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ABSTRACT
Reproducible, rigorous experiments are key to effective computing

research because they provide grounding and a way to measure

progress. Gradual typing is an emerging area that desperately needs

such grounding. A gradual language lets programmers add types

to part of a codebase while leaving the rest untyped. The critical re-

search question is how to balance the guarantees that types provide

against the run-time cost of enforcing them. Either weaker guaran-

tees or better implementation methods could lead to answers, but

without benchmarks for reproducibility there is no sound way to

evaluate competing designs.

The GTP Benchmark Suite is a rigorous testbed for gradual typ-

ing that supports reproducible experiments. Starting from a core

suite of 21 programs drawn from a variety of applications, it enables

the systematic exploration of over 40K gradually-typed program

configurations via software for managing experiments and for ana-

lyzing results. Language designers have used the benchmarks to

evaluate implementation strategies in at least seven major efforts

since 2014. Furthermore, the benchmarks have proven useful for

broader topics in gradual typing.
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1 INTRODUCTION
Well-designed benchmarks that support reproducible experiments

are key drivers for computing research [45, 154, 93]. Examples in-

clude the Gabriel benchmarks for LISP [39], DaCapo for Java [12],

Scalabench for Scala [112], Renaissance for parallel Java [105], FP-

Bench for floating-point kernels [24], ManyBugs and IntroClass

for C program repair [81], the Magma fuzzing benchmark [64],
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nlrpBENCH for software requirements [140], NELA for news and

misinformation [101, 68], Mälardalen WCET for worst-case time

bounds [63], and B2T2, the Brown Benchmark for Table Types [83].

Without benchmarks and a method for reproducibility, it is all too

easy for research to stagnate or go adrift [9, 141, 139, 120].

Gradual typing is one area that is at risk of veering off. Though

originally envisioned to benefit working programmers [113, 142, 89,

60], the stack of theoretical designs that lack rigorous evaluation

is growing year by year (e.g., [4, 86, 111, 85]). Closing the gap is

an enormous task, however, because each design needs both a full

implementation and a reproducible analysis.

Since their initial release in 2014, the GTP Benchmarks have

supported rigorous and reproducible evaluation for gradual typ-

ing (section 2.3). The core of the suite is a set of 21 programs that

represent a variety of practical tasks and, critically, send a variety

of data across type boundaries (section 3). Toward the goal of rigor,
each benchmark systematically supports configurations of typed

and untyped code (section 4). A benchmark with N modules has

2
N

configurations, all of which must run efficiently for gradual

typing to achieve an unqualified success. Toward reproducibility,
companion software packages help to generate configurations, man-

age experiments, and visualize results (section 5). All the code is

available on GitHub and Software Heritage [121, 122, 123]:

https://github.com/utahplt/gtp-benchmarks
https://github.com/utahplt/gtp-measure
https://github.com/utahplt/gtp-plot

The paper concludes with a report on lessons learned (section 6),

related work (section 7) and a brief discussion (section 8).

Goals. This paper introduces a benchmark suite and explains

how the suite supports reproducibility. For researchers in the area,

our goal is to promote usage of, criticisms of, and extensions to

the GTP Benchmarks. For everyone else, our goal is to encourage

similar efforts in other domains by providing an example.

2 GRADUAL TYPING
One of the oldest questions in programming language design is

whether to include a type system. In the early days, languages

such as Cobol and Fortran used types to generate efficient machine

code [110, 7, 104]. For example, the Fortran statement:

integer,dimension(8) :: x
declares an array x with a type that specifies its size and contents.

Meanwhile, Lisp [90] demonstrated the “power, flexibility, simplic-

ity, and reliability” of untyped code (paraphrasing Hoare [67]), in

which any variable can point to any sort of value at run-time.

Although some Lisp implementations permitted optional type

annotations [94, 127], the typed and untyped styles developed over

time into two different worlds. Typed languages came to provide

strong guarantees, such as memory safety in Java [43], data-race

https://orcid.org/0000-0001-7078-9287
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function choose(probs, n)
{ ... }

function choose(probs, n:Number)
: Array(Number)
{ ... }

Figure 1: Gradually adding types

freedom in Rust [109], equational reasoning in Haskell [158, 42],

and correctness proofs in Coq [137]. Untyped languages became

the standard in web programming [44, 128], data science [136, 26],

and exploratory work [82]. The language communities grew apart

as well, with some experts hailing the “obvious” advantages of

types [78] and others in strong opposition [66, 153].

Recent work in the area of gradual typing has begun to close the

gap. The most prominent success to date is TypeScript, a language

that lets JavaScript programmers enrich their code with types [146,

11]. Thousands of JavaScript apps have migrated to TypeScript [126,

25] because it offers three key affordances: (1) types may be added

piece-by-piece to a JavaScript program; (2) types enhance developer

tools, such as autocomplete; and (3) its programs can interoperate

with existing JavaScript libraries. Point 1 is the main technical

advance, and it was pioneered by gradual typing research [142, 113,

89, 60]. Figure 1 illustrates: the function choose starts off untyped,

gains types for one parameter and for its return type (leaving one

parameter untyped), and remains a valid target for callers in other

TypeScript or JavaScript modules. For large codebases that need

the organization that types provide (a growing pain experienced by

Dropbox [71], Twitter [152], and even the creator of Python [69]),

this ability to incrementally add types with minimal changes to

existing code is much better than the alternative of porting to a

different, typed language.

2.1 What Do Gradual Types Mean?
In general, the aim of a gradual type system is to combine the

best aspects of typed and untyped code. But exactly what these

best aspects are is subject to debate, especially when it comes to

the types [55]. From the perspective of modern typed languages,

soundness is key. Types must be reliable predictions about how a

program behaves at runtime. If a variable n has type Number, for
example, then the language must guarantee that n is inhabited only
by numbers.

However, soundness guarantees do not hold in TypeScript—nor

in many other gradual languages [54]. When a JavaScript program

invokes the choose function in fig. 1, it can send any kind of in-

put: a string, an array, or anything else. Unless the TypeScript

programmer adds an explicit check for numbers, the invalid argu-

ment will propagate through the function body, at best raising an

error and at worst silently producing wrong output. TypeScript

types are therefore meaningless for debugging a flawed program or

otherwise reasoning about behavior. They can detect issues only at

compile-time, and only in typed code.

Research on sound gradual types, which do provide behavioral

guarantees, has been ongoing for the past two decades. Theoretical

work has established proof-of-concept designs for a spectacular

variety of types [20, 31, 86, 115, 15, 99, 1, 100], and uncovered

some negative results concerning the guarantees that gradual types

can express [27, 28, 145, 77]. Implementations can be found in

several languages [76, 160, 2], the most mature of which is Typed

Racket [143, 144]. This research is exciting, but comes with a catch:

runtime performance. Sound types require checks. Checks impose

runtime costs, and these costs can slow down a correct program by

several orders of magnitude [132, 59, 76, 58].

To get a sense of where high costs arise from, consider a call to

the choose function (fig. 1):

var nums = choose(x);
Sound gradual types guarantee that the input to choose is a number

and that the result is an array of numbers. For the input, a quick

tag check on x is enough. For the output, a more expensive check

is needed because the array that nums points is a mutable data

structure, thus future writes from untyped code may supply an

invalid element (e.g., nums[0] = "B"). To enforce the full behavior
of the type, choose must return a wrapper over the actual array.

Wrappers are an evident source of costs, as the runtime must

allocate a wrapper and then redirect future operations. But the

extent to which they slow down a program depends on how often

these wrappers get created and used. Furthermore, wrappers are

not the only source of costs. First-order checks on basic values

and traversals of immutable data can get expensive too [59]. Thus,

although theories for cheaper wrappers are important [117, 65, 116,

114, 47, 46] the critical questions are empirical: which bottlenecks
arise in practice and what can be done to avoid them?

To summarize, gradual typing is poised to resolve a longstanding

practical issue, but first it must find a way to reduce the costs of

enforcing type guarantees. The way forward is clear: researchers

must experiment with language designs and measure their perfor-

mance. To facilitate progress, the community needs a comprehen-

sive testbed for running and reproducing experiments.

2.2 What is a Gradual Typing Benchmark?
This paper contributes the GTP Benchmark Suite, which encom-

passes a collection of 21 programs (or rather, program families), an

experimental method for gradual typing performance, and software

for running experiments and visualizing results. Together, these

three pieces enable rigorous, reproducible experiments.

Each of the initial programs is a benchmark in the conventional

sense (of, say, SPEC [125] or V8 [147]). As such, they barely scratch

the surface of what becomes possible with gradual typing. The

next step is to systematically explore configurations of typed and

untyped code across the components in each program. In other

words, each program gives rise to a family of related configurations,

where each configuration is a runnable, partially-typed program.

The thesis of our experimental method is that all configurations

are important. The role of the support software is to create the

configurations, manage experiments that test all configurations,

and make sense of the exponentially-large result datasets.

A gradual typing benchmark is thus the family of configurations

that arise from an initial codebase and a full set of type annotations.
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function choose(probs, n) : 0/3 types = □□□

function choose(probs, n:Number)
: Array(Number) : 2/3 types = □■■

(a) Abstract representation of gradual code

□□□ ■■■
Untyped program + Type annotations ⇒

□□□
□□■ □■□ ■□□
□■■ ■□■ ■■□

■■■

Lattice of gradual configurations

(b) A program with three components has eight configurations

Figure 2: One benchmark, a family of programs

For example, the two versions of the choose function from fig. 1

could be two configurations of a benchmark (fig. 2a). With a type

for the first input to choose, there are eight total configurations,
which fig. 2a presents in a lattice to show how they systematically

explore all combinations of typed and untyped code obtainable by

removing type annotations.
1

The pressing question for a benchmark is how much overhead
types add (in the form of runtime checks) relative to the completely

untyped program configuration. Untyped performance is what the

programmer can achieve without any gradual typing. Thoughout

this paper, remarks about overhead (e.g., “a 3x slowdown”) are all

relative to the untyped configuration.

The GTP Benchmarks are written in Racket [103] and the fami-

lies explore types at a module-level granularity. Racket is a natural

fit because it ships with Typed Racket, a mature implementation

of sound gradual typing that has been refined over 15+ years and

supports a wide array of descriptive types, including types for con-

tinuations, first-class classes, and variable-arity functions [144, 131,

129, 134]. The module-level granularity means that a program with

three modules leads to eight configurations; by contrast, fig. 2 used

a mere three variables to generate eight configurations. Using a

coarser granularity allows for an in-depth analysis of larger pro-

grams. Scaling is still an issue, but linear sampling can effectively

draw approximate conclusions [58, 59].

2.3 Significance of the GTP Benchmarks
Sound gradual typing enables the creation of programs that mix

typed and untyped code, but leaves open the question of how fast

mixed programs run. The GTP Benchmarks were created to an-

swer this question in the context of Typed Racket. Earlier work

on gradual typing performance is sparse. A few papers present

case studies [143, 2, 155, 3]. Others report on the performance of

fully-typed code relative to untyped code, but not on the landscape

of gradual configurations in between [106, 157]

1
When adding types to untyped code, there may be an unlimited number of choices.

For example, an identity function (λx . x ) matches an infinite number of simple types:

(α → α ), ((α → α ) → (α → α )), . . .

Initial results were dismal, raising the question of whether sound

gradual typing was a dead end as a research area [132]. Overheads

exceeding 20x were the common case rather than pathologies. The

question is still relevant today, which, as Greenberg [48] notes, puts

pure-theory gradual typing research on shaky ground. But thanks

to the reproducibility provided by the GTP Benchmarks, several

research teams developed techniques and measured improvements:

• Changes to the implementation of wrapper values and the

compilation of types contributed speedups within one year

of the initial results [59].

• Collapsible function and array wrappers led to order-of-

magnitude improvements for two benchmarks [38]. A col-

lapsible, or space-efficient, wrapper drops redundant layers

without loss of debugging information [47]. Collapsing addi-

tional contracts is a promising direction for future work.

• An alternative semantics for types, inspired by Reticulated

Python [157], gave programmers a choice between fully-

reliable types and faster checks [57, 50]. With the faster

checks, the common case is under 10x; only one benchmark

has any configurations with a higher slowdown.

• Pycket demonstrated that tracing JIT technology built upon

PyPy [14], can reduce costs across the board without chang-

ing behavior [10].

• Corpse Reviver is a static analysis of untyped code relative

to its type constraints. On the 12 GTP Benchmarks that do

not rely on object-oriented features, the analysis reduces

gradual typing overhead to a 1.5x maximum [95].

Outside of Typed Racket, adaptations of the GTP Benchmarks

exist in several languages. Reticulated Python used the benchmarks

to measure the cost of its weakly-sound types [58] and the bene-

fits of two optimization techniques [156]. Grift used select bench-

marks to validate a machine-tailored, collapsible implementation

of wrappers [76]. Nom [96, 97] and HiggsCheck [107] used select

benchmarks to test a redesign of gradual typing in which a value

must be initialized with a correct label to enter typed code [162,

106, 96]. Although this design narrows the scope of gradually-typed

programs, it has been adopted in two industry languages: Dart and

Static Python [135, 84].

Looking beyond performance, the benchmarks have enabled re-

producible experiments for other topics related to gradual typing.

Phipps-Costin et al. [102] investigate the use of an SMT solver to

find types for untyped code; the Grift benchmarks provide support.

Lazarek et al. [79, 80] use the GTP Benchmarks to compare the

effectiveness of type-driven debugging on strong, weak, and unre-

liable types. Their results agree with earlier theoretical work [56],

but by only a slim margin, which underscores the importance of

experiments. Recent work compares the ability of profiling tools to

discover fast configurations.

3 THE BENCHMARKS
Any benchmark suite supports a basic form of reproducibility, since

researchers can run the benchmarks on different systems and com-

pare the results. Nevertheless, the first question a benchmark suite
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must answer is whether it is relevant to the problem at hand. Grad-

ual typing is a technique for general-purpose programs and it suf-

fers when typed and untyped code interact. Relevant benchmarks

should explore a variety of type boundaries in practical applications.

Table 1 summarizes the 21 GTP Benchmarks. With the exception

of sieve, a tiny program with one high-traffic module boundary,

each is derived from an independent, useful program. The first

columns of table 1 cite the source code (when available) and briefly

states their original purpose. One distinction to bear in mind: the

HTDP games were created to teach programming to beginners, in

the style of How to Design Programs [36]; whereas the games were
client/server applications. Further details on the origins of each

benchmark are online in the benchmark documentation [61].

Most benchmarks originated as untyped programs. Only the

few marked in the T Init column, such as take5, came with types

written by their original author. The benchmarks incorporate such

types when available and otherwise choose idiomatic types that

enable a full lattice (fig. 2b) of configurations. Section 4 explains

the challenge of finding suitable types.

To a first approximation, the number of configurations in a bench-

mark is determined by the number of modules in the original pro-

gram. There is, however a distinction between library modules that

a program depends on and modules that are part of the program

itself. In practice, adding types to a library module is generally less

feasible than adding types to a module by the program’s author.

Each benchmark therefore has some contextual modules that remain

fixed for all configurations, and some migratable modules to which

types can be added or removed. In table 1, the columns T Lib and U

Lib show a filled circle if there are any typed or untyped contextual

modules (aside from base Racket libraries).

Each configuration uses the same underlying code; the only

difference between configurations is their type annotations. This

code is similar to that of the original program, but rarely identical.

Section 4 explains why changes may be needed to run all configu-

rations. One notable source of changes is that Racket struct types

require a level of indirection that we call adaptor modules (Adapt).
Adaptor modules change the structure of a program but not its

performance; section 4.1 explains in more detail.

As a whole, the benchmarks exercise a variety of gradual typing

behaviors. The remaining columns of table 1 display a filled circle

( ) when a notable type is present at some boundary and an empty

circle (#) otherwise. The columns stand for higher-order functions

(HOF), polymorphic functions (Poly), recursive types (Rec), mutable

data such as arrays or hashes (Mut), immutable data such as lists

(Imm), first-class objects (Obj), and first-class classes (Cls).

3.1 Static Characteristics
Table 2 summarizes the migratable modules in the benchmarks.

The first three columns are about size. They report the number of

migratable modules (# Mod), the total lines of code in the untyped

configuration (U LOC), and the additional lines in the fully-typed

configuration (Ann LOC). For a program withM modules, there are

2
M

configurations; thus the benchmarks have between 4 and 16, 384

configurations with a median of 64 (= 2
6
). The final two columns

describe inter-module dependencies: the number of import/export

automatapopulation

utilities

main

fsmoo

→ direct require

⊸ adaptor require

B

M

R

C

Boundary types:

B : Natural -> Population
C : [Probability] Natural Op(Real) -> [Natural]
M : Natural -> Automaton
R : [Real] Real -> Real

Notation:

[T] is a homogeneous list of T’s
Op(T) is either a T or false

Figure 3: Modules, dependencies, and boundary types

links among migratable modules (# Bnd), and the number of identi-

fiers that flow across these links (# Exp). Identifiers include value

definitions and type definitions, but only the value definitions incur

a cost at runtime.

Example: Figure 3 presents an overview of one benchmark, fs-
moo. The purpose of this benchmark is to model competition in an

economy. It is implemented using objects to represent finite-state

automata (as opposed to the fsm benchmark, which uses mutable

arrays instead). The program has four migratable modules: main
drives the simulation, population models an economy of agents,

automata models an individual agent, and utilities provides

helper functions. There are no contextual modules. Each of the four

module boundaries (represented as arrows) transmits one function

type. The bottom half of the figure lists these types. Similar figures

for the other benchmarks are in the benchmark documentation [61].

From this static picture alone, it is impossible to predict the

runtime overhead in fsmoo. Every boundary could be expensive

if a large number of functions crosses it, or if these functions are

called repeatedly. In fact, the real source of overhead in fsmoo is

not the functions but rather the types Population and Automaton,
which represent objects. The methods of these objects get called

repeatedly, leading to layers of wrappers on the inputs and results.

3.2 Dynamics: Higher-Order Wrappers
Table 3 reports on the uses of higher-order wrappers in the bench-

marks. The main takeaway is that the suite exercises a variety

of wrappers, as shown by the large numbers that appear in each

column. Digging further requires some context.

First of all, the data in table 3 is specific to one pathological

configuration, the TWC configuration (typed worst case), rather

than an aggregate over the full 2
M

lattice, which would be difficult

to interpret. In the TWC configuration, every module is typed and

imposes checks on its imports. This configuration does not appear in

a normal lattice because typed-to-typed boundaries do not impose

checks by default. It has the benefit that every boundary between

migratable modules imposes a cost. However, the Typed Racket

optimizer removes checks that typed code is guaranteed to satisfy.

This optimization results in low numbers for sieve and take5.
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Table 1: Benchmarks overview: purpose and characteristics

Benchmark Purpose T Init U Lib T Lib Adapt HOF Poly Rec Mut Imm Obj Cls

sieve prime generator # # #  # #  #  # #
forth Forth interpreter [51] # # # # # #  #    
fsm economy simulation [33] # # # # # # #   # #
fsmoo economy simulation [34] # # # # # # #    #
mbta subway map   # # # # # # #  #
morsecode Morse code trainer [23, 148] # # # # # # #  # # #
zombie HTDP game [151] # # #   #  #  # #
zordoz bytecode tools [53] #  #   #    # #
dungeon maze generator # # # #        
jpeg image tools [161]    # # # #   # #
lnm data analysis [52] # #    # # #  # #
suffixtree string tools [163] # # #   #   # # #
kcfa program analysis [92] # # #   #    # #
snake HTDP game [149] # # #  # # # #  # #
take5 game [35]  # #   # # #    
tetris HTDP game [150] # # #  # # # #  # #
acquire game [32]  # #     #   #
synth music maker [5]  # #   # #   # #
gregor time & date tools [164] #  #  # # # #  # #
quadT typesetter [16]   #  #     #  
quadU typesetter [17] #  #  #  #   #  

Table 2: Benchmark size and complexity

Benchmark # Mod U LOC Ann LOC # Bnd # Exp

sieve 2 35 17 1 9

forth 4 257 31 4 10

fsm 4 182 56 5 17

fsmoo 4 194 83 4 9

mbta 4 266 71 3 8

morsecode 4 159 38 3 15

zombie 4 300 25 3 15

zordoz 5 1,393 223 6 12

dungeon 5 541 69 5 38

jpeg 5 1,432 165 5 50

lnm 6 488 114 8 28

suffixtree 6 537 130 11 69

kcfa 7 230 53 17 62

snake 8 159 50 16 31

take5 8 318 34 14 26

tetris 9 249 107 23 58

acquire 9 1,654 304 26 106

synth 10 837 138 26 51

gregor 13 945 175 42 142

quadT 14 6,685 307 27 174

quadU 14 6,779 221 27 160

Second, wrappers in Racket exist only for primitive values [130].

Objects are not primitive; instead, they are implemented with

structs. Thus there is no column for object wrappers, and acquire
and fsmoo (which use objects) have high numbers for structs.

Third, the table counts only applications (apps); that is, uses of

wrapped values. Two other important statistics are the number of

wrapper creations and the maximum depth of wrappers around

any one value. Appendix A reports these details.

Moving on to the table, several observations are apparent: zom-
bie, suffixtree, snake, and synth focus on procedures; forth, and
fsmoo use the most structs; and synth makes a huge number of

arrays. The object-oriented benchmarks fsmoo, take5, and acquire
all have high numbers for structs and procedures. All but a few

benchmarks have thousands of applications in at least one category,

meaning they put gradual types to work.

3.3 Dynamics: Garbage Collection
Table 4 reports garbage collection details for the TWC configuration

of each benchmark. On the whole, every benchmark allocates a

significant amount of memory in the this configuration (at least

70MB) and some spend a considerable amount of time collecting

garbage (seven spend 10 % or more).

The same caveats mentioned above (section 3.2) apply to the

TWC data in this section. On one hand, it may spend far more time

in garbage collection than any configuration in the lattice. On the

other hand, it may spend too little time in collection because of the

contract optimizer.

The columns in table 4 report four items: the percent of bench-

mark time spent on garbage collection (Total GC %), the aver-

age time spent per garbage collection (ms per GC), the maximum

amount of data that was in use at the start of any one garbage

collection (peak MB), and the percent difference between peak MB

in the TWC configuration versus the untyped configuration. For

three benchmarks, peak MB before a collection is lower than in
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Table 3: Usage of wrapped values (TWC Configuration)

Benchmark Procedure apps Struct apps Array apps

sieve 5 10 0

forth 152,149 51,801,426 0

fsm 1,010 2,524 3,305,323

fsmoo 2,300,769 28,285,389 17,952,160

mbta 498,809 949,909 0

morsecode 3 10 0

zombie 536,110 10 0

zordoz 572,191 317,828 88

dungeon 723,105 15,789,250 1,221,200

jpeg 24 25 5,899,946

lnm 1,908 30,703 0

suffixtree 3,935,912 10 108,592

kcfa 3,584 10 0

snake 11,739,420 22 0

take5 2,717,007 25,940,019 0

tetris 5,071 22 0

acquire 2,098,839 8,634,064 0

synth 30,332,600 352 43,593,686

gregor 281 207 116,980

quadT 72,589 116,335 125,168

quadU 73,949 115,996 124,734

Key: [0, 10
3
) [10

3
, 10

6
) [10

6
, 10

9
) [10

9
, inf)

white yellow orange red

Table 4: Garbage collection info (TWC Configuration)

Benchmark Total GC % ms per GC Peak MB (vs U)

sieve 16 % 5 111.71 (47 %)

forth 3 % 2 109.32 (225 %)

fsm 15 % 12 88.71 (7 %)

fsmoo 14 % 17 142.47 (179 %)

mbta 9 % 7 93.24 (3 %)

morsecode 2 % 1 74.10 (−15 %)

zombie 3 % 2 74.00 (94 %)

zordoz 6 % 3 91.85 (2 %)

dungeon 5 % 3 138.64 (67 %)

jpeg 10 % 6 88.66 (2 %)

lnm 23 % 18 157.48 (10 %)

suffixtree 0 % 0.4 88.19 (277 %)

kcfa 2 % 2 75.55 (−14 %)

snake 1 % 1 87.86 (22 %)

take5 2 % 1 105.59 (21 %)

tetris 2 % 0.7 88.25 (73 %)

acquire 1 % 2 135.73 (49 %)

synth 7 % 5 113.80 (17 %)

gregor 14 % 9 79.37 (−10 %)

quadT 16 % 18 136.87 (23 %)

quadU 4 % 5 171.81 (69 %)

the untyped configuration: morsecode, kcfa, and gregor. These
benchmarks also have low wrapper use in table 3.

3.4 Version History
The GTP Benchmarks come with a semantic version number (cur-

rent version: 9.2). Versioning lets the benchmarks improve while

supporting the reproducibility of prior work. New experiments

should use the latest release; reproduction studies should use the

release noted in prior work (or a contemporary one). Below, we list

major changes. More information is in the documentation and on

the GitHub releases page [61, 62].

Version 1 replaced two benchmarks, quadBG and quadMB,
with two others that are better-suited to measure gradual

typing overhead: quadU and quadT.
The quad benchmarks came from two programs by the

same author: one untyped, one typed. Originally, quadBG
and quadMB combined code from these programs and used

different choices of type annotations. This was a poor choice

because the typed codebase from the original author did

more than add types; it also added structural constraints to

data structures. The revised quadU is based on the untyped

code and quadT on the typed code.

Version 5 removed an unused call to format in the typed ver-

sion of zordoz. Because the call happened only in typed code,

it made the cost of gradual typing appear much too high.

Version 9 improved acquire and take5 to do more meaningful

work. Both benchmarks run games usingAI players, and both

were flawed. In acquire, every player eventually performed

an illegal move and got kicked from the game. In take5, the
driver script created a list of players that the game engine

ignored in favor of its own, internally-made players. The

updated acquire creates players that make only valid moves

and the updated take5 uses the input list of players. These
changes had negligible impact on gradual typing overhead.

4 TYPING ALL CONFIGURATIONS
A rigorous assessment of gradual typing performance must con-

sider all configurations a lattice in order to test the promise of

gradual typing. The GTP Benchmarks support the reproduction of

all configurations from two copies of the benchmark source code

(fully-typed and untyped). In part, this reproducibility is due to a

library that conditionally installs type boundary checks [124]. Find-

ing types for untyped code that work for all gradual configurations

can, however, be difficult.

First, the type checker may require casts or refactorings to deal

with untyped code. For example, untyped Racket code may assume

that the application (string->number "42") returns an integer;

though correct, the type checker cannot follow the value-dependent

reasoning involved.

Second, limitations of the type system may require code changes.

An interesting example comes from Python, which has a flexible

range function that can return a variety of iterators depending on

the input. Reticulated, a gradual type system for Python, thus uses

the dynamic type to describe the output [157, 57]. For programs that

expect a simple list of integers as the result, it may be preferable to

replace the use of range to enable a more-detailed type.

Third, some type boundaries may lack run-time support. Typed

Racket cannot enforce the type (U (-> Real) (-> Integer)) at a
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boundary because its contracts lack unions for higher-order wrap-

pers. The work-around is to rewrite the boundaries or, if possible,

simplify the types. For the above, (-> Real) works as a simplified

type. The zombie benchmark contains an example of the latter fix.

Several functions in zombie implement a message-passing protocol

where they expect a symbol and return a callback function:

(define-type Posn
(case-> (-> 'x (-> Real))

(-> 'y (-> Real))))

This Posn type cannot be converted to a contract because there

are two cases with the same input arity. Thus zombie uses an

alternative type and changes its implementation to match:

(define-type Posn
(-> Symbol

(U (Pairof 'x (-> Real))
(Pairof 'y (-> Real)))))

Fourth, polymorphic data structures cannot cross Typed Racket

boundaries. A benchmark must use monomorphic instantiations of

structs, arrays, etc. instead.

Lastly, struct types require particular care at boundaries. In most

cases, benchmarks must create an adaptor module for each module

that exports a struct.

4.1 Adaptor Modules
Adaptor modules solve a problem with gradual typing and gener-

ative types. In short, they provide a common type definition for

several clients to reuse. Creating an adaptor calls for a reorganiza-

tion of the module dependencies in a benchmark, but it is necessary

to allow generative types across a boundary while keeping only

two versions of each migratable module. Many GTP Benchmarks

use adaptors (14 of 21, table 1).

The most common source of generative types in Racket are

struct declarations. Definining a struct point with fields x and y
makes a fresh datatype that is incompatible with other structs—

even if they have the same name and fields. Typed Racket struct

types are generative in the same way; each definition is unique and

incompatible with others. This behavior is problematic when two

typed modules attempt to import the same untyped struct, because

the types generated by each import are incompatible. The solution

is to create a typed module that makes a canonical struct definition

and exports it to typed code (fig. 4).

One important subtlety arises when creating a lattice of configu-

rations from typed code with adaptors: the adaptor should make a

generative type only in configurations where the original struct is

untyped. If the original is typed, it should pass through the adaptor

to clients. The GTP Benchmarks use an external package to handle

the pass-through behavior [124].

4.2 Why Two Copies?
TheGTP Benchmarks ship two copies of each program: untyped and

fully typed. In principle, only the typed copy should be necessary.

Practical concerns have kept the untyped code around:

• Having the untyped code on hand makes it easy to compare

the benchmark to the program from which it originated,

□

Untyped Typed

■

∦

■

□

Untyped Typed

■

∥

■

■

Figure 4: Adaptormodules provide a canonical definition for
generative types

supporting reproducibility studies of the benchmarks’ devel-

opment.

• Any casts in the typed code must be mirrored by equivalent

checks in the untyped code. In Typed Racket, casts come from

the cast, define-predicate, and assert forms. The first

two use types directly, and must be rewritten or factored out

to a helper module. An assert is simple to translate when it

uses built-in predicate functions, but when it uses bespoke

predicates the untyped code needs a matching predicate

definition. In this case, the untyped code is more than a

type-free version of the typed code.

• Typed and untyped code may need to import different mod-

ules. Typed code often uses require-typed-check [124] to

optionally installs boundary checks. Untyped code does not

need this dependency.

5 SOFTWARE FOR REPRODUCIBILITY
To encourage rigorous, reproducible experiments, the GTP Bench-

marks pair with software for: installing the benchmarks (section 5.1),

running a full experiment (section 5.2), and plotting the results (sec-

tion 5.3). An auxilliary package runs quick experiments using rep-

resentative configurations (rather than a full lattice) for continuous

performance monitoring (section 5.4).

5.1 Building Configurations
A gradual typing benchmark is a family of configurations related

to one program (section 2.2). In the GTP suite, there are over 40,000

configurations in total. While one could imagine working with

these configurations directly, it is much more efficient to generate

them systematically.

The GTP Benchmarks therefore ship with with minimal source

code and scripts for generating configurations. Installing the pack-

age furthermore installs necessary dependencies, such as a Typed

Racket library for module imports [124], and builds documentation,

which presents an overview similar to section 3. In fact, all the data

presented in section 3 was originally computed by scripts from

the benchmark package—including a simple version of the fsmoo
module graph (fig. 3).

On a lower level, each benchmark has a main module (called

main.rkt) that initializes a computation. The current defaults are

the result of experiments to find a large-enough problem that does

not run overwhelmingly slowly in the worst case. Still, it may be

useful to try other inputs. Some benchmarks, such as suffixtree,
have alternative input files available. Others, such as dungeon, have
parameters that can be increased or decreased.
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#lang gtp-measure/manifest
#:config #hash(

(bin . "/home/gtp/racket-8.8/bin/")
(cutoff . 6) (num-samples . 10))

("/home/gtp/benchmarks/morsecode" . typed-untyped)
("/home/gtp/benchmarks/take5" . typed-untyped)

(a) Experiment specification

#lang gtp-measure/output/typed-untyped
("0000" ("cpu time: 602 real time: ..."))
("0010" ("cpu time: 191172 real time: ..."))
...

(b) Output for a configuration lattice

Figure 5: Two DSLs for reproducible experiments

5.2 Running an Experiment
Measuring the performance of all configurations for several bench-

marks is a nontrivial task. Each configuration needs to run multiple

times to deal with uncertainty in the measurements [98, 41] If the

goal is to sample instead of running all configurations [58], then

samples must be chosen in advance. For experiments running on a

compute cluster, where lost connections and timeouts can stop a

job, checkpointing and resumption are critical.

The gtp-measure package is a toolkit for reproducible exper-

iments [122]. Given a declaration of programs to run (these pro-

grams need not be GTP Benchmarks), it prepares a checklist of

configurations, assembles and runs configurations one-by-one (to

minimize space costs), and records output in a structured format.

When interrupted, an experiment can be resumed from the check-

list and current output. As it proceeds, the tool logs information

about progress and errors.

In keeping with the DSL-oriented Racket tradition [37], the

toolkit comes with little languages to suit the needs of practitioners.

Onemanifest language is for preparing experiments. Three data lan-
guages (with potentially more to come in the future) document the

output data. Figure 5 sketches two examples: a manifest that exhaus-

tively measures small benchmarks (with fewer than six modules)

and samples large ones by running ten little experiments (fig. 5a),

and a data file for one benchmark (fig. 5b). Running the data file

(racket file.rkt) prints summary statistics, including the num-

ber of configurations and the worst-case running time.

5.3 Visualizing Results
Finding ways to visualize an exponentially-large dataset was a ma-

jor challenge for early work on gradual typing performance [131].

Lattice-based (fig. 2) visualizations do not scale, nor do they make

it easy to compare two datasets. A better method is to focus on

overhead and count the number of configurations that run within

some tolerance bound, say, 2x for testing.

Overhead plots, such as the one in fig. 6, count configurations

for a range of bounds. In detail, the x-axis sets bounds between 1x

and 20x; the y-axis counts configurations from 0 % to 100 %; and

the curve shows how the percent of fast-enough configurations

increases as the upper bound increases. The takeaway from fig. 6 is

fsmoo

111111111 222222222 20x20x20x20x20x20x20x20x20x
000000000

505050505050505050

100%100%100%100%100%100%100%100%100%

16 confgurations

Figure 6: Overhead plot for fsmoo
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Figure 7: Monitoring three acquire configurations

that half the configurations run quickly (within 2x) and the other

half is very slow (worse than 20x).

When two curves appear in the same plot, the one with a larger

area under it corresponds to better performance. Prior work has

many examples, e.g., [57, 10].

The gtp-plot package [123] makes it easy to create overhead

plots from experiment data (fig. 5b). For customizing the results, it

has parameters to change the colors, font size, legends, and so on.

In addition to overhead plots, it supports other visualizations that

have been appeared in the literature [10, 58]. More visualizations

are on the way [40].

5.4 Performance Monitoring
The gtp-checkup package contains a small experiment derived

from the benchmarks suitable for running as a nightly task. Instead

of measuring all configurations or even a random sample, which

would require days of work, it uses three extreme configurations:

the untyped, typed, and TWC (typed worst case, section 3.2).

Figure 7 plots results for one benchmark, acquire, across 4+

years of Racket development. Each thin vertical line corresponds

to a Racket release. This benchmark sped up considerably in 2018,

experienced a brief regression in 2020, and then returned to normal.

Similar plots for the other benchmarks appear in the gtp-checkup
documentation [29].
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6 LESSONS LEARNED
Creating a benchmark suite that enables reproducibility is a tall

order, especially for an emerging area. On one hand it is important

to focus on a specific problem, but on the other hand the significant

problems may be unclear and may shift with changes in imple-

mentation technology. Even with a problem in hand, it may be

challenging to develop evaluation criteria. Our experience with

the GTP Benchmarks motivates the following hints to benchmark

designers, which hopefully reduce the risk in future efforts:

Favor broad research questions. Start with research questions that
are broadly applicable and come with few assumptions. Later on,

consider narrowing the questions. The GTP Benchmarks make no

assumptions about which modules will be equipped with types,

thus the results may be overly conservative but apply to all sorts of

users. Finding common modes of use is an important topic for user

studies, but was not a critical bottleneck for research on gradual

typing performance.

Let end-users drive evaluation criteria. To design evaluation cri-

teria for a system, put yourself in the shoes of someone using the

system who has limited time to run experiments. When developing

the GTP Benchmarks, we were tempted to study worst-case over-

head, average overhead, and statistical tests about the distribution

of fast configurations. Answers to these questions would be fasci-

nating, but useless to working programmers who try gradual typing

on one configuration and give up when it runs slowly. Instead, we

focused on counting fast configurations to assess overall feasibility.

This narrow focus was key to interpreting the large datasets and to

the development of a linear sampling method to approximate the

outcome for huge datasets [59, 58].

Keep the benchmark codebase simple. Benchmarks must be easy

to share and run. Make sure they are easy to install, have few depen-

dencies, and have a clear structure (microservice style [138]). The

pre-release GTP Benchmarks [132] came with execution scripts,

analysis scripts, and code for a paper based on the analysis. Simi-

larly, our Reticulated Python benchmarks come with scripts and a

paper [58]. This tight coupling inhibits reuse.

Use CloudLab. CloudLab is a tremendous resource for repeatable

experiments [30]. Getting started with Cloudlab was easier than

any other cluster we have used, and its lack of persistent storage

encourages good DevOps practices [159, 70]. Today, we prefer using

CloudLab over local desktop machines and have published profiles

for running the benchmarks
2
and running a checkup.

3

7 RELATEDWORK
Inspiration for the benchmarks came from two main sources: prior

benchmark suites, notably DaCapo for Java [12] and the Gabriel

Lisp Benchmarks [39]; and Takikawa’s all configurations experimen-

tal method for gradual typing performance [131, 133]. Several works

provided helpful guidance. Vitek and Kalibera [154] lay out princi-

ples for empirical evaluation. Mytkowicz et al. [98] report pitfalls

to avoid when measuring performance. Georges et al. [41] propose

2
https://www.cloudlab.us/p/rational-prog/gtp-benchmarks, accessed 2023-05-31

3
https://www.cloudlab.us/p/rational-prog/gtp-checkup, accessed 2023-05-31

a method for rigorous performance evaluation of a managed pro-

gramming languages. Kistowski et al. [75] list characteristics of a

standard benchmark.

Within gradual typing, other performance benchmarks exist for

Reticulated Python [58, 157], Grift [76], and Grace [108]. Though

smaller in scale, these benchmarks address the measurement ques-

tion for fine-grained gradual typing in which any variable can be

typed or untyped. Other gradual benchmark suites focus on type

migration [19, 91, 102] and debugging [18, 79].

Today, there are many resources available to benchmark suite

curators. SIGSOFT [119] and SIGPLAN [118] offer guidelines for

benchmarks, and for empirical research in general. Tools such as

ReBench [87, 88] and Krun [8] are free to use and learn from (both

influenced our work). The Popper Convention shows the benefits

of managing experiments as software projects [74, 73, 72]. Docker

is another path to reproducible research [13].

8 DISCUSSION
Reproducible experiments are critical for sound gradual typing. The

idea of incrementally adding sound types to a large codebase is

compelling, and may indeed change the future of programming [21]

if researchers develop techniques to eliminate or avoid the cost of

soundness in practical situations. Thorough, repeated evaluation is

the way forward to identify effective techniques.

The GTP Benchmark Suite combines relevant programs, rigorous

experimental methods, and tools for reproducible experiments. It

consists of 21 program families that jointly explore 43,972 ways

(dominated by the largest families) of mixing typed and untyped

code. The programs vary in size, purpose, and method to stress

all sorts of type boundaries. Some make heavy use of first-class

classes, others use higher-order functions, and still others focus on

simple but large data structures. The reproducibility tools prepare

gradual configurations, configure interruptible experiments, and

visualize results. Much more than icing on top, these tools provide

fundamental infrastructure that encodes why and how to apply the

benchmarks to important performance questions.

Two important topics for future work are to develop a language-

independent benchmark specification and to develop software met-

rics tailored to gradual typing. These topics go hand in hand. A

specification of the essential language features in each benchmark,

similar to FPBench [24] or B2T2 [83], would improve the state of

cross-language reproducibility. Currently, ports of the GTP Bench-

marks to other languages happen in an ad-hoc way [76, 107, 10,

96, 58, 156]. Software metrics are a tool for quantifying features.

Standard metrics exist, e.g., for object-oriented code [22]; gradual

typing would benefit from metrics for boundaries, types, and wrap-

pers [65, 47, 38, 114]. Feature-specific profiling [6] may provide a

starting point for metrics based on dynamic analysis.

Data Availability Statement. The GTP Benchmarks and companion

software are available on Software Heritage [121, 122, 123] and

Zenodo [49].
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Table 5: Procedure wrapper info

Benchmark Proc apps Proc makes Proc depth

sieve 5 20 0

forth 152,149 121,788 4

fsm 1,010 1,222 0

fsmoo 2,300,769 12,578,624 2

mbta 498,809 67,997 2

morsecode 3 15 0

zombie 536,110 689,726 13

zordoz 572,191 644,169 2

dungeon 723,105 6,899,677 2

jpeg 24 258 0

lnm 1,908 3,630 2

suffixtree 3,935,912 194,764 2

kcfa 3,584 1,473 0

snake 11,739,420 231 0

take5 2,717,007 9,316,049 2

tetris 5,071 252 0

acquire 2,098,839 5,350,503 15

synth 30,332,600 848 3

gregor 281 318 2

quadT 72,589 5,640 3

quadU 73,949 5,634 3
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A WRAPPERS: APPLICATIONS,
CONSTRUCTIONS, AND MAX DEPTH

Tables 5 to 7 report low-level details about wrappers. There are

three kinds of wrappers in the tables—for procedures (Proc), structs

(Struct), and array (Arr)—and three statistics for each: the number

of times a wrappers is used or read from (apps), the number of

times a wrappers is initialized (makes), and the maximum number

of layered wrappers around any value (depth).
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