

Nested Contravariance ⊂

Programmers separate data from "constraints on data".
This separation leads to decidable subtyping.

Bad design

<List <Equatable <T>>
List<T> extends Equatable

Nested Contravariance ⊂

Programmers separate data from "constraints on data".
This separation leads to decidable subtyping.

ShapesMaterials

Material-Shape
Separation

Bad design

• Object

• List<T>

• Swordfish

Cycle-free inheritance

Materials

• Equatable<T>

• Cloneable<T>

• Addable<T>

Never used as type
parameters

Programmers separate data from "constraints on data".
This separation leads to decidable subtyping.

Shapes

SUMMARY
• While studying type-safe equality, we found a strange pattern

• Equatable, Comparable, Hashable are different!

• Following this pattern intuitively gives decidable subtyping

• These Shapes describe the structure and constraints of data

• In contrast, Materials are the data used and exchanged

MATERIALS & SHAPES

SUB-GOALS

1. Decidable subtyping

2. Type equality, decidable joins

3. Conditional inheritance

4. Shape shifters

i.e. "where can we go from here ? "

WELL-FOUNDED
INHERITANCE

• Undecidability results were caused by cyclic inheritance

• Impossible to predict how type parameters would expand

• Without shapes, inheritance is well-founded

• No more cycles!

• An object's inheritance graph is known at compile-time

• Many applications

DECIDABLE SUBTYPING
• Strategy: define a measure on judgments X <: Y

• Key idea: inheritance never introduces new shapes

• Two components:

• The number of shapes appearing in each type

• The maximum number of proof steps until the next shape

TYPE EQUALITY
• Suppose the type system has intersection types, X&Y

• Is List<X&Y> equal to List<Y&X> ? (It should be!)

• Not true in Java

• Not true using Kennedy & Pierce's technique

• Not true using Tate et al.'s technique

TYPE EQUALITY
• Our subtyping algorithm only depends on recursion

• Never uses syntactic equivalences

• We get equality for free: (A = B) iff (A <: B and B <: A)

JOINS
• A ⊔ B is the least common supertype of A and B

• Useful for type-checking conditional statements.

• if (C) then A else B has type A ⊔ B

• In many languages, arbitrary joins do not exist

JOINS

Addable<?>

Integer

Addable<out Addable<?>>

Double

Addable<out Addable<out Addable<?>>>

JOINS
• Our system: the join of two materials always exists

• Because material inheritance is decidable

• Note: Addable<*> was never the desired result

• The result of any computation must be a material

CONDITIONAL INHERITANCE
• Unanswered question: type-safe equality for List<T>

• First solution, again: List<T> extends Eq<List<Eq<T>>>

• Bad style

• Nested contravariance & expansive inheritance

• List elements forced to extend Eq -- cannot make a
List<Object>

CONDITIONAL INHERITANCE
• Ideally, List<T> is Equatable if and only if its elements are

• "satisfies" indicates that shapes are constraints, orthogonal
to material classes and interfaces

• "given" denotes a condition that holds for certain instances

List<out T> satisfies Equatable

given T satisfies Equatable

CONDITIONAL INHERITANCE
• Surprisingly challenging! Consider :

> interface List<out T> satisfies Cloneable
 given T satisfies Cloneable

> class Array<inv T> extends List<T>
 satisfies Cloneable
 given T satisfies Cloneable

> class B satisfies Cloneable

> class A extends B

• What is the result of invoking Array<A>.clone() ?

SHAPE SHIFTERS
• Code reuse is fundamental to object-oriented programming

• Shapes express constraints at the class / interface level

• Shape Shifters are a proposal for type variable-level reasoning

Set<String with CaseInsensitive>

Set<Function<Int, Int> with RefEqual>

The End

