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Typed

Untyped

Q. Should your PL be typed or untyped?




Typed

Untyped

Q. Should your PL be typed or untyped?

Gradual typing says yes to both

"best" of two worlds
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Natural

G strong, slow types
Deep

Starting Point

Transient

G fast, wrong types
Shallow
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RQ. Can Natural and Transient interoperate?
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Natural

Starting Point

RQ. Can Natural and Transient interoperate?

G strong, slow types
Deep

D Transient
> U <«
S G fast, wrong types
Shallow

Motivations:
- ease the guarantees vs. performance tradeoff
- no loss of expressiveness; same static types
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Natural

Starting Point

RQ. Can Natural and Transient interoperate?

G strong, slow types
Deep

Transient

G fast, wrong types
Shallow

Orthogonal to basic improvements:

Motivations:

- ease the guarantees vs. performance tradeoff
- no loss of expressiveness; same static types

Pycket

Corpse Reviver
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Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

48



Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed <€ ? l
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While preserving their formal properties

OOPSLA'19 ICFP'18
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Key Technical Question:
How to Enforce Types at Boundaries?

Type Soundness
Complete Monitoring

Deep Typed <€ ? l
f‘ Dyn. Soundness
? Untyped
Type Soundness ‘T
Shallow Typed < ?

While preserving their formal properties

OOPSLA'19 ICFP'18
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Key Technical Question:
How to Enforce Types at Boundaries?
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Key Technical Question:
How to Enforce Types at Boundaries?

First of all:

Q. How does Natural enforce|Deep|types?

Q. How does Transient enforce

Shallow types?
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Q. How does Natural enforce

Deep Typed

Deep

types?

Untyped
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Q. How does Natural enforce|Deep|types?

A. Use wrappers to guard boundaries

Deep Typed

Untyped
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Q. How does Natural enforce

Deep

types?

A. Use wrappers to guard boundaries

Deep Typed

Int -> Int

Untyped

fun x .

e
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[wrap]
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e
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Q. How does Natural enforce

Deep
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Deep Typed <€

Int -> Int
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[wrap] [«

Vectorof Int

vec 1 2 3

fun x .

e
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Q. How does Natural enforce

Deep|types?

A. Use wrappers to guard boundaries

Deep Typed < > Untyped
Int -> Int
[wrap] [« fun x . e
Vectorof Int
vec 1 2 3 »| [wrapl
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Q. How does Transient enforce-types?
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Q. How does Transient enforce

Shallow

types?

A. With no wrappers but many tiny shape checks

Shallow Typed <

Untyped
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Q. How does Transient enforce
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A. With no wrappers but many tiny shape checks

Shallow Typed

fun x . e

Int -> Int

Untyped

fun x .

e

Vectorof Int

vec A B C
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Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC
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Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC
Int -> Int
fun x . e' >
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Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC
Int -> Int
fun x . e' »| fun x . e'
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Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

DDDDDDDDDDDDDDD
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fun x . e

Int -> Int

> Untyped

DDDDDDDDDDDDDDD

fun x . e

Vectorof Int

vec A B C

fun x . e

Int -> Int

vec A B C

»| fun x . e
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Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks
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Deep Typed
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Shallow Typed
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Deep Typed

1.

wrap

Shallow Typed

Untyped
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Deep Typed

Shallow Typed

1. wrap

Untyped

2. shape check

73



Deep Typed
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Deep Typed

< 1. wrap
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No!
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What If: No Checks Between Deep and Shallow

Shallow makes a function,

def fo(n : Int):
Example 1: n+ 2

Deep code cannot trust Shallow types because
they are lazily enforced
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Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...

def f1 = fo




What If: No Checks Between Deep and Shallow

Shallow makes a function,
def fo(n : Int):

Example 1: n+ 2
Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...
def f1 = fo

and back, with a new type.

f2 : Str -> Str
def 2 = f1




What If: No Checks Between Deep and Shallow

Shallow makes a function,
def fo(n : Int):

Example 1: n+ 2
Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...
def f1 = fo

and back, with a new type.

Typessay f2 : Str -> Str > f2 : Str -> Str

Checks say f2is afunction def 2 = f1
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What If: No Checks Between Deep and Shallow

Example 1:
Deep code cannot trust Shallow types because
they are lazily enforced

Typessay f2 : Str -> Str
Checks say f2is afunction

>

Shallow makes a function,

def fo(n : Int):
n+ 2

sends it to untyped code ...

def f1 = f0

and back, with a new type.

f2 : Str -> Str
def f2 = f1

Deep gets a 'bad' function

f3 : Str -> Str
def f3 = f2
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What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def go(h :

h(3)

Int -> Int):
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What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def go(h : Int -> Int):
h(3)

sends it to Shallow,

gl : (Int -> Int) -> Int
def gl = g0

82



What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def g0(h : Int -> Int):
h(3)

sends it to Shallow,

gl : (Int -> Int) -> Int
def gl = g0

which sends it to untyped

def g2 = gl
g2("not a function")
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Deep Typed
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Deep Typed
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W In paper: model, type soundness, complete monitoring
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Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped
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Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped

) 1

A Transient Semantics for Typed Racket

Programming'22

88



Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped
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Implementation

Deep Typed

Shallow Typed

Untyped

-—
In paper: general lessons (no macros)
-
) !
) 1
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Evaluation

Guarantees vs. Performance vs. Expressiveness
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Guarantees vs.

Evaluation

Performance

A

vs. Expressiveness
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“ GTP Benchmarks

21 programs

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

GTP Benchmarks

docs.racket-lang.org/gtp-benchmarks
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[

GTP Benchmarks
21 programs

Ex: One program with 3 components

...search manuals...

top <¢prev up next-

>

GTP Benchmarks

1 Running a benchmark
11 Quick Route

1.2 Official Route

1.3 Semi-Auto Route

make-configurations

2 Version Notes

3 Benchmark Descriptions
3.1 acquire Description
3.2 dungeon Description

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

\ ‘Q_“y' <27

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

docs.racket-lang.org/gtp-benchmarks

\4
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GTP Benchmarks
21 programs

...search manuals...

top < oorev up next o

>

GTP Benchmarks

1 Running a benchmark

11 Quick Route

1.2 Official Route

1.3 Semi-Auto Route
make-configurations

2 Version Notes

3 Benchmark Descriptions

3.1 acquire Description

3.2 dungeon Description

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

0= - f:i:v_

\\...;Efg,zsz%v'
X~
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\

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

Ex: One program with 3 components

\4

8 Typed / Untyped points (2*N)

docs.racket-lang.org/gtp-benchmarks
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" GTP Benchmarks

21 programs

...search manuals...

3.1 acquire Description

top < oorev up next o

> author: Matthias Felleisen

source: github.com/mfelleisen/Acquire
dependencies: None

Simulates a board game between player objects. The players send messages to an
1 Running a benchmark administrator object; the administrator enforces the rules of the game.

11 Quick Route > Byt Oner( 7t )=t 3}t 0)—
12 Official Route N AL L

q S 72
1.3 Semi-Auto Route \ e
=== ‘/

GTP Benchmarks

1

make-configurations

2 Version Notes

3 Benchmark Descriptions 0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
31 acquire Description 1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

3.2 dungeon Description

docs.racket-lang.org/gtp-benchmarks

Ex: One program with 3 components

\4

8 Typed / Untyped points (2*N)

\4

27 Deep / Shallow / Untyped points (3”"N)

| |
e : Y] : |
[ | — —
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Better Performance

Q. How many points run fastest with a Deep + Shallow mix?
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Q. How many points run fastest with a Deep + Shallow mix?
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forth

fsm

fsmoo
mbta
morsecode
zombie

dungeon

jpeg

12%
38%
31%
19%
25%

6%
31%
38%

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

zordoz

1nm
suffixtree
kcfa

snake
takeb
acquire

tetris

47%
66%
48%
55%
46%
36%
647%
62%

e | — — o — — s — | — |
 — | — —  —  — —  —  — | —
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Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow
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Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

2.97x
5.43x
1.91x
4.25x
1.71x
1.3x
31x
3.16x
1.56x
2.58x
1.17x

suffixtree 5.8x

kcfa 1.24x
snake 7.61x
takeb 2.97x
acquire 1.42x
tetris 5.44x
synth 4.2x
gregor 1.51x
quadT 7.23x
quadu 7.45x
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Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

2.97x
5.43x
1.91x
4.25x
1.71x
1.3x
31x
3.16x
1.56x
2.58x
1.17x

16x 4.36x
5800x 5.51x
2.24x 2.38x
420x 4.28x
1.91x 1.74x
1.57x  2.77x
46x 31x
15000x 4.97x
23x 1.66x
2.63x 2.75x
1.23x  1.21x

suffixtree
kcfa

snake
takeb
acquire
tetris
synth
gregor
quadT
quadu

5.8x
1.24x
7.61x
2.97x
1.42x
5.44x

4.2x
1.51x
7.23x
7.45x

31x

.33x

12x
44x

.22X

13x
47X

. 12X

26X
55x

5.8x
1.24x%
7.67x
2.99x
1.42x
9.93x

4.2x
1.59x%
7.39x
7.57x

102



H.O. values and
many elim. forms

Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow
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quadT
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Better Performance
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Better Performance

Overall: switching between Deep and Shallow
can avoid perf. bottlenecks

Deep|near the top, Shallow|in the middle,
to maximize the benefits of types to minimize the cost of boundaries

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ 1 C

[ ] [ ] [ J [ ] [ ] [ ] [ ] [ ] [ J [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ J [ J [ 1 C
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Conclusion
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Context: Different GT strategies exist U
(for good reason!)
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Context:

Inquiry:

Different GT strategies exist
(for good reason!)

Can two extreme strategies interoperate?

Deep|types via Natural (wrappers)

Shallow|types via Transient (no wrappers)
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Context:

Inquiry:

Contribution:

Different GT strategies exist
(for good reason!)

Can two extreme strategies interoperate?

Deep|types via Natural (wrappers)

Shallow|types via Transient (no wrappers)

Yes! In a way that:

- preserves their formal guarantees

- leads to better overall performance
- lets TR express additional programs

109



Deep

A New Dimension for Gradual Typing

Shallow

Untyped
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Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Untyped
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Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped
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Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped

Q. Better cooperation b/w Deep and Shallow?
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Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped

Q. Better cooperation b/w Deep and Shallow?

Q. Solve the N2 interop problem?
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The End

Deep

Untyped
Shallow ‘

Coming soon to Racket
https://racket-lang.org

Pull Request https://github.com/racket/typed-racket/pull/948

Research Repo https://github.com/bennn/g-pldi-2022
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