Northeastern

Ben Greenman
2022-06-16

-> Brown*
-> Utah

Typed

Untyped

Q. Should your PL be typed or untyped?

Typed

Untyped

Q. Should your PL be typed or untyped?

Gradual typing says yes to both

"best" of two worlds

Great Idea!
Inspired MANY Languages Over 16+ Years

Great Idea!
Inspired MANY Languages Over 16+ Years

mypy P‘X“RE fe & prrcir

a@@ ! Grift TPD
Pallene

Ak SRR

SafeTS TS* StrS

Nom .’!; ~l£;

Great Idea!
Inspired MANY Languages Over 16+ Years

AS
= mypy

i3 ‘W |
o P £y hack P 3 PYRIGHT
12 PXRE S,

a‘ No agreement on the semantics of gradual types

TPD

Pallene
WNR - g e
N StaticP
SafeTS TSx*

R | JS

StrS iﬁm

- @

on Gostoer v et

Natural
Grift TPD
AS

Concrete SafeTS
1'ﬁ=' '———1.IIIIF——1¢om ‘lss

StaticP

TS*

JS

StrS m

B,

Transient

grm @

Erasure
YRE A o

mypy

PyType

4—[H0®

&

38

. Grift TPD

Natural

AS

Concrete SafeTS

—“—Nom J S

StrS m

4 leading

semantics because of a tradeoff Transient
| :
"‘ ’ K? grm @

A

StaticP

TS*

JS

type guarantees vs. performance costs
VS. expressiveness

s) Erasure P
LisP p &)
b fy hack 5 PYRIGHT

mypy PyType

a4—BEee

&

39

SMALLALK-80

. Grift TPD

Ao Goxteg O son

Natural

AS

A

StaticP

TS*

JS

A

i ¢
B & oy
o EDmon

mypy

Concrete

SafeTS

T

Erasure

Nom ~l£;

StrS m

Transient
R T @

A o

PyType

4—Be

&

40

e Cortorg i

Natural

. Grift TPD

AS

A

C#

Concrete

SafeTS

1 B limited interop w/ untyped

'———‘rw‘.r——wom IS;]

A

i
P

S mypy

TS*

JS

StrS

Erasure

‘b

% Lt

Transient
R = @

@ an

PyType

4—Bee

&

41

SR Natural

. Grift TPD

AS

A

Concrete
C#—‘1—Nom

SafeTS

1 B limited interop w/ untyped

IL‘

LisP P
<

mypy

j*s , StrS m

TR Erasure

. unsound intero

-

Transient |ne
R I~ @

4—0&

42

Concrete SafeTS
C#—‘1—Nom
1 - limitedinteropw/untyped Ig‘

% ® s

Natural Transient |ne
Grift | 7FD Grace & eqj
6 strong, slow types 6 fast, wrong types I

Deep Shallow

i (Erasure
AS Lf, ‘ PYRIGHT
"Y1 Ml unsound interop PyType
’ ()]
J ‘v

43

Natural

G strong, slow types
Deep

Starting Point

Transient

G fast, wrong types
Shallow

44

Natural

Starting Point

RQ. Can Natural and Transient interoperate?

G strong, slow types
Deep

Transient

G fast, wrong types
Shallow

45

Natural

Starting Point

RQ. Can Natural and Transient interoperate?

G strong, slow types
Deep

D Transient
> U <«
S G fast, wrong types
Shallow

Motivations:
- ease the guarantees vs. performance tradeoff
- no loss of expressiveness; same static types

46

Natural

Starting Point

RQ. Can Natural and Transient interoperate?

G strong, slow types
Deep

Transient

G fast, wrong types
Shallow

Orthogonal to basic improvements:

Motivations:

- ease the guarantees vs. performance tradeoff
- no loss of expressiveness; same static types

Pycket

Corpse Reviver

OOPSLA'LY

POPL'21

47

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

48

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed <€ ? l
? Untyped
Shallow Typed < ? T

While preserving their formal properties

OOPSLA'19 ICFP'18

49

Key Technical Question:
How to Enforce Types at Boundaries?

Type Soundness
Complete Monitoring

Deep Typed <€ ? l
? Untyped
Shallow Typed < ? ‘T

While preserving their formal properties

OOPSLA'19 ICFP'18

50

Key Technical Question:
How to Enforce Types at Boundaries?

Type Soundness
Complete Monitoring

Deep Typed <€ ? l
? Untyped
Type Soundness ‘T
Shallow Typed < ?

While preserving their formal properties

OOPSLA'19 ICFP'18

51

Key Technical Question:
How to Enforce Types at Boundaries?

Type Soundness
Complete Monitoring

Deep Typed <€ ? l
f‘ Dyn. Soundness
? Untyped
Type Soundness ‘T
Shallow Typed < ?

While preserving their formal properties

OOPSLA'19 ICFP'18

52

Key Technical Question:
How to Enforce Types at Boundaries?

53

Key Technical Question:
How to Enforce Types at Boundaries?

First of all:

Q. How does Natural enforce|Deep|types?

Q. How does Transient enforce

Shallow types?

54

Q. How does Natural enforce

Deep Typed

Deep

types?

Untyped

55

Q. How does Natural enforce|Deep|types?

A. Use wrappers to guard boundaries

Deep Typed

Untyped

56

Q. How does Natural enforce

Deep

types?

A. Use wrappers to guard boundaries

Deep Typed

Int -> Int

Untyped

fun x .

e

57

Q. How does Natural enforce

Deep

types?

A. Use wrappers to guard boundaries

Deep Typed

[wrap]

Int -> Int

Untyped

fun x .

e

58

Q. How does Natural enforce

Deep

types?

A. Use wrappers to guard boundaries

Deep Typed <€

Int -> Int

Untyped

[wrap] [«

Vectorof Int

vec 1 2 3

fun x .

e

59

Q. How does Natural enforce

Deep|types?

A. Use wrappers to guard boundaries

Deep Typed < > Untyped
Int -> Int
[wrap] [« fun x . e
Vectorof Int
vec 1 2 3 »| [wrapl

60

Q. How does Transient enforce-types?

61

Q. How does Transient enforce

Shallow

types?

A. With no wrappers but many tiny shape checks

Shallow Typed <

Untyped

62

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed

Int -> Int

Untyped

fun x .

e

63

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed

fun x . e

Int -> Int

Untyped

fun x .

e

64

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed

fun x . e

Int -> Int

Untyped

fun x .

e

Vectorof Int

vec A B C

65

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC

66

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC
Int -> Int
fun x . e' >

67

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

Shallow Typed > Untyped
Int -> Int
fun x . e fun x . e
Vectorof Int
vec A B C vec ABC
Int -> Int
fun x . e' »| fun x . e'

68

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

DDDDDDDDDDDDDDD

Shallow Typed

DDDDDDDDDDDDDDD

DDDDDDDDDDDDDDD

fun x . e

Int -> Int

> Untyped

DDDDDDDDDDDDDDD

fun x . e

Vectorof Int

vec A B C

fun x . e

Int -> Int

vec A B C

»| fun x . e

69

Q. How does Transient enforce

Shallow types?

A. With no wrappers but many tiny shape checks

oL

000
U

Shallow Typed

00000

DDDDDDDDDDDDDDD

DDDDDDD(Cji

Check function calls,

vector refs, etc.

Int -> Int

> Untyped

DDDDDDDDDDDDDDD

| fun x . e

fun x . e

Vectorof Int

vec A B C

fun x . e

Int -> Int

vec A B C

»| fun x . e

70

Deep Typed

A

?

v

Shallow Typed

Untyped

71

Deep Typed

1.

wrap

Shallow Typed

Untyped

72

Deep Typed

Shallow Typed

1. wrap

Untyped

2. shape check

73

Deep Typed

A

?

v

DDDBDDDDDDDDDDD

Shallow Typed

DDDDDDDDDDDDDDD

1. wrap

!

DDDDDBDDDBDDDBD

Untyped

DDDDDDDDDBDDDBB

2. shape check

1

74

Deep Typed

< 1. wrap

!

A

?

v

Typed to Typed = no check?
No!

DDDDDDDDDDDDDDD

Shallow Typed

DDDBDDDDDDDDDDD

DDDDDBDDDDDDDDD

Untyped

DDDDDGDDDBDDDBD

<€«—— 2. shape check

1

75

What If: No Checks Between Deep and Shallow

Shallow makes a function,

def fo(n : Int):
Example 1: n+ 2

Deep code cannot trust Shallow types because
they are lazily enforced

What If: No Checks Between Deep and Shallow

Shallow makes a function,
def fo(n : Int):

Example 1: n+ 2
Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...

def f1 = fo

What If: No Checks Between Deep and Shallow

Shallow makes a function,
def fo(n : Int):

Example 1: n+ 2
Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...
def f1 = fo

and back, with a new type.

f2 : Str -> Str
def 2 = f1

What If: No Checks Between Deep and Shallow

Shallow makes a function,
def fo(n : Int):

Example 1: n+ 2
Deep code cannot trust Shallow types because
they are lazily enforced sends it to untyped code ...
def f1 = fo

and back, with a new type.

Typessay f2 : Str -> Str > f2 : Str -> Str

Checks say f2is afunction def 2 = f1

79

What If: No Checks Between Deep and Shallow

Example 1:
Deep code cannot trust Shallow types because
they are lazily enforced

Typessay f2 : Str -> Str
Checks say f2is afunction

>

Shallow makes a function,

def fo(n : Int):
n+ 2

sends it to untyped code ...

def f1 = f0

and back, with a new type.

f2 : Str -> Str
def f2 = f1

Deep gets a 'bad' function

f3 : Str -> Str
def f3 = f2

80

What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def go(h :

h(3)

Int -> Int):

81

What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def go(h : Int -> Int):
h(3)

sends it to Shallow,

gl : (Int -> Int) -> Int
def gl = g0

82

What If: No Checks Between Deep and Shallow

Example 2:
Shallow can send a Deep value to
Untyped code

Deep makes a function,

def g0(h : Int -> Int):
h(3)

sends it to Shallow,

gl : (Int -> Int) -> Int
def gl = g0

which sends it to untyped

def g2 = gl
g2("not a function")

83

Deep Typed

< 1. wrap

!

A

?

v

Typed to Typed = no check?
No!

DDDDDDDDDDDDDDD

Shallow Typed

DDDBDDDDDDDDDDD

DDDDDBDDDDDDDDD

Untyped

DDDDDGDDDBDDDBD

<€«—— 2. shape check

1

84

Deep Typed

A

3. wrap

v

DDDBDDDDDDDDDDD

Shallow Typed

DDDDDDDDDDDDDDD

1. wrap

!

DDDDDBDDDBDDDBD

Untyped

DDDDDDDDDBDDDBB

2. shape check

1

85

W In paper: model, type soundness, complete monitoring

Deep Typed

A

3. wrap

v

DDDBDDDDDDDDDDD

Shallow Typed

DDDDDDDDDDDDDDD

1. wrap

!

DDDDDBDDDBDDDBD

Untyped

DDDDDDDDDBDDDBB

2. shape check

1

86

Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped

87

Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped

) 1

A Transient Semantics for Typed Racket

Programming'22

88

Deep Typed

Shallow Typed

Implementation

Typed Racket "\

Untyped

89

Implementation

Deep Typed

Shallow Typed

Untyped

-—
In paper: general lessons (no macros)
-
) !
) 1

90

Evaluation

Guarantees vs. Performance vs. Expressiveness

91

Guarantees vs.

Evaluation

Performance

A

vs. Expressiveness

92

“ GTP Benchmarks

21 programs

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

GTP Benchmarks

docs.racket-lang.org/gtp-benchmarks

93

[

GTP Benchmarks
21 programs

Ex: One program with 3 components

...search manuals...

top <¢prev up next-

>

GTP Benchmarks

1 Running a benchmark
11 Quick Route

1.2 Official Route

1.3 Semi-Auto Route

make-configurations

2 Version Notes

3 Benchmark Descriptions
3.1 acquire Description
3.2 dungeon Description

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

\ ‘Q_“y' <27

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

docs.racket-lang.org/gtp-benchmarks

\4

94

[

GTP Benchmarks
21 programs

...search manuals...

top < oorev up next o

>

GTP Benchmarks

1 Running a benchmark

11 Quick Route

1.2 Official Route

1.3 Semi-Auto Route
make-configurations

2 Version Notes

3 Benchmark Descriptions

3.1 acquire Description

3.2 dungeon Description

3.1 acquire Description

author: Matthias Felleisen

source: github.com/mfelleisen/Acquire

dependencies: None

Simulates a board game between player objects. The players send messages to an
administrator object; the administrator enforces the rules of the game.

0= - f:i:v_

\\...;Efg,zsz%v'
X~

N

N

\

0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

Ex: One program with 3 components

\4

8 Typed / Untyped points (2*N)

docs.racket-lang.org/gtp-benchmarks

95

" GTP Benchmarks

21 programs

...search manuals...

3.1 acquire Description

top < oorev up next o

> author: Matthias Felleisen

source: github.com/mfelleisen/Acquire
dependencies: None

Simulates a board game between player objects. The players send messages to an
1 Running a benchmark administrator object; the administrator enforces the rules of the game.

11 Quick Route > Byt Oner(7t)=t 3}t 0)—
12 Official Route N AL L

q S 72
1.3 Semi-Auto Route \ e
=== ‘/

GTP Benchmarks

1

make-configurations

2 Version Notes

3 Benchmark Descriptions 0. admin.rkt 3. board.rkt 6. state.rkt 9. ../base/untyped.rkt
31 acquire Description 1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

3.2 dungeon Description

docs.racket-lang.org/gtp-benchmarks

Ex: One program with 3 components

\4

8 Typed / Untyped points (2*N)

\4

27 Deep / Shallow / Untyped points (3”"N)

| |
e : Y] : |
[| — —

96

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

97

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

e | — — o — — s — | — |
 — | — — — — — — — | —

forth

fsm

fsmoo
mbta
morsecode
zombie

dungeon

jpeg

12%
38%
31%
19%
25%

6%
31%
38%

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

zordoz

1nm
suffixtree
kcfa

snake
takeb
acquire

tetris

47%
66%
48%
55%
46%
36%
647%
62%

e | — — o — — s — | — |
 — | — — — — — — — | —

99

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

100

Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

2.97x
5.43x
1.91x
4.25x
1.71x
1.3x
31x
3.16x
1.56x
2.58x
1.17x

suffixtree 5.8x

kcfa 1.24x
snake 7.61x
takeb 2.97x
acquire 1.42x
tetris 5.44x
synth 4.2x
gregor 1.51x
quadT 7.23x
quadu 7.45x

101

Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

2.97x
5.43x
1.91x
4.25x
1.71x
1.3x
31x
3.16x
1.56x
2.58x
1.17x

16x 4.36x
5800x 5.51x
2.24x 2.38x
420x 4.28x
1.91x 1.74x
1.57x 2.77x
46x 31x
15000x 4.97x
23x 1.66x
2.63x 2.75x
1.23x 1.21x

suffixtree
kcfa

snake
takeb
acquire
tetris
synth
gregor
quadT
quadu

5.8x
1.24x
7.61x
2.97x
1.42x
5.44x

4.2x
1.51x
7.23x
7.45x

31x

.33x

12x
44x

.22X

13x
47X

. 12X

26X
55x

5.8x
1.24x%
7.67x
2.99x
1.42x
9.93x

4.2x
1.59x%
7.39x
7.57x

102

H.O. values and
many elim. forms

Sieve
forth

fsm

fsmoo
mbta
morsecode
zombie
dungeon
jpeg
zordoz

1nm

Better Performance

Q. What is the worst-case overhead?

Deep

or

Shallow

2.97x
5.43x
1.91x
4.25x
1.71x
1.3x
31x
3.16x
1.56x
2.58x
1.17x

16x 4.36x
5800x 5.51x
2.24x 2.38x
420x 4.28x
1.91x 1.74x
1.57x 2.77x
46x 31x
15000x 4.97x
23x 1.66x
2.63x 2.75x
1.23x 1.21x

suffixtree
kcfa

snake
takeb
acquire
tetris
synth
gregor
quadT
quadu

5.8x
1.24x
7.61x
2.97x
1.42x
5.44x

4.2x
1.51x
7.23x
7.45x

31x

.33x

12x
44x

.22X

13x
47X

. 12X

26X
55x

5.8x
1.24x%
7.67x
2.99x
1.42x
9.93x

4.2x
1.59x%
7.39x
7.57x

103

Better Performance

104

Better Performance

Overall: switching between Deep and Shallow
can avoid perf. bottlenecks

Deep|near the top, Shallow|in the middle,
to maximize the benefits of types to minimize the cost of boundaries

[] [1 C

[] [] [J [] [] [] [] [] [J [] [] [] [] [] [] [] [] [] [] [] [J [J [1 C

105

Conclusion

106

Context: Different GT strategies exist U
(for good reason!)

107

Context:

Inquiry:

Different GT strategies exist
(for good reason!)

Can two extreme strategies interoperate?

Deep|types via Natural (wrappers)

Shallow|types via Transient (no wrappers)

108

Context:

Inquiry:

Contribution:

Different GT strategies exist
(for good reason!)

Can two extreme strategies interoperate?

Deep|types via Natural (wrappers)

Shallow|types via Transient (no wrappers)

Yes! In a way that:

- preserves their formal guarantees

- leads to better overall performance
- lets TR express additional programs

109

Deep

A New Dimension for Gradual Typing

Shallow

Untyped

110

Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Untyped

111

Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped

112

Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped

Q. Better cooperation b/w Deep and Shallow?

113

Natural

Deep

A New Dimension for Gradual Typing

Transient
|

Shallow

Q. More regions along the spectrum?

Untyped

Q. Better cooperation b/w Deep and Shallow?

Q. Solve the N2 interop problem?

114

The End

Deep

Untyped
Shallow ‘

Coming soon to Racket
https://racket-lang.org

Pull Request https://github.com/racket/typed-racket/pull/948

Research Repo https://github.com/bennn/g-pldi-2022

115

