

GTP Benchmarks for Gradual Typing Performance

Ben Greenman

Must be:

Relevant

Rigorous

Reproducible

Must be:

Relevant

Rigorous

Reproducible

Example:

Must be:

Relevant

Rigorous

Reproducible

Must be:

Relevant

Rigorous

Reproducible

How to encourage **domain-specific** benchmarks?

Main takeaway: think like a practitioner

Gradual

GTP = Typing

Performance

Gradual Typing Performance?

Untyped ➤ Typed

Run-time cost of sound types

Gradual Typing Performance? Untyped > Typed **Run-time cost** of sound types ?? join(x,y,z) How to validate? def join(d0:DataFrame, d1:DataFrame, sort:bool, how:Left|Right) -> DataFrame:

Gradual Typing Performance?

Untyped ➤ Typed

Run-time cost of sound types

?? join(x,y,z) How to validate?

def_join(d0:DataFrame.

?? join(x,y,z) How to validate?

- + object types, function types, ...
- + type-driven optimizer

Worst-case slowdown: 1.4x ecoop'15

- + object types, function types, ...
- + type-driven optimizer

Worst-case slowdown: 1.4x ecoop '15

- + object types, function types, ...
- + type-driven optimizer

Worst-case slowdown: 1.4x ecoop '15

2x

30x

12,000x

(1ms to 12sec)

- + object types, function types, ...
- + type-driven optimizer

Worst-case slowdown: 1.4x ecoop'15

2x

30x

12,000x

(1ms to 12sec)

What does soundness cost? Need a way to measure!

What to measure? Cost of sound types

GTP Benchmarks

What to measure?

Cost of sound types

Which programs?

... Any

GTP Benchmarks

What to measure? Cost of sound types

Which programs? ... Any

How fast is good enough? ???

GTP Benchmarks

What to measure? Cost of sound types

Which programs? ... Any

How fast is good enough? ???

What is a benchmark? ????

GTP Benchmarks

What to measure?

Cost of sound types

Which programs?

... Any

How fast is good enough? ???

What is a benchmark? ???

Think like a practitioner

Untyped code? def join(d0,d1,sort,how): Not enough.

Typed code? def join(d0:DataFrame, ...): Not enough.

Untyped code?

def join(d0,d1,sort,how):

Not enough.

Typed code?

def join(d0:DataFrame, ...):

Not enough.

GT promise: can mix typed + untyped code

Need to measure all configurations

1. Start with a program

```
def join(d0,d1,sort,how):
    ....
```

1. Start with a program

```
def join(d0,d1,sort,how):
    ....
```

2. Add types

1. Start with a program

```
def join(d0,d1,sort,how):
    ....
```

2. Add types

3. Explore all configurations

What is a gradual typing benchmark? Explore by **module** 5 modules, 32 configurations

Where to find benchmarks?

Wherever people share code

Where to find benchmarks?

Wherever people share code

Current status: 21 benchmarks, +40k configurations

Table 1: Benchmarks overview: purpose and characteristics												
Benchmark	Purpose	T Init	U Lib	T Lib	Adapt	HOF	Poly	Rec	Mut	Imm	Obj	Cls
sieve	prime generator	0	0	0	•	0	0	•	0	•	0	0
forth	Forth interpreter [51]	0	0	0	0	0	0	•	0	•	•	•
fsm	economy simulation [33]	0	0	0	0	0	0	0	•	•	0	0
fsmoo	economy simulation [34]	0	0	0	0	0	0	0	•	•	•	0
mbta	subway map	•	•	0	0	0	0	0	0	0	•	0
morsecode	Morse code trainer [23, 148]	0	0	0	0	0	0	0	•	0	0	0
zombie	HTDP game [151]	0	0	0	•	•	0	•	0	•	0	0
zordoz	bytecode tools [53]	0	•	0	•	•	0	•	•	•	0	0
dungeon	maze generator	0	0	0	0	•	•	•	•	•	•	•
inaa	imaga taala [161]	_	_	_	_	_	0	_	_	_	_	_

How to analyze the data?

How to compare

How to scale

How to scale

Linear-size random samples

Interruptible! Space-Efficient. Configurable.

Tiny DSL for experiments

```
#lang gtp-measure/manifest

#:config #hash(
   (bin . "/home/gtp/racket-8.8/bin/")
   (cutoff . 6)
   (num-samples . 10))

/home/gtp/benchmarks/morsecode
/home/gtp/benchmarks/take5
```

DSL for data

```
#lang gtp-measure/output/typed-untyped
("00000" ("cpu time: 566 real time: 567 gc time: 62" ....))
("00001" ("cpu time: 820 real time: 822 gc time: 46" ....))
("00010" ("cpu time: 561 real time: 562 gc time: 46" ....))
("00011" ("cpu time: 805 real time: 807 gc time: 47" ....))
....
```

```
#lang gtp-measure/output/typed-untyped

#lang gtp-measure/output/typed-untyped

("00000" ("cpu time: 566 real time: 567

("00001" ("cpu time: 820 real time: 822 gc time: 46" ....))

("00010" ("cpu time: 561 real time: 562 gc time: 46" ....))

("00011" ("cpu time: 805 real time: 807 gc time: 47" ....))
```

```
5.3 Output Data: Typed-Untyped Target
                             DSL for data
                                                 #lang gtp-measure/output/typed-untyped
                                                                                     package: gtp-measure
#lang gtp-measure/output/typed-untyped
                                                Output data for a gtp typed-untyped target.
("00000" ("cpu time: 566 real time: 567.
                                                       the result for one configuration. The first element is the name of the
                  Running an output file prints a summary:
("00001" ("cpu
                                                       me: 46" ....))
me: 46" ....))
                   dataset info:
("00011" ("cpu
                                                       me: 47" ....))
                   - num configs: 32
                    - num timings: 256
. . . .
                    - min time: 110 ms
                    - max time: 8453 ms
                    - total time: 968537 ms
```


Continuous Testing

All 3 important ... but not to everyone

All 3 important ... but not to everyone

Lesson 2: loose coupling helps adoption

Still ... low adoption

2014: few experiments, ~2 gradual configurations

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen Northeastern University, Boston, MA

Abstract

Programmers have come to embrace dynamically-typed languages for prototyping and delivering large and complex systems. When it comes to maintaining and evolving these systems, the lack of explicit static typing becomes a bottleneck. In response, researchers

many cases, the systems start as innocent prototypes. Soon enough, though, they grow into complex, multi-module programs, at which point the engineers realize that they are facing a maintenance nightmare, mostly due to the lack of reliable type information.

Gradual typing [21, 26] proposes a language-based solution to

Still ... low adoption

2014: few experiments, ~2 gradual configurations

Lately: few experiments, but thorough

Ok?

Is Sound Gradual Typing Dead?

Abstract

Programmers have come to embrace dynamically-typed languages for prototyping and delivering large and complex systems. When it comes to maintaining and evolving these systems, the lack of explicit static typing becomes a bottleneck. In response, researchers

many cases, the systems start as innocent prototypes. Soon enough, though, they grow into complex, multi-module programs, at which point the engineers realize that they are facing a maintenance night-mare, mostly due to the lack of reliable type information.

Gradual typing [21, 26] proposes a language-based solution to

Thank You

How to encourage **domain-specific** benchmarks?

How to encourage **domain-specific** benchmarks?

Think like a practitioner

How to encourage **domain-specific** benchmarks?

Think like a practitioner

Separate benchmarks from analysis tools

How to encourage **domain-specific** benchmarks?

Think like a practitioner

Separate benchmarks from analysis tools

Borrow nodes

https://github.com/utahplt/gtp-benchmarks

https://github.com/utahplt/gtp-measure

https://github.com/utahplt/gtp-plot