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Abstract We built Chorex, a language that brings choreographic programming to Elixir as a path toward
robust distributed applications. Chorex is unique among choreographic languages because it tolerates failure
among actors: when an actor crashes, Chorex spawns a new process, restores state using a checkpoint, and
updates the network configuration for all actors. Chorex also proves that full-featured choreographies can
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statically and in terms of source code rather than macro-expanded code. This paper illustrates Chorex on
several examples, ranging from a higher-order bookseller to a secure remote password protocol, details its
implementation, and measures the overhead of checkpointing. We conjecture that Chorex’s projection strategy,
which outputs sets of stateless functions, is a viable approach for other languages to support restartable actors.
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Chorex: Restartable, Language-Integrated Choreographies

1 Introduction

Choreographic programming adds a layer of organization to concurrent or distributed
systems. A choreographic language introduces a domain-specific notation for chore-
ographies—programs that describe the interactions among actors in a system—and it
projects each choreography to a set of local programs, one for each actor [7, 39, 40].
These local programs contain all the behavior to ensure their corresponding actors
fulfill their part in the choreography.

Actor 1

Actor n

Choreography

…Projection

A choreography makes a global view of the system explicit as code, and is deeply
connected to the actual behavior of actors. By contrast, in traditional distributed
systems, the global view is merely a design document or a sketch on a whiteboard,
and it is up to programmers to ensure that individual actors work together to realize
the global protocol design. Actors can easily fall out of sync, as only end-to-end testing
holds them together.
The key aspect of a choreography is the delivery notation (~> in Chorex), which

describes a communication between two actors. For example, the term Alice.e ~> Bob.v
means that the actor Alice computes expression e and sends the result value to actor
Bob to be stored in variable v.

send(Bob, e)

v = recv()
Alice.e ~> Bob.v

Projection
Alice

Bob

The expression e is located at actor Alice. Likewise, the variable v is located at Bob: Bob
can use v in subsequent expressions, but Alice cannot. This is enforced by the compiler;
it ensures that actors can only access information explicitly sent to them and that
private computations remain local to that actor.
With choreographies, classes of communication errors become unrepresentable.

Sends and receives cannot be mismatched because they are paired by design through
delivery notation. Deadlocks cannot occur because lexical scope rules them out. For
example, our language Chorex reports a compile-time error for the would-be deadlock
below because the variable A.val is used before it is bound:

defchor [A, B, C] do # choreography for 3 actors
def run() do
A.val ~> B.val
B.val ~> C.val
C.val ~> A.val

end

ERROR: undefined variable "val"
|
| A.val ~> B.val
| ^^^
|
+- deadlock.exs:6 A.run/1
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(a) Autocomplete in an actor lists functions re-
quired by the choreography.

(b)Missing knowledge-of-choice annotations lead
to a static error during projection.

Figure 1 Examples of language integration in Chorex.

Languages that support choreographic programming are on the rise and quickly
growing to support full-featured programs. Choral [28] brings choreographies to Java
and recently added interoperability with legacy code to enable an Internet Relay Chat
(IRC) implementation [38]. MultiChor, for Haskell, introduces a dynamic approach
to projection that has been ported to Rust and TypeScript [3]. These and other
implementations (surveyed in Section 6) have taken great strides toward practical
choreographic programming. However, choreographic languages fail to address all of
the seminal eight fallacies of distributed computing [54, 63]: (1) the network is reliable,
(2) latency is zero, (3) bandwidth is infinite, (4) the network is secure, (5) topology
doesn’t change, (6) there is one administrator, (7) transport cost is zero, and (8) the
network is homogeneous. Languages meant to support distributed programming must
be robust against all of these critical issues.
In this paper, we present a language—Chorex—that addresses a core aspect of

fallacy (5), topology doesn’t change, namely, failing actors. If an actor fails, Chorex
can replace the actor and reset the choreography to a previous valid state. Chorex
achieves this goal through a novel projection strategy and runtime monitoring. In a
choreography, programmers write checkpoint/rescue blocks to specify recovery behavior.
During projection, the compiler translates checkpoint blocks into code to make each
actor checkpoint its state, as well as code to prevent actors from advancing into
an un-recoverable position further in the choreography. At runtime, a supervisor
restarts actors as needed, restores checkpoint state, and shares the address of the
new participant via out-of-band messages (i.e., messages that are not specified in the
choreography itself) to other actors.
In the following minimal example, Alice crashes due to division by zero. After

restarting, a new Alice is able to exchange messages with Bob:
checkpoint do
Alice.f(1 / 0) ~> Bob.y

rescue
Alice.f(1) ~> Bob.y

end
Alice.(2 + 2) ~> Bob.sum
Bob.(sum + sum) ~> Alice.result
Alice.result
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Chorex brings choreographic programming to Elixir. The implementation is notable
because it follows the languages as libraries [52] design method to achieve a high
level of integration with the standard Elixir toolchain. Figure 1 presents two benefits
of language integration:

Figure 1a shows that functions required by a choreography appear as suggestions
when a programmer edits an actor module. The pictured suggestion appears in
the context of an actor module named MyAlice that fills the role named Alice from a
choreography named Demo.Chorex (not pictured). There are two required functions:
decrypt and priv_key.
Figure 1b shows a tooltip box with a compile-time error due to missing knowledge-
of-choice annotations. This sort of error illustrated in Figure 1b is not detectable in
choreographies implemented as runtime libraries because it requires two passes
over the input [3, 46]. Either a bespoke compiler or Chorex-style metaprogramming
is needed.

Both affordances are IDE-agnostic because they leverage the Elixir language server.
Our IDE of choice happens to be Emacs, but Neovim or VSCode users would see
similar tooltips.
Concretely, the Chorex compiler is an Elixir macro that analyzes source code,

projects the code to actor implementations, and propagates source locations to enable
informative error messages. Additional features of Chorex include first-class functions
and out-of-order message receives.

Outline This paper begins by describing Chorex (Section 2), with emphasis on its
novel support for restartable actors, and follows with a close look at the Chorex imple-
mentation and how it achieves language integration through metaprogramming (Sec-
tion 3). Next is a series of examples of Chorex in action, including a TCP socket server
and an implementation of the Secure Remote Password protocol (Section 4), and
a performance evaluation of the overhead induced by the checkpoint/rescue recovery
mechanism (Section 5). The paper concludes with a survey of the rapidly-evolving
area of choreographic programming (Section 6) and a brief discussion (Section 7).

Notation For readability and to save space, code listings in this paper make two
abuses of Elixir notation. First, they often omit end delimiters, which are required
to close blocks opened by def … do and other forms. Second, they omit parentheses
around located expressions, writing A.e rather than the preferred A.(e), which cooperates
better with the Elixir autoformatter. Refer to the artifact for runnable Elixir code [62].

2 Elements of Chorex

Chorex is a domain-specific language for choreographic programming in Elixir [48,
50]. Elixir is the chosen target language for several reasons. First, it compiles to the
Beam VM, the Erlang virtual machine, and thus has access to primitives that support
low-latency, distributed, fault-tolerant systems. These primitives have enabled fast

20:4



Ashton Wiersdorf and Ben Greenman

prototyping of choreographic features. Second, Elixir has a large userbase to engage
with in future work. Third, Elixir comes with a hygienic macro system. Thanks to
macros, Chorex is implemented as a library and integrates smoothly with the Elixir
build system, Mix [21], and package manager, Hex [20].

Key design principles of Chorex include the following:
Maintain a smooth Elixir workflow by implementing the choreography language
and projection through metaprogramming.
Manage actors using a standard Elixir supervision tree.
Provide custom mailboxes and control stacks for actors to handle out-of-order
messages, messages from the supervisor, and recovery.
Use Elixir syntax and programming idioms to shape the “look and feel” of Chorex.
This section explains user-facing aspects of the language design, including how to

write a choreography (Section 2.1), how to implement an actor (Section 2.2), and the
framework for monitoring and supervision (Section 2.3).

2.1 The Choreography Language

To write a Chorex choreography, define a module, import Chorex, and use defchor:
defmodule SampleChor do
import Chorex
defchor [Alice, Bob, Carol] do
...

end

The defchor macro expects two input forms: a list of actor roles (in CamelCase, to
match the Elixir convention for module names) and a block of code. The block of code
contains a sequence of function definitions (def). One function named run must be
included; this function is the entry point to the choreography. Nothing other than
function definitions are allowed. Each def projects to several variant functions, one for
each actor. A defchor form outputs a standard Elixir module named Chorex that provides
code and an API for actors. Expanded code thus has the following shape:
defmodule SampleChor do
import Chorex
defmodule Chorex do
...

end

Other modules must refer to this macro-defined module (SampleChor.Chorex), either to
implement an actor or to start the choreography.

Located Expressions and Values Variables and expressions in a choreography must be
located at an actor using the syntax Actor.e (used in this paper) or Actor.(e) (preferred
in practice, because it cooperates with Elixir’s mix format tool). An actor can access
variables located only on that actor; other actors’ located variables are kept separate.
When an expression is located on actor e.g. Alice, that expression will be computed on
the process for the actor Alice when the choreography runs.

20:5



Chorex: Restartable, Language-Integrated Choreographies

Arguments to standard functions must be located as well. The header below expects
a field named arg at the actor Alice and another field, also named arg, at the actor Bob:
def some_function(Alice.arg, Bob.arg) do ...

Projecting this choreographic function results in two standard Elixir functions: one
in a module for Alice, and the other in a module for Bob. Each function expects two
arguments, but Alice’s projection will ignore the second argument, and Bob’s projection
will ignore the first. At runtime, when the function is called, calls to some_function on
node Alice will pass a dummy value as the second value, and similarly for Bob.

There is one exception to the rule that every value must be located: function argu-
ments to a higher-order function are not located. Such functions have a representation
on every actor in the choreography.

Delivery: Sending and Receiving Messages Delivery notation (send ~> recv) sends
a value from one actor to another. In Chorex, the sender can prepare any located
expression: variables, function calls, arithmetic, and other expression forms are valid
on the left side of a send. The receiver can use Elixir pattern matching to bind variables:
Alice.{:answer, 42} ~> Bob.{:answer, the_answer}

Conditionals and Knowledge of Choice Chorex repurposes if expressions from Elixir
for choreographic conditionals (with one change: Chorex requires an else branch;
multi-way conditionals are future work). In the following example, Alice is the deciding
actor for this conditional, as the branch hinges on the result computed at Alice. The
projection for Bob inserts a receive to wait for a knowledge of choice message to know
which branch to take:
if Alice.make_decision() do
Alice.yes_branch() ~> Bob.d1
Bob.report(d1)

else
Alice.no_branch() ~> Bob.d2
Bob.report(d2)

end

An if in Chorex need not appear in tail position (unlike, e.g., Pirouette [31]).
Chorex does not (yet) infer the actors in a conditional, and thus by default shares

knowledge of choice with every other actor in the choreography. To limit the notified
actors, a programmer can add a notify: annotation:
if Alice.make_decision(),
notify: [Bob, Carol] do ...

When a notify: fails to include all necessary actors, Chorex raises a compile-time
error as it projects code for each actor. Below, Carol is missing a notify:
defchor [Alice, Bob, Carol] do
def run(Alice.msg) do
if Alice.decrypt(msg, priv_key()), notify: [Bob] do
Bob.notify_success()
Carol.foiled()
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else
Bob.notify_failure()
Carol.success()

The error output explains the problem with an accurate line number:
== Compilation error in file bad_branch.ex ==
** (CompileError) bad_branch.ex:3: Branches differ for actor Elixir.Carol; `if' block needs to notify

Error Rescue and Restarts Chorex adapts Elixir’s checkpoint/rescue blocks to handle

Run continuation

Actors enter the 
checkpoint block

Actors checkpoint 
their state

Run 
checkpoint 

block

Await all clear

Monitor restarts 
crashed process

Crashed process 
restores state

Actors unwind to 
rescue block

Run rescue block

3

1

4

2

Figure 2 Chorex checkpoint/rescue logic.

errors that may arise in actor code. (Un-
like in Elixir, rescue declares a block and
not a match clause.) If Alice or Bobwere to
fail in the following checkpoint block, both
actors would execute the rescue block
with the failing actor restored as a new
actor instance with recovered state:
checkpoint do
Alice.dangerous_operation() ~> Bob.x
Bob.success(x)

rescue
Alice.safe_operation() ~> Bob.x
Bob.fallback(x)

end

Figure 2 presents a flowchart descrip-
tion of checkpoint/rescue semantics. Every
actor works through this flowchart by
communicating with a runtime monitor,
which watches for crashes. At the start
of the checkpoint block, each actor check-
points its state. This checkpoint is used
to enter the rescue block, if needed. If all
goes well for an actor (1), it pauses at
the end of the checkpoint/rescue in case an-
other actor crashes. If all actors pass (2),
the monitor sends an “all clear” signal indicating that it is safe to proceed into the
continuation of the block. If an actor crashes, (3) the monitor restarts the failed actor
and notifies all actors to reset their state (4) and enter the rescue block. In either case,
when the checkpoint/rescue block is done, the monitor drops the actors’ checkpoints for
this block and the actors proceed through the rest of the choreography.

Actor-Local Variables An actor can bind variables using Elixir’s with notation. For
example, here Alice creates a located variable x:
with Alice.x <- compute_value() do ...

Run Results When actors finish executing the main run function, they each send a
value to the mailbox of the calling process. This value defaults to nil.
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2.2 Actor Interface

Chorex projects a choreography into actor modules that handle communication, but
not actor-specific functionality. Actor implementation modules must define all the
local functions that a choreography needs. For example, in the choreography code
below, the first line calls a function get_money() located on the Alice actor, the second
line asks Bob to fetch_apples, and the third line asks Alice to fetch_sugar and bake_pie:
Alice.get_money() ~> Bob.payment
Bob.fetch_apples(payment) ~> Alice.apples
Alice.bake_pie(apples, fetch_sugar())

An implementation for Alice must provide each function in the wishlist:
defmodule AliceImpl do
use SampleChor.Chorex, Alice

def get_money(), do: ...
def fetch_sugar(), do: ...
def bake_pie(apples, sugar), do: ...

end

To guide actor implementation, Chorex gathers the set of local functions for each
actor during projection and creates an interface specification—called a behaviour in
Elixir parlance—that an implementing module must contain. Elixir issues compile-
time errors if an actor implementation does not satisfy the behaviour. Implementing
modules must have use SampleChor.Chorex, ActorRole, with ActorRole replaced with the name
of the actor to implement. This use declaration expands into a behaviour declaration
for that actor, as well as some utility module imports needed by Chorex. Aside from
this, there is nothing Chorex-specific in an actor implementation module.

Language Server Integration Chorex provides guidance to implementation modules
in the form of language server tooltips, illustrated in Figure 1a. These are enabled
through metaprogramming and cooperation with Elixir’s behaviour mechanism. In
particular, the line use SampleChor.Chorex, Alice expands at compile time to code that glues
this implementation module to the choreography’s projected module for Alice.

Starting a Choreography With a choreography defined in the module SampleChor as
well as implementations for each of the actors, all that is left is to instantiate the
choreography. The Chorex library defines a start function which takes the module
name of the choreography, a map associating each actor to an implementation module,
and a list of arguments to pass to the choreography entry point, i.e. the run function.
Chorex.start(SampleChor.Chorex,

%{Alice => AliceImpl, Bob => BobImpl, Carol => CarolImpl},
["Hello from Alice"])

Chorex.start starts all the actor processes, broadcasts the network configuration so actors
can find each other, and sets up the supervision tree.
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Calling process

RuntimeSupervisor
(DynamicSupervisor)

Actor1 Actor2 Actor3

RuntimeMonitor
(GenServer)

M
on

ito
rs

Linked

Linked

The process that calls Chorex.start spawns a 
linked RuntimeMonitor process; if either the 
caller or the RuntimeMonitor crash, the other 
will be taken down as well.

1

RuntimeMonitor spawns a linked 
RuntimeSupervisor. This will supervise all the 
actors in the choreography. This way, if 
RuntimeMonitor or RuntimeSupervisor crash, 
all the children will be cleaned up as well.

2

RuntimeMonitor spawns processes for each 
actor under RuntimeSupervisor and monitors 
each one. If an actor crashes, RuntimeMonitor 
will be informed and can attempt restarting it.

3

…

Supervises
Figure 3 Chorex creates one monitor and one supervisor for each choreography.

2.3 Supervision Protocol

Chorex leverages Elixir/Erlang process monitoring to supervise choreographic actors.
In Elixir, when process A monitors another process B and B exits, process A receives a
message that describes how B terminated (e.g., normal exit vs. crash). Chorex creates
monitoring links to build a supervision tree in the style of Figure 3 every time a
program starts a choreography.
The supervision tree adds two processes to a choreography, in addition to the

calling process and actor processes: a RuntimeMonitor and a RuntimeSupervisor. The Monitor,
Supervisor, and calling process are linked together such that if any one process crashes,
the entire choreography terminates. The Supervisor’s job is to perform this cleanup
on the actors. The Monitor’s job is to watch for actors that crash, restart them, and
send updates to reconfigure the network.
Technically, the Supervisor implements an Elixir behaviour called DynamicSuper-

visor [11]. The Monitor implements the GenServer behaviour [12]. Each actor is a
GenServer as well; Section 3 explains the significance of GenServers.

Restarting a Crashed Process When an actor enters a checkpoint/rescue block, it creates
a checkpoint that includes the control stack, message inbox, and bindings for local
variables. The actor sends the control stack and variable bindings to the Monitor
process. If a crash occurs, the Monitor spawns a new process, which has no state
initially, and restores the missing pieces. After reinstating an actor process, the Monitor
alerts all other actors that a crash has occurred.

Checkpoints are stored in the Monitor for convenience. They could easily move to
the filesystem, a database, or even another process.

Handling Out-of-Band Recovery Messages Chorex manages its own call stacks and
inboxes instead of relying on Elixir’s mechanisms to enable out-of-band message
receives. An out-of-band message is a message that does not correspond to any ~> in
the choreography. When an actor crashes, the monitor broadcasts a message that the
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def run(Bob.(title)) do
  Bob.remark("I want " <> title)
  Bob.(title) ~> Alice.(t)
  Alice.get_price(t) ~> Bob.(price)
  Bob.record(title, price)
  ...
end def handle_continue({:tok1, price}, state) do

  title = state.vars[:title]
  record(title, price)
  ...
end

def handle_continue({:run, title}, state) do
  remark("I want " <> title)
  send(to: Alice, title)

  # Now we need to receive
  state = put_in(state.vars[:title], title)
  make_receive_state(:tok1, state)
end

Choreography

Bob’s projection

Figure 4 Projection splits actor code into a set of callbacks: one per receive.

most recent checkpoint block failed along with a token indicating which stack frame
the actors must unwind to. Actors handle this message by unwinding their control
stacks and resetting their environments to the frame that transfers control to the
rescue block. These reset messages are out-of-band because they bypass the queue that
inter-process messages must normally go through.

Can a Restarted Process Miss Messages? Any messages that arrive while an actor is
executing a checkpoint block go to its inbox, but not to its checkpointed state, and will
be lost if the actor crashes. However, this is not problematic. The messages that arrive
in a checkpoint block must have originated from other actors within the same checkpoint
block because sends and receives are matched up and and all actors must complete
the checkpoint before any one can continue execution. Forcing actors to wait at the
end of a checkpoint also ensures that they are available to unwind if a rescue is needed;
without synchronization, an actor might terminate early.

3 Implementation Highlights

Chorex’s high-level strategy for enabling restarts and language integration is applicable
to other choreographic languages, despite our focus on Elixir. This section discusses
key aspects of the implementation to facilitate adaptation.

Chorex translates choreographies to sets of sets of message-passing functions (Fig-
ure 4). Each function in the choreography projects into several variants, one for each
actor, and each variant is in turn split into several functions (distinguished by gener-
ated tokens) corresponding to receive-separated chunks of the choreography. Getting
these functions to cooperate required a number of significant components: a tailored
message format (Section 3.1), a method of organizing component functions (Sec-
tion 3.2), and an implementation of the compiler as a metaprogram to maximize
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host-language integration (Section 3.3). We conclude this section with lessons learned
from the effort (Section 3.4).

3.1 Message Format

There are two categories of messages that a Chorex actor needs to handle: choreogra-
phy messages and control messages. Choreography messages go between actors, and
originate from the sends and receives in a choreography. Control messages come from
the Chorex runtime, and propagate knowledge of choice, notify actors of crashes and
network updates, and synchronize actor execution of checkpoint/rescue blocks.

Most messages have a 3-tuple format: MSG = {message_type, civ_token, payload}

The message_type field may have one of five possible values, which determines both
the payload and the tuple shape of the remaining message:

:chorex, for a choreography message. The corresponding payload is a message (any
Elixir value) created by one actor and intended for another actor.
:choice, for knowledge-of-choice. Payload is a Boolean choice value.
:revive, for error recovery. This type of message is a 2-tuple; it does not include a
CIV token. Payload is the new actor state to install.
:recover, for error recovery. This type of message is sent to actors that did not crash,
and asks them to unwind to the nearest rescue point and reset their environments.
Payload represents the new network configuration.
:barrier, for synchronization at checkpoint blocks. Indicates that all actors successfully
completed the checkpoint block and may proceed into the continuation.
The civ_token, inspired by Ozone [41], preserves communication integrity in the

presence of out-of-order messages. Each CIV token is a 4-tuple:
CIV = {session_token, metadata, sender, receiver}

The session_token is a UUID generated when the choreography is instantiated (during
Chorex.start). Every instance of a choreography has its own session token. The metadata

field describes the source-code location within the choreography where this message
originated (i.e., the original send ~> recv). Crucially, both parties involved in the
message receive equal metadata values, and different send sites lead to different metadata
values. The sender and receiver components are the role names of the actors involved. All
together, a CIV token ensures that a message goes only to the intended destination.

3.2 Actors as Server Processes

Chorex projects actors to Elixir GenServer behaviors [12, 23] rather than straight-line
processes. This choice solves the following problems with default Elixir processes:
1. no way to prioritize messages from the Monitor process (Figure 3),
2. no way to supervise for crashes.
GenServers—in contrast to straight-line processes—can be supervised and monitored.
Additionally, they can handle messages that arrive in any order and can give priority
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defmodule Counter do
use GenServer
def init(start_count), do: {:ok, start_count} # final element is server state
def handle_cast(:increment, count), do: {:noreply, count + 1}
def handle_call(:get_count, sender, count), do: {:reply, count, count} # 2nd element goes to caller

Figure 5 Example GenServer that implements a counter.

to messages from the Monitor process. A straight-line process would have to anticipate
every possible out-of-band message (e.g. those arriving from the Monitor process) at
every receive. GenServers have their own drawbacks, e.g., complicated variable scope,
but Chorex works around these problems.

GenServer Primer GenServer (short for “Generic Server”) is an Erlang library that
makes it easy to build processes that manage state and can respond to ad-hoc messages.
Elixir inherits GenServers from Erlang. To behave as a GenServer, a module must define
an init function that returns a value representing the server state, and callbacks to
handle incoming messages. There are three kinds of callbacks that deal with messages:
handle_call, handle_cast, and handle_info. These callbacks can expect at least a message and
state value as input, and must return a new state value. A handle_call receives a process
ID as well, and must include a reply to this process in its return value.

As an example, the GenServer in Figure 5 implements a counter. The initial state is
the number start_count. One callback, handle_cast, awaits messages with the tag :increment

and a numeric value; it adds the input value to the counter state. Another callback,
handle_call, awaits :get_count messages. It logs information about the request and returns
a 3-tuple with two copies of the state. One copy is a reply to the sender process and
the other copy is the new state (same as before the call). To start an instance of this
module with an initial count of zero, call GenServer.start(Counter, 0).

Multiple processes can interact with a GenServer at the same time. The GenServer
handles each incoming message, one at a time. This behavior enforces linearity so
that concurrent processes can interact with shared state in a coherent way.

Challenges The key challenge of GenServers as a target for projection is that, in
order to handle out-of-band messages, every message that an actor can receive must
be anticipated with a callback. This means that receives must be split across several
functions as shown in Figure 4. Consequently, variables defined earlier in a chore-
ography must become part of the GenServer state in order to reach later parts of
the choreography. A second consequence is that actors can no longer use the Elixir
call stack to handle function calls. Chorex manages this with its own actor-specific
control stacks in the GenServer state. These stacks also allow the GenServer to alter
its control flow in response to out-of-band messages.

Correct Scope via Live Variable Analysis Below, two actors send a message to Bob:
Alice.one() ~> Bob.x
Carol.two() ~> Bob.y
Bob.(x + y)
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Projection for the Bob actor introduces two callbacks, one for each receive. A direct
but incorrect projection would use the variables x and y directly. This is wrong because
x is not in scope for the second callback, which needs to return a sum:
# WRONG projection for Bob
def handle_info({Alice, x}, state), do: ...
def handle_info({Carol, y}, state), do: x + y # WRONG

Chorex builds a correct projection by tracking the set of live variables through a
choreography. At runtime, Chorex stores a map from variable to values in GenServer
state, and reads from the map as needed:
# CORRECT projection for Bob
def handle_info({Alice, x}, state) do
state = put_in(state.vars[:x], x)
...

def handle_info({Carol, y}, state) do
x = state.vars[:x]
x + y

Determining free variables in Elixir has some subtleties. For example, the match
expression [x, ^y, x] = make_list() contains three variables, x, y, and x again, but binds only
one (x). All variables with the same name in a pattern must bind to the same value,
so the second x does not introduce a second binding. The variable y is pinned with the
^ prefix, meaning that the value of y should be matched in the pattern. If, for example,
y were bound to 42, this pattern would match lists like [1, 42, 1] or ["hi", 42, "hi"]. Chorex
reuses Elixir’s tree-walking API to facilitate analysis, but it implements a custom set
of rules to find free variables.

Receives and Function Calls The second challenge of projection to GenServers is that
function calls in a choreography no longer map cleanly to function calls in the Elixir
output. An actor might call a function that receives several messages. Each receive
will introduce a new callback. In the example below, the function test_system receives
one message for each of the actors Mike and Joe:
def run() do
Joe.(:begin) ~> Mike.start_message
with Joe.response <- test_system() do
Joe.(String.length(response))

def test_system() do
Joe.("Hello Mike") ~> Mike.("Hello " <> my_name)
Mike.("Hello Joe, you said #{my_name}") ~> Joe.reply
Joe.("Received " <> reply)

To recover typical call/return behavior, each actor tracks a stack of call frames in
the GenServer state. When a callback finishes, the GenServer inspects the top stack
frame to decide where to go next. It then invokes the next callback which corresponds
to a return in the source language.

When projecting the run function above, Chorex does not know whether the call to
test_system will perform any receives. (Higher-order functions make it impractical to
statically track which functions do receive.) At each function call, Chorex thus creates
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a unique token to identify the call site and its continuation. This token is used in two
places: first, it goes onto the control stack in the GenServer state; second, it appears
in the argument specification of the callback that holds the continuation code.

Actor State Each Chorex actor keeps the following state, which gets passed between
every message handler in the GenServer implementation:

a queue of choreography messages to be processed,
a stack of control frames (to recover receives and function calls),
a map of live variables,
the session_token,
a map representing the network configuration, and
a reference to the implementing module.

Chorex actors also share some functionality via a runtime module. The runtime can:
push new messages on a queue as they arrive, inspect the control stack to determine
which message in the inbox is needed next, and unwind execution stacks.

Minimizing Memory in Checkpoints Actor stacks grow linearly as they descend into
recursive function calls. If an actor checkpoints state at each level, the set of saved
states would grow quadratically as depth increases; this happens when a recursive
call is inside the checkpoint block, as seen in the Nest-10k benchmark in Section 5. To
prevent excessive memory usage, the Monitor process saves deltas of each actor’s
stack. This makes checkpointing and restoring state slightly more expensive, but this
cost is offset by reduced memory usage.

3.3 Projection via macro expansion

Chorex uses Elixir’s macro system to embed a choreography language. Macros expand
during compilation, which allows Chorex to perform static checks such as sufficient
knowledge-of-choice propagation. Macros are also part of the standard Elixir toolchain,
which makes for a seamless workflow. No extra build steps are needed.

With its macro implementation, Chorex reuses many affordances of the host lan-
guage. Local expressions get lowered as-is, making the entirety of Elixir available.
Macro hygiene means Chorex users do not have to worry about macro implementation
details leaking out, and Chorex itself is, in principle, macro extensible.

Defchor Internals The defchor form is a macro that takes a list of actor roles and a
block of choreography code. It projects the choreography body for each of the actors.
Projection takes an actor role and a sequence of expressions and returns three values:
(1) a sequence of expressions, representing the actor’s view of the expressions; (2) a
list of function clauses, which defchor will splice into the GenServer for the actor; and
(3) a list of function specifications, which will be required of actor implementations.
With these pieces, the defchor macro generates a module for each actor that contains
code to realize that actor’s communications as well as a behaviour spec which actor
implementations (Section 2.2) must satisfy.

20:14



Ashton Wiersdorf and Ben Greenman

Elixir AST nodes include metadata about source code, including line and column
numbers. Chorex uses this metadata whenever possible in expanded code to ensure
that error messages get reported in terms of the source language. For example, for
the following faulty code: Alice.one(bad_variable_name) ~> Bob.x macro output causes the
Elixir compiler to report a readable error:
error: undefined variable "bad_variable_name"
Alice.one(bad_variable_name) ~> Bob.x

3.4 Reflections

GenServers as a compilation target enabled flexible, out-of-order and out-of-band
message receives. This critical ability was well worth the pain of having to implement
custom mailboxes, live variable analysis, and execution stacks.

One major issue in Elixir’s macro system is its lack of support for pattern matching
on quoted syntax. Although Elixir has excellent pattern matching for values [22],
matching on the raw AST terms becomes verbose and cumbersome for non-trivial
matches. A tool similar to Racket’s syntax-parse [17] would make macros easier to write.

Chorex projects choreographies into onemodule and requires actor implementations
to provide application-specific details in a separate module. This design allows the
reuse of one protocol across several implementations, and gives Chorex a natural
way to reuse Elixir language tooltips. Implementation modules get behavior injected
into them via the call use ChorModule.Chorex, ActorName that transparently turns them
into GenServer modules. This approach works well in our experience; in the future,
however, moving to a purely behaviour-based system for local implementation might
make things more in line with some Elixir conventions.

4 Chorex in Action

This section demonstrates the use of Chorex on motivating examples. The main ex-
amples are secure remote password authentication (Section 4.1) and a TCP socket
server (Section 4.3). We also include a zero-knowledge protocol for a discrete loga-
rithm (Section 4.2) and, of course, a bookseller example (Section 4.4).

4.1 Secure Remote Password

Secure Remote Password (SRP) [64] is an authentication method based on zero-
knowledge-proofs [29]. Our Chorex implementation drives a simple command-line
application that lets one user register a password and then serves login requests:
iex(1)> ZkpLogin.register_srp()
[New User SRP] username: alice
[New User SRP] password: jabberwocky
Server responds {:registered, "alice"}
Client responds :registered
:ok
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iex(2)> ZkpLogin.login_srp()
[Login] username: alice
[Login] password: dormouse
Server responds {:fail, :reject_client_digest}
Client responds {:fail, :server_rejected_digest}

The choreography has two run functions corresponding to the registration and login
phases. The login function expects no input at either actor. The registration function
expects a username and password located at the client, and a :register token located
at the server—merely to differentiate the projected version of this server function
from the server’s login function. In general, Elixir encourages the use of overloaded
functions distinguished by arity and argument patterns. Chorex supports overloaded
functions as well, but with the subtle requirement that the functions for each actor
must have distinct argument patterns after projection.

The code below shows the registration run function; Figure 6 describes the logic of
the login run function:
defmodule Zkp.SrpChor do
import Chorex

defchor [SrpServer, SrpClient] do
def run(SrpClient.{uname, pwd}, SrpServer.(:register)) do # register
SrpServer.get_params() ~> SrpClient.{salt, g, n}
with SrpClient.v <- SrpClient.gen_token(uname,pwd,salt,g,n) do
SrpClient.{uname, salt, v} ~> SrpServer.{uname, salt, v}
if SrpServer.register(uname, salt, v) do
SrpServer.{:registered, uname}
SrpClient.(:registered)

else
SrpServer.({:error, :no_registration, uname})
SrpClient.({:error, :no_registration})

def run() do ... # login
end

An important property of SRP is that secret information, such as the password
on the client or the randomly-generated session secret b on the server, never get
transmitted. By contrast to a traditional distributed implementation where client and
server code are separate, such as srp-elixir [45], this property is easier to verify with
a choreography. The choreography shows what values cross between actors. These
values may depend on local functions, such as gen_token, whose correctness must be
established separately; nevertheless, the choreography narrows the room for error.
During the login phase of SRP, there are several rounds of communication that

take place between server and client to establish a session key K. The choreographic
function that implements these exchanges is roughly twice as long as the registration
function but uses similar language features (with, ~>, if), so we defer it to the artifact.
It is enough to say that comparing the choreography against a high-level algorithm
description, shown in Figure 6, is straightforward. For example, the login choreography
has exactly four communication terms (~>), matching the figure.
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1. Client sends user_id to server.
2. Server finds user’s salt s and auth key v, uses

constants g, N to compute k = hash(g, N),
generates random secret b, computes B =
kv + g b, and sends g, N , s, B to client.

3. Client generates random secret a and com-
putes several values, including a session key:
A = ga

k = hash(g, N)
u = hash(A, B)
K = (B − kg x)a+ux

M1 = hash(A, B, K)
Client sends A, M1 to server.

4. Server computes K = (Avu)b and checks
that hash(A, B, K) = M1. Server sends M2 =
hash(A, M1, K) to confirm session key.

Client Server

user_id

g, N, s, B
A, M1

M2

1

3

2

4

Session key 
established

Session key 
established
✓✓

Figure 6 Secure Remote Password login protocol to establish session key K.

4.2 Discrete Logarithm

For our second example, we have implemented a zero-knowledge proof protocol to
convince a verifier that the prover knows the logarithm of a number in a finite field.
This is similar to the SPR login (Section 4.1) but it (1) requires multiple challenge
rounds for the proof, and (2) does not produce a random session key like the SRP
protocol. Below is part of the authentication choreography, abbreviated for space. The
full choreography is approximately 70 lines long and is included in the artifact.
defchor [Prover, Verifier] do
def run(Verifier.rounds) do
Prover.get_username() ~> Verifier.ident
# Prover looks up authentication parameters; y is validation key
with Verifier.creds <- Verifier.lookup(ident) do
if Verifier.creds do
with Verifier.{y, p, g} <- Verifier.creds do
Verifier.{p, g} ~> Prover.{p, g}
round_loop(Verifier.{p, g, y}, Verifier.rounds, Prover.{p, g, get_secret(get_username()}))

else
Verifier.(:bad_username)

# y is the validation token, x is the client secret
def round_loop(Verifier.{p, g, y}, Verifier.rounds, Prover.{p, g, x}) do
if Verifier.(rounds <= 0) do
Verifier.(:accept)
else
with Verifier.good_proof? <- do_challenge(Verifier.{p, g, y}, Prover.{p, g, x}) do
if Verifier.good_proof? do
round_loop(Verifier.{p, g, y}, Verifier.rounds - 1, Prover.{p, g, x})
else
Verifier.(:reject)

def do_challenge(Verifier.{p, g, y}, Prover.{p, g, x}) do
...
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Listener listen socket

AppHandlerTcpClient
request

response

listen socket

insta
ntia

te

Acceptor

1

2

3

4

Handler Choreography

HC 2

HC 3

Figure 7 Socket server architecture: (1) Listener sends a socket to Acceptor; (2) Acceptor
waits for a TCPClient, then spawns a Handler Choreography; (3) TCPClient and
AppHandler exchange messages; (4) Acceptor listens for a next client.

The choreography uses two closely-knit helper functions: one that loops through
several rounds of challenge and verification, and another that handles the logic of a
single round. Compiling these functions to a core language that supports restarts was
a key milestone in the development of Chorex.

4.3 TCP Socket Server

Our third example is a minimal socket server inspired by Thousand Island [51], a
full-fledged socket server written in Elixir. There are two choreographies involved. A
first choreography, between a Listener actor and an Acceptor actor, initializes a server
that clients can connect to. A second choreography specifies interactions between a
Client actor and an AppHandler actor. Figure 7 maps out the overall design. Crucially,
the top-level choreography is able to start multiple instances of the inner Handler
Choreography. Every client that connects to the server gets forwarded to a unique
choreography with an AppHandler actor.

Top-Level, Listener Choreography The listener choreography for our TCP server ex-
pects configuration data as input and immediately calls a helper function (located on
the Listener actor) to acquire a socket connection. The Listener sends this socket to
an Acceptor actor. At this point, the Listener’s work is done. The choreography then
enters a loop in which the Acceptor awaits and manages incoming connections.
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defmodule Tcp.ListenerChor do
import Chorex

defchor [Listener, Acceptor] do
def run(Listener.config) do
Listener.get_listener_socket(config) ~> Acceptor.{:ok, socket}
loop(Acceptor.socket)

def loop(Acceptor.listen_socket) do
Acceptor.accept_and_handle_connection(listen_socket)
loop(Acceptor.listen_socket)

end

The following module implements the Acceptor actor. It imports the choreography
above and, on the same line, specifies the actor role that it plans to implement (Acceptor).
Inside the helper function, this Acceptor calls Chorex.start to invoke a choreography
named Tcp.HandlerChor. The other arguments to Chorex.start are a map from actor roles to
module names and a list of arguments to the HandlerChor’s run function. In this case,
the only argument is the socket:
defmodule Tcp.AcceptorImpl do
use Tcp.ListenerChor.Chorex, Acceptor

@impl true
def accept_and_handle_connection(listen_socket) do
{:ok, socket} = :gen_tcp.accept(listen_socket)
Chorex.start(
Tcp.HandlerChor.Chorex,
%{AppHandler => Tcp.HandlerImpl, TcpClient => Tcp.ClientImpl},
[socket]

)
end

If anything goes wrong at runtime, the Acceptor will exit cleanly and bring the Listener
down as well. This exit behavior comes out of the box with Chorex.

Inner, Handler Choreography The second choreography describes an interactive loop.
First, the AppHandler actor initializes a dictionary to track the total bytes sent by
the client. Inside the loop, the Client sends a message to the AppHandler and the
AppHandler updates its state, decides whether to continue, and sends a reply:
defmodule Tcp.HandlerChor do
import Chorex

defchor [AppHandler, TcpClient] do
def run(TcpClient.sock) do
loop(AppHandler.(%{byte_count: 0}), TcpClient.sock)

def loop(AppHandler.state, TcpClient.sock) do
TcpClient.read(sock) ~> AppHandler.msg
with AppHandler.{resp, st2} <- AppHandler.run(msg, state) do
AppHandler.fmt_reply(resp) ~> TcpClient.resp
TcpClient.send_over_socket(sock, resp)
if AppHandler.continue?(resp, st2) do
loop(AppHandler.st2, TcpClient.sock)
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defchor [Buyer, Contributor, Seller] do
def run(Buyer.include_contributions?) do
if Buyer.include_contributions? do
bookseller(@two_party/1)

else
bookseller(@one_party/1)

def bookseller(f) do
Buyer.get_book_title() ~> Seller.the_book
with Buyer.decision <- f.(Seller.get_price("book:" <> the_book)) do
if Buyer.decision do
Buyer.get_address() ~> Seller.the_address
Seller.get_delivery_date(the_book, the_address) ~> Buyer.d_date
Buyer.d_date

else
Buyer.nil

def one_party(Seller.the_price) do
Seller.the_price ~> Buyer.p
Buyer.(p < get_budget())

def two_party(Seller.the_price) do
Seller.the_price ~> Buyer.p
Seller.the_price ~> Contributor.p
Contributor.compute_contrib(p) ~> Buyer.contrib
Buyer.(p - contrib < get_budget())

end

Figure 8 Higher-order choreography that handles two classic bookseller scenarios.

else
TcpClient.shutdown(sock)
AppHandler.ack_shutdown()

end

This choreography uses a Chorex if expression in which the AppHandler makes a choice
that determines the future of the conversation. The TcpClient receives a knowledge of
choice message from Chorex to know which branch to take in its own projected code.

4.4 More Examples: Higher-Order and Out-of-Order

Chorex has several other features inspired by prior work on choreographies. For one, it
supports first-class choreographic functions. The program in Figure 8, adapted from the
Pirouette paper [31], has a run function that executes either a one-buyer or two-buyer
bookseller scenario by passing one function to another function. Both scenarios are
inspired by the session types literature [6, 32].

References to functions, namely @two_party/1 and @one_party/1, are prefixed with an
@ sign so that Chorex can increment the arity to account for an implicit argument
representing the choreography state (Section 3.2), during compilation. This prefix is
a slight twist on Elixir’s standard &-sign prefix for function references. The suffix /1 is
standard for Elixir; it describes the arity of the function.
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A second important feature is out-of-order message receives. In the following example,
the two messages sent to MainServer arrive when they are ready. The first send does
not block and the second, being data-independent, can run immediately:
defchor [KeyServer, MainServer, ContentServer, Client] do
def run() do
ContentServer.getText() ~> MainServer.txt # may arrive 2nd
KeyServer.getKey() ~> MainServer.key # may arrive 1st
...

This feature is inspired by the Ozone language [41]. However, unlike the calculus that
Ozone is based on (O3), Chorex will not reorder two sends from the same actor, nor
will it move expressions in or out of an if branch.

5 Performance Overhead

Since actors checkpoint their state upon entering a checkpoint block and unwind their
execution stack to enter a rescue block, it is important to benchmark the runtime
overhead. We have tested with two realistic case studies of checkpoint/rescue, inspired
by programs from Section 4, and several microbenchmark variants. Table 1 lists
representative results. State Machine is based on the TCP choreography. Mini Blockchain
computes hashes in a loop, similar to challenges in zero-knowledge protocols. Flat-10k is
a microbenchmark of 10,000 iterations through a recursive function; in each iteration,
two actors do some work in a single checkpoint block. Nest-1k and Nest-10k respectively
run 1,000 and 10,000 iterations of a similar recursive function, but with a recursive
calls inside the checkpoint and rescue blocks.

Each benchmark program comes in three versions: a plain version without checkpoint/
rescue and in which actors never crash; a non-crashing version (chk) in which actors
must go through a checkpoint block, but still never crash (i.e., same control flow as
plain version); and a crashing version (chk + rescue) in which actors do crash and the
program must recover before it continues. In Table 1, the chk and chk+rescue columns
report overhead relative to the plain, no-checkpoint version.

All experiments ran on a single-user Apple M1 Pro with 32 GB RAM and 10 available
cores, using Chorex 0.9.1, Elixir 1.18.0, and Erlang 27.2.

All benchmarks saw some overhead relative to baseline performance, as expected.
In State Machine, Flat-10k, and Nest-1k, the crashing version of each benchmark imposes
an equivalent-or-higher overhead relative to the baseline than the non-crashing ver-
sion. This comes from the cost of starting up a new process, restoring its state, and
broadcasting its new address to other actors in the system. The actors’ states never
grow very large, so the cost of checkpointing is low.
Both Mini BlockChain and Nest-10k feature deep call stacks stemming from recursive

function calls inside the checkpoint/rescue blocks. This means that, in the non-crashing
variants, the actors accumulate deep stacks in their process states which in turn
increases the cost of checkpointing this state with the monitor process. In the crashing
variants, the actor state does not get as deep because they slough off their checkpoint
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Table 1 Overhead in two realistic programs and three microbenchmark configurations
compared to counterparts with no checkpoint/rescue.

chk chk + rescue chk chk + rescue

State Machine 1.01× 1.04× Flat-10k 1.06× 5.44×
Mini BlockChain 6.76× 4.71× Nest-1k 1.28× 1.95×

Nest-10k 3.48× 1.96×

frames, the monitor does not accumulate states for every recursive call, and actors do
not have to wait for an all-clear signal from the monitor to bubble out of the recursion.
Compile times scale linearly with the number of actors in the choreography. A

choreography with 100 actors (already bigger than any practical example we were
able to find) took approximately 11 seconds, and 1000 actors took approximately 2
minutes to compile. Elixir has a parallel compiler that Chorex does not currently use;
employing this to speed compilation is future work.

6 Related Work

The design and implementation of choreographic languages has become a lively
research area. Java, Haskell, Racket, Rust, and (now) Elixir all have third-party
support for choreographies today, and most of these implementations appeared within
the past year [3, 5, 9, 28, 37]. Choral is a notable exception with nearly a decade
of engineering under its belt [28]. A first workshop on choreographies [1] and an
introductory zine [2] appeared last year as well.
As Table 2 outlines, the overall expressiveness of choreographies as a protocol

language is expanding. Functional (or higher-order [14, 31]) choreographies, which
can use functions as first-class values, are standard. Restarts and network changes
are unique to Chorex. Fully out-of-order execution (Full OoO) lets a choreography
reorder code in any way that respects data dependencies. An efficient realization
of (partial) reordering is in the Ozone API [41], which compiles to Choral. Census
polymorphism allows abstraction over the number of participants in a choreography,
analogous to variable-arity functions [19]. MultiChor, ChoRus, and ChoreoTS (which
were introduced simultaneously [3]) are the first languages to support census poly-
morphism. Agreement types in Klor track the participants involved in a subroutine and
thus provide a compositional way to infer knowledge-of-choice annotations. Chorex
provides a modicum of reordering to avoid performance pathologies; messages sent
to an actor arrive as soon as they are ready, instead of queuing. We have no plans
at this time to implement full reordering. The other features in Table 2 are on the
agenda for future work improving Chorex.

An orthogonal dimension is whether to implement choreographies as a standalone
language or as a library. Libraries are simpler to implement and use, but limited in
power. For example, HasChor [46] broadcasts knowledge-of-choice to all participants—
turning every conditional into a choreography-wide sync point—because it cannot
perform a two-pass static analysis (as in [31]). MultiChor and its relatives reduce the
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actors in each broadcast through a conclave mechanism. A thesis of Chorex, and of
Choret [5], is that the best implementation of all comes through a meta-programmable
host language such as Racket [18, 24]. Similarly, recent work improves HasChor with
static projection via a Haskell compiler plugin [35].
Theoretical foundations of choreographies have a long history [7, 15, 16, 31, 41,

42]. The Pirouette calculus was the blueprint we followed to start Chorex [31].
Elixir is soon to acquire a full-featured gradual type system based on set-theoretic

types [8]. Release v1.18 [53] infers types from match patterns and function bodies to
report certain high-confidence warnings. However, users cannot write types and the
type checker assumes the permissive dynamic type by default, limiting the guarantees
that types provide. Extending this type system to gradually check choreographies is
an exciting future direction.

Lastly, we mention areas that have close ties to choreographies. Multiparty session
types [32, 33] (MPST) and secure multiparty computation (SMC) [43, 49] both coor-
dinate distributed actors via a global protocol. Session types merely specify required
behavior, giving developers the freedom to build a conforming implementation. One
notable realization of session types is ElixirST, a type checker for a language of Elixir
processes [26]. Writing programs that conform to session types can be challeng-
ing; techniques for API generation address the implementation burden [10], similar
to how Chorex choreographies generate requirements for actor modules. SMC lan-
guages avoid the conformance question by generating code from a protocol. They
are effectively choreographic languages, but designed for and constrained by security
considerations. Restarts have been implemented and formally modeled in (at least)
two session-types efforts: Session-CM [55, 56] and Links [25]. Session-CM (cluster
management) is an alterate toolchain and runtime for Apache Spark, fully compatible
with third-party Spark apps, that detects and replaces unresponsive nodes. Links
extends binary session types with try/catch handlers. Chorex differs from these efforts
through its close integration with a high-level source language (namely, Elixir), and its
use of a compiler from choreographies to endpoint code. ScalaLoci is domain-specific
language for fault-tolerant, distributed code [58]; it has a rich type system, including
a notion of data placement, that future versions of Chorex may benefit from. Dezyne
brings formal verification to concurrent industrial processes via a domain-specific
language, simulator, and language server integration [4]. Verification in Chorex is an
important next step. There is a long history of related work on verification for MPI
programs to draw from as well [36, 47, 57].

Recent work on hybrid session types shows how to compose a global protocol from
local, application specific protocols [27]. While Chorex allows choreographies to start
other choreographies, and thus supports some composition, it cannot make static
guarantees. Hybrid choreographies may be the way forward. Another closely-related
work is the Corps calculus for hierarchical choreographies [30].
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Table 2 Recent advances in choreographic programming. Functions-as-values has seen
wide adoption (Functional column). Other recently-proposed features have yet to
permeate the landscape. Chorex adds error-restarts to the feature space.

Functional Restartable Full OoO Census Poly Agreement-τ
Choret [5] Ø
HasChor [46] Ø
? Chorex Ø Ø
Choral [13, 28, 41] Ø Ø
Klor [37] Ø Ø
MultiChor,ChoRus, Ø Ø
ChoreoTS [3]

7 Conclusion

The essence of Chorex is a compiler from multiparty programs to stateless, message-
passing processes. This compiler breaks new ground for choreographic programming
with restartable actors, which are enabled through a checkpointing protocol and
cooperative supervisor process, and with its tight integration to the host language,
enabled by metaprogramming. It was not at all clear at the start of this project that
an expressive choreographic language could be implemented as a meta-program, as
opposed to a standalone compiler. The fact that Chorex works for Elixir indicates that
other metaprogrammable languages, from Ruby [34] to Racket [18] to Rust [44],
can follow suit by building a library for supervised processes (Section 2.3) and a
pure-functional server runtime (Section 3.2). Extending the Chorex compiler protocol
to support multiple languages in the same toolchain, with projection to actors written
in different languages, would be a worthy challenge for the future.

Data-Availability Statement

The evaluated artifact for this paper contains all significant code examples, scripts
for reproducing benchmark results, and a recent version of Chorex [61]. A newer
version of the artifact with updated benchmarks and the latest version of Chorex is
also available [62]. The latest version of Chorex is available on GitHub [60], and via
the Elixir/Erlang package manager Hex [59].
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