If-T: A Benchmark for Type Narrowing

Hanwen Guo? © and Ben Greenman?
a University of Utah, Salt Lake City, UT, USA

Abstract

Context The design of static type systems that can validate dynamically-typed programs (gradually) is an
ongoing challenge. A key difficulty is that dynamic code rarely follows datatype-driven design. Programs instead
use runtime tests to narrow down the proper usage of incoming data. Type systems for dynamic languages thus
need a type narrowing mechanism that refines the type environment along individual control paths based on
dominating tests, a form of flow-sensitive typing. In order to express refinements, the type system must have
some notion of sets and subsets. Since set-theoretic types are computationally and ergonomically complex, the
need for type narrowing raises design questions about how to balance precision and performance.

Inquiry To date, the design of type narrowing systems has been driven by intuition, past experience, and
examples from users in various language communities. There is no standard that captures desirable and
undesirable behaviors. Prior formalizations of narrowing are also significantly more complex than a stan-
dard type system, and it is unclear how the extra complexity pays off in terms of concrete examples. This
paper addresses the problems through If-T, a language-agnostic design benchmark for type narrowing that
characterizes the abilities of implementations using simple programs that draw attention to fundamental
questions. Unlike a traditional performance-focused benchmark, If-T measures a narrowing system’s ability to
validate correct code and reject incorrect code. Unlike a test suite, systems are not required to fully conform
to If-T. Deviations are acceptable provided they are justified by well-reasoned design considerations, such as
compile-time performance.

Approach If-T is guided by the literature on type narrowing, the documentation of gradual languages such as
TypeScript, and experiments with typechecker implementations. We have identified a set of core technical
dimensions for type narrowing. For each dimension, the benchmark contains a set of topics and (at least) two
characterizing programs per topic: one that should typecheck and one that should not typecheck.

Knowledge If-T provides a baseline to measure type narrowing systems. For researchers, it provides criteria
to categorize future designs via its collection of positive and negative examples. For language designers, the
benchmark demonstrates the payoff of typechecker complexity in terms of concrete examples. Designers can
use the examples to decide whether supporting a particular example is worthwhile. Both the benchmark and
its implementations are freely available online.

Grounding We have implemented the benchmark for five typecheckers: TypeScript, Flow, Typed Racket, mypy,
and Pyright. The results highlight important differences, such as the ability to track logical implications among
program variables and typechecking for user-defined narrowing predicates.

Importance Type narrowing is essential for gradual type systems, but the tradeoffs between systems with
different complexity have been unclear. If-T clarifies these tradeoffs by illustrating the benefits and limitations
of each level of complexity. With If-T as a way to assess implementations in a fair, cross-language manner, future
type system designs can strive for a better balance among precision, annotation burden, and performance.
ACM CCS 2012

= Software and its engineering - Control structures; Software notations and tools; Functional languages;

Keywords types, gradual typing, dynamic languages, benchmarking

The Art, Science, and Engineering of Programming

Submitted February 1, 2025
Published June 15, 2025

pol 10.22152/programming-journal.org/2025/10/17

® © Hanwen Guo and Ben Greenman
@ This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming, vol. 10, no. 2, 2025, article 17; 31 pages.

https://orcid.org/0009-0000-7118-2145
https://orcid.org/0000-0001-7078-9287
https://doi.org/10.22152/programming-journal.org/2025/10/17
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

If-T: A Benchmark for Type Narrowing

EJ Introduction

“Some account should be taken of the premises in conditional expressions.”
John C. Reynolds [57]

Duck typing is a core competency of dynamic languages. It allows programs to
experiment with incoming data, gain partial information, and act on the discovered
information without constraining the shape of input data any more than strictly
necessary. For example, the Rainfall problem [21, 62] asks for the average rainfall
from a list of unreliable weather reports. Any report that does not have a rainfall
field, or that has a malformed rainfall value (non-numeric, negative, or greater than
999) should be ignored. The function below, written in a pseudocode inspired by
Rhombus [22], Python [74] and TypeScript [73] that we introduce in Section 4.1,
cleanly solves the problem using a sequence of conditional tests:
define avg_rainfall(weather_reports: List(JSON)) -> Number:
let total = 0, count =0
for day in weather_reports:
if day is Object and has_field(day, "rainfall"):
let val = day["rainfall"]
if val is Number and o < val < 999:
total += day["rainfall"] // expected: no type error, right-hand expression is a number
count +=1
return (if count > o: total / count else: 0)

Callers of this function are free to send it any sort of JSON data, including data
from potentially-flawed sources such as sensors or handwritten spreadsheets. Callers
are also free to later modify the shape of the data they send. If, say, a weather-sensor
upgrade adds fields or changes the types of unused fields, the function still works the
same. These loose requirements on callers are possible because the function accepts a
broad range of data and uses runtime checks before accessing fields or adding values.

Challenge: Typing Dynamic Control-Flow Reasoning about such code is a challenge
for static type systems, and calls for a notion of type narrowing. A type narrowing
system introduces at least three high-level features: it adds a degree of flow sensitivity,
as conditional tests may refine the type environments in their positive and negative
branches; it adds a notion of paths into a data structure, such as the field rainfall in a
JSON object; and it extends the language of types to express unions and subtractions
without overwhelming complexity. A typechecker must have a logic that satisfies all
of the above requirements to typecheck the avg_rainfall function.

With so many constraints at play, it is no surprise that it took decades of research,
from Typed Lisp [8] and StrongTalk [4] to soft [77] and gradual [39, 43, 61, 69] typing,
before type narrowing became a practicable reality in gradual type systems such as
TypeScript [2], Flow [15], and Typed Racket [71]. And, naturally, these type systems
disagree on several aspects of type narrowing—some incidental, due to variations
among the languages they target, and some fundamental. For instance, Typed Racket
has a nonstandard typing relation that assigns one type and two logical implications
to every expression [68]. One benefit of this extra machinery is that Typed Racket

17:2

Hanwen Guo and Ben Greenman

can understand the logic in the following program, whereas TypeScript and Flow do
not see that y must have type String in the return clause:
define nested_condition(x: Top, y: Top):

if (if x is Number: y is String else: false)
return x + String.length(y) // expected: no type error, x is a number and y is a string

A natural question is whether the nonstandard judgment form of Typed Racket is
worth the effort, as the new forms of composition and abstraction that it enables come
at the price of a more complex typechecker, with negative implications for users and
for type system maintainers.

As researchers, we cannot provide a definitive answer. Language communities must
weigh the benefits in light of their own priorities and resources. We can, however,
facilitate informed decisions by contributing a language design benchmark that clarifies
the design space of type narrowing systems. That is the goal of this paper.

Contributions We present a benchmark for type narrowing to showcase core be-
haviors that should and should not typecheck as a guide for language designers and
a reference for researchers. It is termed a benchmark because its purpose extends
beyond testing correctness in an absolute sense; rather, the goal is to characterize
the abilities of narrowing implementations and highlight their fundamental tradeoffs.
The benchmark is grounded in both the literature on type narrowing and the docu-
mentation of widely-used languages. We call the benchmark If-T to reflect its focus
on conditional type tests (If for if/else, T for types).
If-T (current version [31]) has the following characteristics:

= It highlights 13 features of type narrowing systems;

= Each feature is illustrated by two small programs, one that should typecheck and
one that should not;

= It contains implementations of the programs for five typecheckers: TypeScript,
Flow, mypy, Pyright, and Typed Racket; and

= Finally, beyond assessing core functionality, If-T presents challenge problems and
discusses how orthogonal type system dimensions (such as subtyping) should
cooperate with type narrowing.

If-T is available online. We welcome discussions, issue reports, and pull requests:
https://github.com/utahplt/ifT-benchmark

Adding an implementation for a new typechecker is as simple as creating a folder,
translating the benchmark programs, and specifying execution instructions in a com-
mon format (Appendix A). Finally, we provide a template datasheet (inspired by [26,
41]) for benchmark implementors to present their work in a uniform way, facilitating
cross-language comparisons. All scripts for running the benchmarks and collecting
the results are in the repository and the accepted artifact [31].

This paper is organized as follows. Section 2 discusses the challenges and tradeoffs of
type narrowing. Section 3 presents our method for creating the benchmark. Section 4
presents the core If-T benchmark in detail. Section 5 presents the results of the

17:3

https://github.com/utahplt/ifT-benchmark

If-T: A Benchmark for Type Narrowing

benchmark on five typecheckers. Section 6 describes example programs that use
the core functionality of type narrowing in compelling ways. Section 7 presents the
datasheet template for summarizing implementations. Section 8 presents related
work. Section 9 concludes with a brief discussion.

[} Background: Type Narrowing

Type narrowing is a flow-sensitive technique for typing code that handles dynamically-
typed data. To illustrate, consider an if statement that inspects a value of type JSON:
// val :: JSON = Object | Array | String | Number | true | false | null

if val is Number and val < 999:
total +=val

This code assumes an untagged union type for JSON values that directly matches
the JSON specification [19]: a JSON value can be an object, or an array, or one of
several basic kinds of values. Unlike a tagged union type, these possibilities are not
distinguished by type constructors. The code tests whether val is a number and then
proceeds to use it in a comparison (<) and an addition (+=). A typechecker thus needs
to understand that type tests can narrow the types of JSON values.

Conventional type systems do not support type narrowing or untagged unions. In
OCaml, for example, the way to represent JSON data is through a tagged datatype
that labels each possibility with a separate constructor [56]. Instead of type tests,
pattern matching is the standard way to check and untag values:

type json = " Object of (...) | “Int of int | ... (* https://dev.realworldocaml.org/json.html *)
match val (* val :: json *)
| “Int n when n <= 999 -> total := 'total + n

[_->0

Adding tags that classify data is straightforward work, and has organizational bene-
fits (e.g., if the datatype changes, match errors will guide client changes), but programs
written in dynamic languages rarely follow this idiom. Possible reasons include greater
flexibility and code reuse, lower up-front design costs, or ignorance of tagging as a
pattern. Whatever the reason, supporting this style of code is critical to allow gradual
adoption of types without forcing sweeping changes upon a codebase.

Over the years, the need for type narrowing has been identified in several contexts [7,
32, 57]. Early solutions include conditional soft types [1, 76], multi-methods [6, 18],
and CFA [33, 60]. The search for a precise and efficient solution has proven to be a
longstanding challenge; below we review some highlights of the journey so far.

Set-Theoretic Types Semantic set-theoretic types enable a direct form of type nar-
rowing. These types include syntax for exactly the necessary ingredients: operators
for union, intersection, negation, and subtraction. These operators are supported by a

semantics that represents types as sets of possible inhabitants:

T = ...]rut|Ttnt|oTt|T\"T

17:4

Hanwen Guo and Ben Greenman

A type such as JSON above is directly expressible as the union of several alternatives,
and the types for two branches of an if statement can intersect or subtract as needed,
depending on the condition:

//val:T
if val is Number:
... // val :: TN Number

else:
.. // val: T\ Number

User-defined functions can refine types as well. Generalizing from the test above
(val is Number), type-refining predicates produce a boolean result and should have
the side effect of modifying the subsequent type environment. This can be achieved
by splitting a function type into two cases, a positive case that returns True and a
negative case that returns False:

(A x. x is Number) : V T. [Number -> True] N [T \ Number -> False]

With this design, a typechecker can work backwards from the “then” branch of a
conditional to refine its environment using the domain of the predicate function in
the True case. Several typecheckers use this backwards-reasoning approach to handle
type narrowing quite precisely [9, 10, 11, 12], though the use of predicates that carve
out infinite subsets (such as is_even) tend to cause performance issues.

As a crowing example, a recent set-theoretic typechecker [11] based on CDuce [13]
is able to infer types without any user-provided annotations. The following example
code, from [11], describes a flatten function. Flatten reduces an arbitrarily-nested list
to a flat sequence, e.g., flatten([[a], b, [[c,d]]]) = [a,b,c,d]. Flatten also wraps any non-list
input in a flat list. The inferred type, in OCaml comments (between (* *) markers),
covers both possibilities:

(* type Top = [anything, Top covers the entire universe of values]
* type Nested = List(Nested) U (A \ List(Top))

*

* flatten :: Nested -> List(A \ List(Top))
L N (B \ List(Top)) -> List(B \ List(Top)) *)
let rec flatten t = match t

| [1->11

| hd::tl -> concat (flatten hd) (flatten tl)

| _->[t]

Unfortunately, the typechecker takes over 300 seconds to infer a type for flatten.
Scaling set-theoretic types to quickly checkr multi-million line codebases, as type-
checkers for Python [40] and JavaScript [15] routinely do, presents a significant
research challenge. Even an overloaded type for addition that matches the semantics
of Racket can lead to slowdowns on the order of several minutes to typecheck simple
uses [36, Appendix C]. Ongoing work to type Elixir [9] may bridge the gap to practice.
Luau is one mainstream language that incorporates set-theoretic types, as a fallback
in specific cases [35]. Other typecheckers rely on faster but less-precise syntactic
techniques, such as occurrence typing.

175

If-T: A Benchmark for Type Narrowing

Occurrence Typing Typed Racket uses a syntactic technique called occurrence typing to
narrow types [68, 70]. Occurrence typing has proven to be quite expressive, efficient,
and extensible (e.g., [14, 37]), but it requires deep changes to the typechecking
process. Whereas standard type inference uses a term (e) and an environment (I') to
synthesize a type, occurrence typing synthesis four outputs: a type (7), positive and
negative propositions (¢, ¢_), and an objective path (o, called an object in [68]):

The:t;¢,.1¢_;0

The two propositions describe how to modify the environment for the true and false
branches of a conditional when this expression is used as the test. Every expression
needs these propositions because in a dynamic language every kind of expression is
valid to use in a conditional test. The objective is an optional path into a data structure
(e.g., “first element of a pair”) that tells what part of a data structure the expression
inspects. Our running example val is Number would use an empty path. The variant
vals[o] is Number would have a path into the first element of the array vals.

With this reformulated judgment form, only a few additional changes are needed.
Types (7) must include untagged unions, environments (I'") must track propositions
in addition to types, and the typechecker must have metafunctions that compute
syntactic approximations of type subtraction and intersection. These changes are
modest relative to what true set-theoretic types require, and yet, as our benchmark
shows, they enable fairly precise typing.

Ad-Hoc Narrowing Both occurrence typing and set-theoretic types call for a steep
investment in typechecker infrastructure. A natural question is whether the invest-
ment really pays off, especially since common-case narrowings can be supported
with rudimentary syntactic checks. To support our running test, if val is Number: ..., a
typechecker merely needs to spot the phrase “is Number” and refine the type of the
variable val. This sort of narrowing does not require negative propositions, objectives,
or the complicated arrow types that appear in Typed Racket. If the test is applied to
an expression that falls outside the common case, say f(val) is Number, then ad-hoc
narrowing cannot help.

TypeScript, Flow, Pyright, mypy, and several other typecheckers implement ad-hoc
narrowing rather than a compositional solution. As we will see, these systems have a
variety of limitations. Some allow user-defined predicates, but do not typecheck them.
Some are robust against simple program transformations; others are not. The If-T
Benchmark is designed to lay these differences on the table so that language users
can decide what features really matter for everyday programming.

) Benchmark Design

If-T draws on two main sources for type narrowing examples, encompassing dozens
of research articles and many pages of language documentation:

17:6

Hanwen Guo and Ben Greenman

= Research literature. Section 2 cites significant sources. In addition, Tobin-Hochstadt
and Felleisen’s [68] sequence of motivating examples for occurrence typing provides
a strong starting point, and both Fagan [20] and Greenberg [28] identify flatten as
a challenge problem.

= Typechecker implementations, including their documentation [45, 46, 51, 52, 72,
74, 78], and online discussions, e.g., [49, 75]. We focused on TypeScript [73],
Flow [44], mypy [64], and Pyright [50] because they have wide adoption.

First and foremost, these sources provide examples of what type narrowing ought to
achieve, according to a variety of language communities. Second, these sources provide
insights regarding type system features that enable narrowing in an implementation.
We used these inputs to identify a set of core dimensions for type narrowing, detailed
in Section 3.1. Along the way, we encountered topics that impinge on the correctness of
type narrowing, but not on its core functionality. Subtyping, for example, has an impact
on what information type narrowings can learn, but not on how that information gets
stored. Section 3.2 lists these closely-related, but orthogonal, dimensions.

3.1 Core Dimensions

At a high level, there are four technical dimensions of type narrowing. The first,
basic dimension is: (1) refine types based on conditional tests. Upon this foundation,
narrowing systems should: (2) focus refinements on elements within a data structure,
(3) soundly propagate information through program control flow, and (4) allow and
typecheck user-defined predicates. We survey these dimensions in turn.

Basic Narrowing At the most basic level, type narrowing systems must use type tests
to refine types in conditional branches. Refinements must work in two directions,
positive and negative, for the “then” and “else” branches of an if.

Equivalently, logical connectives such as negation (not), conjunction (and) and
disjunction (or) should refine types in a similar way. For example, the negation of a
type test should work analogously to the original type test, and a conjunction with
type tests as its conjuncts should refine types in following conjuncts:

define maybe_add(n : Number | None): define positive_number(n: Number | None):
if not (n is None): // comparison is type-safe
return n + 1 return (n is Number) and (n > 0)

The language of type tests must match variables against basic types such as Number,
String, and Boolean to meet this basic level of support.

Compound Structures Extending the language of type tests to describe compound

data structures is a second dimension of narrowing. Elements of fixed-size and
arbitrary-size structures, such as tuples and lists, should be targets for refinements:

177

If-T: A Benchmark for Type Narrowing

define fst_add(pair : Tuple(Top, Top)): define list_add(xs : List(Top)):
if pair[o] is Number: if xs is List(Number):
return pair[o] + 1 return sum(xs)

Same goes for fields in objects or records, as the rainfall example from Section 1
illustrates (if day["rainfall"] is Number: ...).

Advanced Control Flow Generalizing from the basic example of if/else branches,
any path through a program should, in principle, support type narrowing. Multi-way
conditionals, nested ifs, and loops that contain type tests might refine the environment.
Assert statements, which halt the program when a test fails, are another example.
This dimension of narrowing calls for careful management of the environment during
typechecking. Along the same lines, storing the value of an expression in a variable
should not inhibit narrowing:

// xs :: List(Top) assert x is Number tmp = x is String
for x in xs: X +1 if tmp:
if not (x is String): String.length(x)

return False
// xs :: List(String)

Custom Predicates When program expressions can work together to form predicates
that go beyond the basic “var is Type” questions, users need the ability to use stan-
dard, functional abstractions to craft predicates that can be reused and unit-tested.
User-defined predicates should have the same power to narrow types as inlined code.
At a minimum, this calls for a sort of type annotation that describes a type-narrowing
predicate. Since annotations can fall out of sync with code, it is critical that the type
system validates predicates against their annotation. For example, the annotation be-
low describes a symmetric predicate—the return type “x is Number” (from TypeScript)
means that this function returns True only when x is a number and False otherwise.
Its implementation, however, is not symmetric. When the function returns False, it is
not safe to conclude that the input x is not a number:

define is_even(x : Top) -> x is Number:
return (x is Number) and (x mod 2 == 0)

is_even(s) // True
is_even("A") // False
is_even(3) // False

This is_even function should fail to typecheck because it does not decide whether its
input is a number. A better return type is “implies x is Number” (which Flow supports
but TypeScript does not), meaning that x is a number if the function returns true.

17:8

Hanwen Guo and Ben Greenman

3.2 Orthogonal Dimensions

Type narrowing systems cannot refine types when it is unsound to do so. In a full-
featured programming language, several factors can complicate the soundness picture.
We describe common issues below.

Subtyping All type tests in this paper, and in the If-T benchmark, use the keyword “is”
to describe a type equality test. In a language with subtyping, however, type equality
can give surprising results. For example, the following Python code is unsound despite
seeming correct:
def f(x: str | int | bool) -> int:
if (not type(x) is str) and (not type(x) is bool):
return x + 1

else:
return o

This is because the type str is extensible by subclasses, so calling f with an instance
of a subclass of str could cause a runtime error. Subtyping tests, such as isinstance in
Python and instanceof in JavaScript, are more idiomatic. This concern falls outside
the main focus of If-T. The benchmark uses subtyping only to narrow atomic types
from unions of atomic types.

Mutation Mutation can change the shape of values and thereby invalidate observa-
tions made by earlier type narrowings. An important aspect of handling control flow
in a typechecker is thus to identify write operations and narrow (or rather, un-narrow)
types accordingly. Discovering writes precisely is an orthogonal research direction.
For example, in Python, a field access obj.f can run user-defined code if the object
has a property method named f. Thus, the second field access below is potentially
unsafe because the evaluation of self.parent.wins may replace self.parent with None:

if self.parent is not None:
total += self.parent.wins
total += self.parent.losses # may be unsound!

Interestingly, neither mypy nor Pyright detect this issue. Instagram’s Static Python
language conservatively flags an error [29, 42]. Detecting error cases precisely is
difficult. Property methods might be inherited from legacy Python objects that are
not analyzed by the typechecker.

Concurrency When combined with mutation and aliasing, language support for
concurrency makes it even more difficult to determine what code can safely rely on
the results of a type test. Typed Racket never allows narrowing on mutable data
because the object might be shared across threads.

17:9

If-T: A Benchmark for Type Narrowing

B Table1 If-T Benchmark Items

Basic Narrowing:

I. positive Refine when condition is true

2. negative Refine when condition is false

3. connectives Handle logic connectives: not, or, and

4. nesting_body Conditionals nested within branches
Compound Structures:

5. struct_fields Refine fields of immutable structure

6. tuple_elements Refine tuple elements

7. tuple_length Refine based on tuple size
Advanced Control Flow:
alias Track logical implication through variables

9. nesting condition Conditionals nested within conditions
10. merge with_union Correctly merge control-flow branches
Custom Predicates:
11. predicate 2way Custom predicates that narrow positively and negatively
12. predicate lway Custom predicates that narrow only positively
13. predicate checked Typecheck the body of custom predicates

The Benchmark

https://github.com/utahplt/ifT-benchmark/blob/main/README.md#the-benchmark

The If-T benchmark consists of 13 items, each focusing on a different feature of
type narrowing systems. These items are divided into four groups to match our core
conceptual dimensions (Section 3.1). Each item comes with a short description and is
illustrated with “Success” and “Failure” code examples. Success code should typecheck.
Failure code should raise a specific type error.

Table 1 provides brief overview of If-T by listing the name and description for
each benchmark item. As the table shows, items are evenly divided across the four
categories. The subsections below first discuss the pseudocode syntax used in the
benchmark, then provide full example programs.

41 Pseudocode Overview

If-T is written in a pseudocode. To implement the benchmark, this pseudocode must
be adapted to a real target language (JavaScript, Ruby, etc.). We offer the following
points to guide translation efforts:

= Functions are defined with type annotations for the parameters and the return
type, e.g., define f(x: T) -> U:.
- A return type of the form “x is T” expresses a symmetric predicate. Well-typed

implementations must return a Boolean with the value True when x has the type
T and the value False when x does not have the type T.

17:10

https://github.com/utahplt/ifT-benchmark/blob/main/README.md#the-benchmark

Hanwen Guo and Ben Greenman

- A return type “implies x is T” expresses an asymmetric predicate. Well-typed
implementations must return a Boolean with the value True only if x has the
type T. There are no other conditions.

= Control flow is expressed using if/else blocks. These can appear anywhere that an
expression is expected, including in the test of another if/else expression.

- Languages that categorize if/else as a statement form may have a ternary
conditional operator.

= Type tests use the form x is T.

= let binds an immutable variable. var binds a mutable variable.

= The pseudocode types Number, String, and Boolean are disjoint and final:
- Adding a Number to a String is an error, unlike in JavaScript.
- Subclassing String is not allowed, unlike in Python with str.

= The type Top is the superclass of every other type.

= There are no explicit type casts in the pseudocode.

= The struct keyword defines a tuple with named elements. Elements are accessed
using dot notation (x.f).

4.2 Basic Narrowing

There are four parts in the Basic Narrowing section: positive, negative, connectives,
and nesting_body.

4.21 Positive

If a type test succeeds on a variable, the type of the variable is refined to a more-specific
type based on the predicate. The example programs apply the test x is String. The first
program treats the result as a string, and should typecheck. The second treats the
result as a number, and should fail to typecheck.

positive: Success

define f(x: Top) -> Top:
if x is String:
return String.length(x)
else:
return x

positive: Failure

define f(x: Top) -> Top:
if x is String:
return x + 1
else:
return x

17:11

If-T: A Benchmark for Type Narrowing

4.2.2 Negative

If a type test fails on a variable, the type of the variable is refined to a more-specific
type based on the negation of the predicate in the appropriate control path. These
programs also use the test x is String:

negative: Success

define f(x: String | Number) -> Number:
if x is String:
return String.length(x)
else:
return x + 1

negative: Failure

define f(x: String | Number | Boolean) -> Number:
if x is String:
return String.length(x)
else:
return x + 1

4.2.3 Connectives

A predicate built from several type tests and logical connectives should result in
narrowing that matches the connectives. For a conjunction of tests applied to the
same variable, the result type should be the intersection of each tested type. For a
disjunction of tests, the result type should be the union of each type. For a negation,
the result type should use the complement of the tested type.

connectives: Success

define f(x: String | Number) -> Number:
if not (x is Number):
return String.length(x)
else:
return o

define g(x: Top) -> Number:
if x is String or x is Number:
return f(x)
else:
return o

define h(x: String | Number | Boolean) -> Number:
if not (x is Boolean) and not (x is Number):
return String.length(x)
else:
return o

17:12

Hanwen Guo and Ben Greenman

connectives: Failure

define f(x: String | Number) -> Number:
if not (x is Number):
return x + 1
else:
return o

define g(x: Top) -> Number:
if x is String or x is Number:
return x + 1
else:
return o

define h(x: String | Number | Boolean) -> Number:
if not (x is Boolean) and not (x is Number):
return x + 1
else:
return o

4.2.4 Nesting Body
When a conditional statement is nested inside the body of another conditional state-

ment, the type of the variable is refined to the intersection of the types refined by
each conditional statement.

nesting_body: Success

define f(x: String | Number | Boolean) -> Number:
if not (x is String):
if not (x is Boolean):
return x + 1
else:
return o
else:
return o

nesting_body: Failure

| r

define f(x: String | Number | Boolean) -> Number:
if x is String | Number:
if x is Number | Boolean:
return String.length(x)
else:
return o
else:
return o

17:13

If-T: A Benchmark for Type Narrowing

4.3 Narrowing with Compound Structures

There are three parts in the Compound Structures section: struct_fields, tuple elements,
and tuple length.

4.31 Struct Fields
When a predicate is applied to a field of an immutable data structure, the type of that
property is narrowed. Other field types (if any) remain the same.

struct_fields: Success

struct Apple:
a: Top

define f(x: Apple) -> Number:
if x.a is Number:
return x.a
else:
return o

struct_fields: Failure

struct Apple:
a: Top

define f(x: Apple) -> Number:
if x.a is String:
return x.a
else:
return o

4.3.2 Tuple Elements

When a predicate is applied to an element of a tuple, refine the type of that element.
Similar narrowings should work for other covariant positions such as the elements of
a list or the return value of a function.

tuple_elements: Success

define f(x: Tuple(Top, Top)) -> Number:
if x[o] is Number:
return x[o]
else:
return o

1714

Hanwen Guo and Ben Greenman

tuple_elements: Failure

define f(x: Tuple(Top, Top)) -> Number:
if x[o] is Number:
return x[o] + x[1]
else:
return o

4.3.3 Tuple Length

Because tuple types list the type of each element, they also describe the length of the
overall tuple. Thus, if a variable may point to different-sized tuples, type narrowing
based on the length of its value should refine its type. Similar narrowings should work
for other observable properties that data-structure types describe.

tuple_length: Success

define f(x: Tuple(Number, Number) | Tuple(String, String, String)) -> Number:
if Tuple.length(x) is 2:
return x[o] + x[1]
else:
return String.length(x[o])

| r

tuple_length: Failure

define f(x: Tuple(Number, Number) | Tuple(String, String, String)) -> Number:
if Tuple.length(x) is 2:
return x[o] + x[1]
else:
return x[o] + x[1]

4.4 Advanced Control Flow

There are three parts in the Advanced Control Flow section: alias, nesting condition,
and merge with union.

4.42 Alias

When the result of a predicate test is bound to an immutable variable, that variable
can also be used as a type guard. When the result of a predicate test is bound to a
mutable variable, that variable can be used as a type guard only if it is not updated.

alias: Success

define f(x: Top) -> Top:
lety = x is String
ify:
return String.length(x)
else:
return x

17:15

If-T: A Benchmark for Type Narrowing

alias: Failure

define f(x: Top) -> Top:
lety = x is String
ify:
return x + 1
else:
return x

define g(x: Top) -> Top:
vary = x is String // y is mutable
y = true
ify:
return String.length(x)
else:
return x

4.4.2 Nesting Condition

When a conditional statement is nested inside the condition of another conditional
statement, the type of the variable is refined in the same manner as if the tests were
joined by logical connectives. In the following programs, the first nested if statement
effect a conjunction of two type tests, and the second one first checks if x is a number
and then checks if y is a string regardless of the result of the first check.

nesting_condition: Success

define f(x: Top, y: Top) -> Number:
if (if x is Number: y is String else: false):
return x + String.length(y)
else:
return o

nesting_condition: Failure

define f(x: Top, y: Top) -> Number:
if (if x is Number: y is String else: y is String):
return x + String.length(y)
else:
return o

4.4.3 Merge with Union

If a variable has different types in two branches of a conditional and control-flow
after these branches merges to a common point, then the variable at that point should
take the precise union of the two types. The variable’s type should not conservatively
change to the common supertype (Top) at the merge point.

17:16

Hanwen Guo and Ben Greenman

merge_with_union: Success

define f(x: Top) -> String | Number:
if x is String:
String.append(x, "hello")
else if x is Number:
X=X+1
else:
return o
return x

merge _with_union: Failure

define f(x: Top) -> String | Number:
if x is String:
String.append(x, "hello")
else if x is Number:
X=X+1
else:
return o
return x + 1

4.5 Narrowing with Custom Predicates

There are three parts in the Custom Predicates section: predicate_2way, predicate_1way,
and predicate _checked. The first two test caller-side uses of predicates. The third tests
the validity of predicate definitons.

4.5 Predicate 2-Way

When a symmetric (or, 2-way) predicate is true, the type of the variable is refined to a
more-specific type with the information that the predicate holds. When a symmetric
predicate is false, the type of the variable is refined in the opposite way.

predicate_2way: Success

define f(x: String | Number) -> x is String:
return x is String

define g(x: String | Number) -> Number:
if f(x):
return String.length(x)
else:
return x

17:17

If-T: A Benchmark for Type Narrowing

predicate_2way: Failure

define f(x: String | Number) -> x is Number:
return x is Number

define g(x: String | Number) -> Number:
if f(x):
return x
else:
return x + 1

4.5.2 Predicate 1-Way

When a 1-way, positive predicate is true, the type of the variable is refined to a more-
specific type with the information that the predicate holds. When a positive predicate
is false, the type of the variable is not refined. Positive predicates typically check an
underapproximation of a static type. In the example code, the predicate checks for a
nonnegative number but narrows its input type to merely Number.

predicate_tway: Success

define f(x: String | Number) -> implies x is Number:
return x is Number and x>0

define g(x: String | Number) -> Number:
if f(x):
return x + 1
else:
return o

predicate_rway: Failure

define f(x: String | Number) -> implies x is Number:
return x is Number and x > 0

define g(x: String | Number) -> Number:
if f(x):
return x + 1
else:
return String.length(x)

4.5.3 Predicate Checked
A typechecker should confirm that the body of a custom predicate matches its type
annotation. It should not blindly trust the annotation.

17:18

Hanwen Guo and Ben Greenman

predicate_checked: Success

define f(x: String | Number | Boolean) -> x is String:
return x is String

define g(x: String | Number | Boolean) -> x is Number | Boolean:
return not f(x)

predicate_checked: Failure

define f(x: String | Number | Boolean) -> x is String:
return x is String or x is Number // may return true when predicate is false

define g(x: String | Number | Boolean) -> x is Number | Boolean:
return x is Number // may return false when predicate is true

H Benchmark Results

Table 2 shows the results of the If-T benchmark on five full-featured typecheck-
ers: Typed Racket, TypeScript, Flow, Mypy, and Pyright. (Research languages for
set-theoretic types are not included at this time, but we would welcome future con-
tributions.) A circle (®) indicates that the system passes the two examples of the
benchmark item by validating the Success example and catching the Failure example.

B Table2 Benchmark Results: @ = passed, X = failed imprecisely, X = failed unsoundly

Typed Racket TypeScript Flow Mypy Pyright
Basic Narrowing:

I. positive ° ° ° ° °
2. negative ° ° ° ° °
3. connectives ° ° ° ° °
4. nesting_body ° ° ° ° °
Compound Structures:
5. struct_fields ° °) ° °
6. tuple_elements ° ° ° °)
7. tuple_length X ° ° ° °
Advanced Control Flow:
8. alias ° ° X X °
9. nesting_condition ° X X X X
10. merge with_union ° ° ° X °
Custom Predicates:
11. predicate 2way ° ° ° ° °
12. predicate_lway ° X ° ° °
13. predicate checked ° X ° X X

17:19

If-T: A Benchmark for Type Narrowing

A cross indicates a failure on either the Success or Failure example. There are two
styles of cross: a cross without a red background (X) indicates imprecise typing,
and a cross with a red background (| x) indicates unsound typing. No language has
full support for the benchmark, and the differences across languages lead to several
interesting observations.

Basic Narrowing Every typechecker has full support for basic narrowing features
(positive, negative, connectives, nesting_body). These core functionalities are well-
established and agreed on in mainstream type narrowing systems.

Compound Structures Every typechecker is able to narrow data-structure elements.
With the exception of Typed Racket, every typechecker is able to narrow tuples
based on their size (tuple_length). Adding support for direct size tests is an area for
improvement in Typed Racket; currently, code must use primitive elimination forms
(car, cadr), as illustrated by the following well-typed program:

(define (tuple-length-success-f [x : (U (List Number Number) (List String String String))])
(if (null? (cdr (cdr x))) ; check: tuple length = 2
(+ (car x) (cadr x))
(string-length (car x))))

Advanced Control Flow There are major differences among typecheckers in the ad-
vanced control flow category:

= Flow and mypy ignore type tests that are bound to variables (alias). Tests must
appear directly in a conditional, which may lead to duplicated code.

= Only Typed Racket supports tests within a conditional test (nesting_condition). This
difference is partly due to Racket’s emphasis on compositional syntax: in Racket,
if is an expression form, whereas in JavaScript and Python if is a statement. To
add support, the other languages would need an expression-typing judgment that
tracks positive and negative propositions like occurrence typing (Section 2).

= Mypy is overly conservative when merging branches (merge _with_union). Instead
of merging String and Number to a union, it jumps to Top. This problem is well-
known in the mypy community. It has a dedicated issue tag in the mypy repository
that is currently applied to 49 open issues [53].

Custom Predicates Support for user-defined predicates is another contentious topic.

Every typechecker allows the declaration of symmetric predicates (predicate 2way),

but differences abound on the finer details:

= TypeScript does not allow asymmetric predicates, such as the is_even example
above (Section 3.1). Every TypeScript predicate must refine types positively when
it returns true and refine types negatively when it returns false; a predicate can
never “not know” about an input.

= TypeScript, mypy, and Pyright do not check the soundness of user-defined pred-
icates. Nonsensical predicates that lead to unsafe type coercions are permitted,

17:20

Hanwen Guo and Ben Greenman

such as the following Python function that casts any input to have a function type.
Mypy reports no type errors:

def f(x) -> Typels[Callable[[int], int]]: a=42
return True if f(a):
a(1) # runtime error

5.1 Additional Observations

Although Flow can typecheck user-defined predicates, it supports only a limited syntax.
Predicates can contain just a single expression. The following predicate, with a simple
if statement, is not allowed:

function h(x: string | number): x is string {
if (typeof(x) == "string") { return true } else { return false }

} // Error: consider replacing the body of this predicate function with a
// single conditional expression.

Typed Racket has extensive support for user-defined predicates. It allows asymmetric
predicates that refine only in the positive case or only in the negative case. Its predicates
can refine any subset of their arguments and any objective path into those arguments.
Mypy and Pyright, by contrast, can refine only the first argument [72, 78]. These
possibilities are enabled through a domain-specific language embedded in function
return types [55]. Does this expressiveness lead to any practical returns? We would
expect so, but none of the libraries included with Typed Racket use its keywords for
negative asymmetry or objective paths (#:-, #:0bject). We have found only one project
that uses negative predicates (for the Pie prover [23]), and it simply says that when a
predicate for variable names returns false, the input must be a keyword [16].

Finally, we must acknowledge that Typed Racket’s predicates are not perfectly sound.
Typed code is allowed to import a dynamically-typed function f and assign it a positive
predicate type, via the #:0paque keyword. If f uses state, its use can put contradictory
information in the type environment [38]. Preventing abuses would require heavy
runtime machinery, which brings us back to the safety and performance tradeoffs
inherent to gradual typing. Perfect soundness is unrealistic, and yet typecheckers can
achieve much more than the light-touch approach of TypeScript. What is the right
balance to strive for?

K3 Example Programs

https://github.com/utahplt/ifT-benchmark/blob/main/EXAMPLES.md

In addition to the core benchmark, If-T includes a set of example programs. The
purpose of the examples is to show how the features of type narrowing come together
to support useful and practical programs. Each example comes with a variant that
has a relevant type error, to catch systems that unsoundly trust user annotations.

17:21

https://github.com/utahplt/ifT-benchmark/blob/main/EXAMPLES.md

If-T: A Benchmark for Type Narrowing

B Table3 Example Programs and the core benchmark items they depend on

filter « positive + predicate 2way (or 1way) + tuple elements (for lists)
flatten < positive + negative

TreeNode « positive + negative + predicate checked + nesting_body

Rainfall < positive + object properties + nesting_body

The covered features for each example are listed in Table 3, which also aligns with
our interpretation of the benchmark result: basic narrowing features like positive and
negative are used in most examples, while more advanced features play important
roles for implementing real-world program logic.

We introduced two of the examples earlier in this paper to motivate narrowing:
Rainfall (Section 1) and flatten (Section 2). These rely on nested conditional branches,
compound structures, and aliasing. There are two other examples: TreeNode, a recur-
sive user-defined predicate; and filter, a higher-order function that takes a predicate
as input to refine a data structure:
define filter(predicate: (x: T) -> x is S, list: List(T)) -> List(S)

let result =[]

for element in list:

if predicate(element):

result = cons(element, result)
return result

As a historical aside, the creators of Typed Racket used Filter as an early milestone [70].
When they could type it, they knew their design was on the right track (personal com-
munication with Felleisen). TypeScript added support for anonymous Filter predicates
in TypeScript 5.5 [58].

Datasheet Template

https://github.com/utahplt/ifT-benchmark/blob/main/DATASHEET.md

The final component of If-T is a datasheet that summarizes implementation efforts.
It asks a series of fourteen open-ended questions, ranging from What is the dynamic
type in your language? to Are any benchmarks inexpressible? Why?. The authors of
an If-T implementation are to answer the questions using prose and links to existing
resources (such as language documentation). The purpose of this exercise is to give
readers of the benchmarks a high-level and relatively uniform overview of how each
implementation approaches type narrowing. With this basic understanding in hand,
readers should be better equipped to understand the code and to separate incidental
choices (e.g., related to syntax) from the core aspects of type narrowing.

17:22

https://github.com/utahplt/ifT-benchmark/blob/main/DATASHEET.md

Hanwen Guo and Ben Greenman

EJ Related Work

If-T as a benchmarking effort is influenced by prior language-design benchmarks.
B2T2, the Brown Benchmark for Table Types [41], sets criteria for type systems that
support tabular data. It has six components: a baseline definition of tables, small
example tables to encode, a full-featured API (largely inspired by the success of tabular
programming in Pandas [65] and R [67]), example programs, error programs, and a
datasheet to summarize implementations. If-T adapts similar components to the issue
of type narrowing. Jakubovic et al. [34] propose technical dimensions of programming
systems, such as notational structure, composability, and learnability, and broader
clusters such as interaction and conceptual structure. These divisions into dimensions
and clusters influenced our characterization of type narrowing (Table 1). Other
benchmark suites, from the Gabriel benchmarks [24] to the Renaissance suite [54],
provided further inspiration [17, 27, 30, 59, 66].

[E] Conclusion

Type narrowing is an important aspect of reasoning about dynamically-typed code.
Dynamic programs lack the rigid organization that static types provide, and thus
gravitate toward flexible check-driven control flow and duck typing. Proposed designs
for type narrowing span a range of possibilities, from precise set-theoretic types
to the deliberate unsoundness of TypeScript. The If-T benchmark provides a first,
rigorous basis for language designers to compare the expressiveness and soundness
of type narrowing systems. It is a design benchmark in the sense that it aims to
characterize type systems by their precision and soundness, but does not mandate
that perfect results are necessary. The benchmark consists of a core benchmark (with
13 pairs of programs), practical examples, and a summarizing datasheet to facilitate
comparisons. The results on five typecheckers show considerable variation in core
behavior (Section 5), substantiating the need for a benchmark. There are many
other typecheckers with some form of narrowing, including Hack [47], Luau [5, 35],
Pyre [48], Sorbet [63], Static Python [42], and Typed Clojure [3]. Typed languages
might benefit from narrowing as well, e.g., to increase the flexibility of polymorphic
variants [25]. We hope this work inspires and facilitates transfer of type narrowing
ideas across languages.

Data-Availability Statement
The If-T benchmark and scripts for reproducing the results are in our artifact [31].

Acknowledgements We thank Sam Tobin-Hochstadt for insightful conversations,
Fred Fu for conducting a related investigation and reporting a bug in our initial Typed
Racket implementation, Eric Traut for explaining str subtyping in Python, Carl Meyer
for discussing Static Python’s approach to property methods, and Ashton Wiersdorf
and Andrew McNutt for comments on earlier drafts.

17:23

If-T: A Benchmark for Type Narrowing

N Artifact Overview

The If-T benchmark is available online and archived on Zenodo [31]. The following is
a brief guide on how to install, run, and contribute to the benchmark. More details
can be found in the SETUP.md and CONTRIBUTING.md files in the repository.

Aa Installation

Driver code for the If-T benchmark is implemented in Racket. To run the benchmark,
first install Racket and the typecheckers that support the If-T implementations that you
wish to run. Some of the typecheckers require additional dependencies to be installed.
These are declared in the package manager manifest files of each implementation
directory.

A.2 Running the Benchmark

After installing the dependencies, the benchmark can be run by executing the main.rkt
script in the top level of the repository. This script will run the benchmark items on
each of the implementations (currently, five typecheckers) and output the results in
a table format. Several formats are supported for the output, including plain text,
markdown, and LaTeX. For example, the following command runs the benchmark
and outputs LaTeX:

S racket main.rkt -f tex

Benchmark & typedracket & typescript & flow & mypy & pyright \\
positive &0 &0 &0 &0 &0 \\
negative &0 &0 &0 &0 &0 \\

A.3 Contributing

The If-T benchmark is open to contributions for adding new benchmark items, example
programs, and implementations. To contribute to the benchmark, fork the repository
and submit a pull request. If you wish to add a new typechecker to the benchmark,
follow the structure of the existing implementation directories and their respective
_benchmark.rkt files. Also, update the top level driver file main.rkt to include the new
implementation.

17:24

Hanwen Guo and Ben Greenman

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Alexander Aiken, Edward L. Wimmers, and T.K. Lakshman. “Soft Typing with
Conditional Types”. In: POPL. 1994, pages 163-173.

Gavin Bierman, Martin Abadi, and Mads Torgersen. “Understanding Type-
Script”. In: ECOOP. ACM, 2014, pages 257-281. DOI: 10.1007/978-3-662-44202-
9_1.

Ambrose Bonnaire-Sergeant. “Typed Clojure in Theory and Practice”. PhD
thesis. Indiana University, 2019. URL: https://hdl.handle.net/2022/23207.

Gilad Bracha and David Griswold. “Strongtalk: Typechecking Smalltalk in a
Production Environment”. In: OOPSLA. 1993, pages 215—230.

Lily Brown, Andy Friesen, and Alan Jeffrey. “Goals of the Luau Type System,
Two Years On”. In: HATRA. 2023. URL: https://asaj.org/papers/hatra23.pdf.

Kim Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig, Scott Smith,
Valery Trifonov, Gary T. Leavens, and Benjamin Pierce. “On Binary Methods”.
In: Theory and Practice of Object Systems 1.3 (1995), pages 221—242. DOI:
10.1002/}.1096-9942.1995.tb00019.X.

Robert Cartwright. “A Constructive Alternative to Axiomatic Data Type Defini-
tions”. In: LISP Conference. ACM, 1980, pages 46—55. DOI: 10.1145/800087.802789.

Robert Cartwright. “User-Defined Data Types as an Aid to Verifying LISP Pro-
grams”. In: International Colloquium on Automata, Languages and Programming.
Edinburgh University Press, 1976, pages 228-256.

Giuseppe Castagna, Guillaume Duboc, and José Valim. “The Design Principles
of the Elixir Type System”. In: The Art, Science, and Engineering of Programming
8.2 (2024). DOI: 10.22152/ PROGRAMMING-JOURNAL.ORG/2024/8/ 4.

Giuseppe Castagna, Victor Lanvin, Mickaél Laurent, and Kim Nguyen. “Re-
visiting occurrence typing”. In: Science of Computer Programming 217 (2022),
page 102781. DOI: 10.1016/).5CIC0.2022.102781.

Giuseppe Castagna, Mickaél Laurent, and Kim Nguyen. “Polymorphic Type
Inference for Dynamic Languages”. In: Proceedings of the ACM on Programming
Languages 8.POPL (2024), pages 1179—1210. DOI: 10.1145/3632882.

Giuseppe Castagna, Mickaél Laurent, Kim Nguyen, and Matthew Lutze. “On
Type-Cases, Union Elimination, and Occurrence Typing”. In: Proceedings of the
ACM on Programming Languages 6.POPL (2022), pages 1-3I. DOI: 10.1145/
3498674.

CDuce. The CDuce Compiler. 2021. URL: https://www.cduce.org/ (visited on
2025-01-24).

Stephen Chang, Alex Knauth, and Emina Torlak. “Symbolic Types for Lenient
Symbolic Execution”. In: Proceedings of the ACM on Programming Languages
2.POPL (2018), 40:1—40:29. DOI: 10.1145/3158128.

17:25

https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://hdl.handle.net/2022/23207
https://asaj.org/papers/hatra23.pdf
https://doi.org/10.1002/j.1096-9942.1995.tb00019.x
https://doi.org/10.1145/800087.802789
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2024/8/4
https://doi.org/10.1016/J.SCICO.2022.102781
https://doi.org/10.1145/3632882
https://doi.org/10.1145/3498674
https://doi.org/10.1145/3498674
https://www.cduce.org/
https://doi.org/10.1145/3158128

If-T: A Benchmark for Type Narrowing

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel
Levy. “Fast and Precise Type Checking for JavaScript”. In: Proceedings of the ACM
on Programming Languages 1.00PSLA (2017), 56:1-56:30. DOI: 10.1145/3133872.

David Christiansen. Pie: A Little Language with Dependent Types. 2021. URL:
https:// github.com /the- little- typer/ pie / blob / 2c89553a693ac6688b16d722f
116914f2e9aasc3/basics.rkt#l374 (visited on 2025-01-30).

Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Jason Qiu, Alex Sanchez-
Stern, and Zachary Tatlock. “Toward a Standard Benchmark Format and Suite
for Floating-Point Analysis”. In: Numerical Software Verification. 2017, pages 63—
77. DOI: 10.1007/978-3-319-54292-8_6.

Linda G. DeMichiel and Richard P. Gabriel. “The Common Lisp Object System:
An Overview”. In: ECOOP. Springer, 1987, pages 15I-170. DOI: 10.1007/3-540-
47891-4_15.

ECMA International. ECMA-404 The JSON data interchange syntax. 2017. URL:
https://ecma-international.org/publications-and-standards/standards/ecma-
4oy (visited on 2024-12-20).

Mike Fagan. “Soft Typing: An Approach to Type Checking for Dynamically
Typed Languages”. PhD thesis. Rice University, 1992. URL: https://hdl.handle.
net/1911/16439.

Kathi Fisler. “The Recurring Rainfall Problem”. In: ICER. ACM, 2014, pages 35—
42. DOI: 10.1145/2632320.2632346.

Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle, Robert Bruce
Findler, Jack Firth, Kiran Gopinathan, Ben Greenman, Siddhartha Kasivajhula,
Alex Knauth, Jay McCarthy, Sam Phillips, Sorawee Porncharoenwase, Jens Axel
Sggaard, and Sam Tobin-Hochstadt. “Rhombus: A New Spin on Macros without
All the Parentheses”. In: Proceedings of the ACM on Programming Languages
7.00PSLA2 (2023). DOI: 10.1145/3622818.

Daniel P. Friedman and David Thrane Christiansen. The Little Typer. MIT Press,
2018. ISBN: 978-0262536431.

Richard P. Gabriel. Performance and Evaluation of LISP Systems. 1st edition. MIT
Press, 1985. ISBN: 9780262256193.

Jacques Garrigue. “Programming with Polymorphic Variants”. In: ML Workshop.
Volume 13. 7. 1998. URL: https://camlinria.fr/pub/papers/garrigue-polymorphi
c_variants-ml98.pdf (visited on 2024-12-21).

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna M. Wallach, Hal Daumé III, and Kate Crawford. “Datasheets for Datasets”.
In: Communications of the ACM 64.12 (2021), pages 86—92. DOTI: 10.1145/3458723.

Jim Gray, editor. The Benchmark Handbook for Database and Transaction Sys-
tems. 2nd. Morgan Kaufmann, 1993. ISBN: 1-55860-292-5.

Michael Greenberg. “The Dynamic Practice and Static Theory of Gradual Typ-
ing”. In: SNAPL. 2019, 6:1-6:20. DOI: 10.4230/LIPIcs.SNAPL.2019.6.

17:26

https://doi.org/10.1145/3133872
https://github.com/the-little-typer/pie/blob/2c89553a693ac6688b16d722f416914f2e9aa4c3/basics.rkt#L374
https://github.com/the-little-typer/pie/blob/2c89553a693ac6688b16d722f416914f2e9aa4c3/basics.rkt#L374
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/3-540-47891-4_15
https://doi.org/10.1007/3-540-47891-4_15
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://hdl.handle.net/1911/16439
https://hdl.handle.net/1911/16439
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/3622818
https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf
https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf
https://doi.org/10.1145/3458723
https://doi.org/10.4230/LIPIcs.SNAPL.2019.6

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Hanwen Guo and Ben Greenman

Ben Greenman. Cannot use field twice after an is not None check? 2024. URL:
https://github.com/facebookincubator/cinder/issues/145 (visited on 2025-01-
28).

Ben Greenman. “GTP Benchmarks for Gradual Typing Performance”. In: REP.
ACM, 2023, pages 102—-114. DOI: 10.1145/3589806.360003L4.

Hanwen Guo and Ben Greenman. Artifact for If-T: A Benchmark for Type Nar-
rowing. Version v4. June 2025. DOI: 10.5281/zen0d0.15604874.

Fritz Henglein and Jakob Rehof. “Safe Polymorphic Type Inference for Scheme:
Translating Scheme to ML”. In: FPCA. ACM, 1995, pages 192—203. DOI: 10.1145/
22/0164.224203.

Suresh Jagannathan and Stephen Weeks. “Analyzing Stores and References
in a Parallel Symbolic Language”. In: LISP. ACM, 1994, pages 294—305. DOI:
10.1145/182409.182493.

Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. “Technical Dimensions
of Programming Systems”. In: The Art, Science, and Engineering of Programming
7.3 (2023). DOI: 10.22152/ PROGRAMMING-JOURNAL.ORG/2023/7/13.

Alan Jeffrey. Semantic Subtyping in Luau. 2022. URL: https://corp.roblox.com/
newsroom/2022/11/semantic-subtyping-luau (visited on 2024-12-24).

Andrew Kent. “Advanced Logical Type Systems for Untyped Languages”. Ac-
cessed 2025-06-25. PhD thesis. Indiana University, 2019. URL: https://pnwamk.
github.io/docs/dissertation.pdf.

Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. “Occurrence Typing
Modulo Theories”. In: PLDI. ACM, 2016, pages 296—309. DOI: 10.1145/2908080.
2908091.

Alex Knauth. Unsoundness from stateful #:opaque predicates. 2016. URL: https:
//github.com/racket/typed-racket/issues/457 (visited on 2025-01-30).

Kenneth Knowles and Cormac Flanagan. “Hybrid Type Checking”. In: ACM
Transactions on Programming Languages and Systems 32.6 (2010), pages 1—34.

Jukka Lehtosalo. Our Journey to Checking 4 Million Lines of Python. 2019. URL:
https://dropbox.tech/application/our-journey-to-type-checking-4- million-
lines-of-python (visited on 2023-10-12).

Kuang-Chen Lu, Ben Greenman, and Shriram Krishnamurthi. “Types for Ta-
bles: A Language Design Benchmark”. In: The Art, Science, and Engineering of
Programming 6.2 (2022), 8:1-8:30. DOI: 10.22152/ programming-journal.org/
2022/6/8.

Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and
Shriram Krishnamurthi. “Gradual Soundness: Lessons from Static Python”. In:
The Art, Science, and Engineering of Programming 7.1 (2023), 2:1-2:40. DOI:
10.22152/ programming-journal.org/2023/7/2.

17:27

https://github.com/facebookincubator/cinder/issues/145
https://doi.org/10.1145/3589806.3600034
https://doi.org/10.5281/zenodo.15604874
https://doi.org/10.1145/224164.224203
https://doi.org/10.1145/224164.224203
https://doi.org/10.1145/182409.182493
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2023/7/13
https://corp.roblox.com/newsroom/2022/11/semantic-subtyping-luau
https://corp.roblox.com/newsroom/2022/11/semantic-subtyping-luau
https://pnwamk.github.io/docs/dissertation.pdf
https://pnwamk.github.io/docs/dissertation.pdf
https://doi.org/10.1145/2908080.2908091
https://doi.org/10.1145/2908080.2908091
https://github.com/racket/typed-racket/issues/457
https://github.com/racket/typed-racket/issues/457
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://doi.org/10.22152/programming-journal.org/2022/6/8
https://doi.org/10.22152/programming-journal.org/2022/6/8
https://doi.org/10.22152/programming-journal.org/2023/7/2

If-T: A Benchmark for Type Narrowing

[43]

[44]

[45]

[46]

[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Jacob Matthews and Robert Bruce Findler. “Operational Semantics for Multi-
Language Programs”. In: ACM Transactions on Programming Languages and
Systems 31.3 (2009), pages I—44. DOI: 10.1145/1498926.1498930.

Meta. flow-typed. 2023. URL: https://flow-typed.github.io/flow-typed (visited
on 2023-10-12).

Meta. Flow: Type Guards. 2024. URL: https://flow.org/en/docs/types/type-
guards/ (visited on 2024-10-22).

Meta. Flow: Type Refinements. 2025. URL: https://flow.org/en/docs/lang/
refinements/ (visited on 2024-10-22).

Meta. Hack Language. URL: https://hacklang.org (visited on 2025-01-31).
Meta. Pyre Language. URL: https://pyre-check.org (visited on 2025-01-31).

Microsoft. Differences Between Pyright and Mypy. 2021. URL: https://microsoft.
github.io/pyright/#/mypy-comparison (visited on 2024-11-24).

Microsoft. Pyright Language. URL: https://github.com/Microsoft/pyright (visited
on 2025-01-27).

Microsoft. Pyright: Static Typing: Advanced Topics. 2025. URL: https://microsoft.
github.io/pyright/#/type-concepts-advanced (visited on 2025-01-27).

Microsoft. TypeScript Documentation - Narrowing. 2024. URL: https://www.
typescriptlang.org/docs/handbook/2/narrowing.html (visited on 2025-01-27).

Mypy issue search: label topic-join-v-union. 2025. URL: https://github.com/
python/mypy/issues?q=is%5C%3Aissue+is%5C%3Aopen+label%5C%3Atopic-join-
v-union&page=1 (visited on 2025-01-28).

Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Duboscq, Petr
Tuma, Martin Studener, Lubomir Bulej, Yudi Zheng, Alex Villazén, Doug Simon,
Thomas Wiirthinger, and Walter Binder. “Renaissance: Benchmarking Suite
for Parallel Applications on the JVM”. In: PLDI. ACM, 2019, pages 31—47. DOI:
10.1145/3314221.3314637.

Racket. Typed Racket Reference: 1.6 Other Type Constructors. 2024. URL: https://
docs.racket-lang.org/ts-reference/type-ref.html#%28form._%28%28lib._typed-
racket%2Fbase-env%2Fbase-types-extra..rkt%29._-~3e%29%29 (visited on
2025-01-30).

Real World OCaml. Handling JSON Data. 2022. URL: https://dev.realworldocaml.
org/json.html (visited on 2024-12-21).

John C. Reynolds. “Automatic Computation of Data Set Definitions”. In: IFIP.
1968, pages 456—461.

Daniel Rossenwater and Dan Vanderkam. Announcing TypeScript 5.5: Inferred
Type Predicates. 2024. URL: https://devblogs.microsoft.com/typescript/announc
ing-typescript-5-5/#inferred-type-predicates (visited on 2025-01-30).

17:28

https://doi.org/10.1145/1498926.1498930
https://flow-typed.github.io/flow-typed
https://flow.org/en/docs/types/type-guards/
https://flow.org/en/docs/types/type-guards/
https://flow.org/en/docs/lang/refinements/
https://flow.org/en/docs/lang/refinements/
https://hacklang.org
https://pyre-check.org
https://microsoft.github.io/pyright/#/mypy-comparison
https://microsoft.github.io/pyright/#/mypy-comparison
https://github.com/Microsoft/pyright
https://microsoft.github.io/pyright/#/type-concepts-advanced
https://microsoft.github.io/pyright/#/type-concepts-advanced
https://www.typescriptlang.org/docs/handbook/2/narrowing.html
https://www.typescriptlang.org/docs/handbook/2/narrowing.html
https://github.com/python/mypy/issues?q=is%5C%3Aissue+is%5C%3Aopen+label%5C%3Atopic-join-v-union&page=1
https://github.com/python/mypy/issues?q=is%5C%3Aissue+is%5C%3Aopen+label%5C%3Atopic-join-v-union&page=1
https://github.com/python/mypy/issues?q=is%5C%3Aissue+is%5C%3Aopen+label%5C%3Atopic-join-v-union&page=1
https://doi.org/10.1145/3314221.3314637
https://docs.racket-lang.org/ts-reference/type-ref.html#%28form._%28%28lib._typed-racket%2Fbase-env%2Fbase-types-extra..rkt%29._-~3e%29%29
https://docs.racket-lang.org/ts-reference/type-ref.html#%28form._%28%28lib._typed-racket%2Fbase-env%2Fbase-types-extra..rkt%29._-~3e%29%29
https://docs.racket-lang.org/ts-reference/type-ref.html#%28form._%28%28lib._typed-racket%2Fbase-env%2Fbase-types-extra..rkt%29._-~3e%29%29
https://dev.realworldocaml.org/json.html
https://dev.realworldocaml.org/json.html
https://devblogs.microsoft.com/typescript/announcing-typescript-5-5/#inferred-type-predicates
https://devblogs.microsoft.com/typescript/announcing-typescript-5-5/#inferred-type-predicates

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Hanwen Guo and Ben Greenman

Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. “Da Capo
Con Scala: Design and Analysis of a Scala Benchmark Suite for the Java Virtual
Machine”. In: OOPSLA. ACM, 2011, pages 657—-676. DOI: 10.1145 [2048066.
2048118.

Olin Shivers. “Control-Flow Analysis in Scheme”. In: PLDI. ACM, 1988, pages 164
174. DOI: 10.1145/53990.54007.

Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional Languages”.
In: SFP. University of Chicago, TR-2006-06. 2006, pages 81-92. URL: http:
//scheme2006.cs.uchicago.edu/scheme2006.pdf.

Elliot Soloway. “Learning to Program = Learning to Construct Mechanisms
and Explanations”. In: Communications of the ACM 29.9 (1986), pages 850-858.
DOI: 10.1145/6592.6594.

Stripe. Sorbet - A Static Type Checker for Ruby. URL: https://sorbet.org/ (visited
on 2025-0I-31).

Mypy Team. Mypy Language. URL: http://www.mypy-lang.org (visited on
2025-0I-27).

The pandas development team. pandas-dev/pandas: Pandas. Version latest.
Accessed 2021-08-31. Feb. 2020. URL: https://doi.org/10.5281/zen0d0.3509134.

Walter F. Tichy, Mathias Landhaulf3er, and Sven J. Kérner. “nlrpBENCH: A Bench-
mark for Natural Language Requirements Processing”. In: Software Engineering
& Management. GI, 2015, pages 159—-164. URL: https://dl.gi.de/20.500.12116/2542
(visited on 2023-05-23).

Tidyverse. Tidyverse: R packages for data science. URL: https://www.tidyverse.org
(visited on 2021-05-26).

Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped
Languages”. In: ICFP. 2010, pages 117-128. DOI: 10.1145/1863543.1863561.

Sam Tobin-Hochstadt and Matthias Felleisen. “Interlanguage Migration: From
Scripts to Programs”. In: DLS. 2006, pages 964—974. DOI: 10.1145/1176617.1176755.

Sam Tobin-Hochstadt and Matthias Felleisen. “The Design and Implementation
of Typed Scheme”. In: POPL. 2008, pages 395—406. DOI: 10.1145/1328438.1328486.

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,
Ben Greenman, Andrew M. Kent, Vincent St-Amour, T. Stephen Strickland,
and Asumu Takikawa. “Migratory Typing: Ten Years Later”. In: SNAPL. 2017,
17:1-17:17. DOI: 10.4230/LIPIcs.SNAPL.2017.17.

Eric Traut. PEP 647 — User-Defined Type Guards. 2021. URL: https://peps.python.
org/pep-0647/ (visited on 2025-01-27).

TypeScript Developers. TypeScript. URL: https://www.typescriptlang.org (visited
on 2024-0I-27).

Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. PEP 484 Type Hints.
URL: https://www.python.org/dev/peps/pep-0484 (visited on 2022-01-15).

17:29

https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/53990.54007
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.1145/6592.6594
https://sorbet.org/
http://www.mypy-lang.org
https://doi.org/10.5281/zenodo.3509134
https://dl.gi.de/20.500.12116/2542
https://www.tidyverse.org
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://peps.python.org/pep-0647/
https://peps.python.org/pep-0647/
https://www.typescriptlang.org
https://www.python.org/dev/peps/pep-0484

If-T: A Benchmark for Type Narrowing

[75]

[76]

[77]

[78]

Panagiotis Vekris. Announcing User Defined Type Guards in Flow. 2021. URL:
https:// medium.com/flow-type/announcing- user-defined-type-guards-in-
flow-b979bb2e78cf (visited on 2025-01-27).

Andrew K. Wright. “Practical Soft Typing”. PhD thesis. Rice University, 1994.
URL: https://hdl.handle.net/1911/16900.

Andrew K. Wright and Robert Cartwright. “A Practical Soft Type System for
Scheme”. In: ACM Transactions on Programming Languages and Systems 19.1
(1997), pages 87-152. DOI: 10.1145/239912.239917.

Jelle Zijlstra. PEP 742 — Narrowing Types with Typels. 2024. URL: https://peps.
python.org/pep-0742/ (visited on 2025-01-27).

17:30

https://medium.com/flow-type/announcing-user-defined-type-guards-in-flow-b979bb2e78cf
https://medium.com/flow-type/announcing-user-defined-type-guards-in-flow-b979bb2e78cf
https://hdl.handle.net/1911/16900
https://doi.org/10.1145/239912.239917
https://peps.python.org/pep-0742/
https://peps.python.org/pep-0742/

Hanwen Guo and Ben Greenman

About the authors

Hanwen Guo (hanwen.guo@utah.edu) is a PhD student at the
University of Utah.
https://orcid.org/0009-0000-7118-2145

Ben Greenman (benjamin.l.greenman@gmail.com) is an assistant

professor at the University of Utah.
https://orcid.org/0000-0001-7078-9287

17:31

mailto:hanwen.guo@utah.edu
https://orcid.org/0009-0000-7118-2145
mailto:benjamin.l.greenman@gmail.com
https://orcid.org/0000-0001-7078-9287

	1 Introduction
	2 Background: Type Narrowing
	3 Benchmark Design
	3.1 Core Dimensions
	3.2 Orthogonal Dimensions

	4 The Benchmark
	4.1 Pseudocode Overview
	4.2 Basic Narrowing
	4.2.1 Positive
	4.2.2 Negative
	4.2.3 Connectives
	4.2.4 Nesting Body

	4.3 Narrowing with Compound Structures
	4.3.1 Struct Fields
	4.3.2 Tuple Elements
	4.3.3 Tuple Length

	4.4 Advanced Control Flow
	4.4.1 Alias
	4.4.2 Nesting Condition
	4.4.3 Merge with Union

	4.5 Narrowing with Custom Predicates
	4.5.1 Predicate 2-Way
	4.5.2 Predicate 1-Way
	4.5.3 Predicate Checked

	5 Benchmark Results
	5.1 Additional Observations

	6 Example Programs
	7 Datasheet Template
	8 Related Work
	9 Conclusion
	A Artifact Overview
	A.1 Installation
	A.2 Running the Benchmark
	A.3 Contributing

	References
	About the authors

