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Abstract

We show a strong concentration bound for the Lovász ϑ function on G(n, p) random graphs.
For p = 1/2, for instance, our result implies that the ϑ function is concentrated in an interval
of length polylog(n) w.h.p. The best known bound previously was roughly n1/4. The general
idea is to prove that all the vectors in an optimal solution have “roughly equal lengths” w.h.p.

1 Introduction

The Lovász ϑ function of a graph is a quantity introduced by Lovász to study the Shannon capacity
of a graph [4]. It is a semidefinite programming relaxation for the independent set of a graph. For
a graph G = (V,E), it is formally defined as follows (see [4] for other equivalent formulations)

ϑ(G) := max
∑

i

vi · v0 s.t.

v2i = vi · v0 ∀i
v20 = 1

〈vi, vj〉 = 0 ∀{i, j} ∈ E(G)

The expected value of the Lovász ϑ function for G(n, p) random graphs was first studied by
Juhász [3], who showed that for G ∼ G(n, p) and p ≥ log2 n/n, we have

√

n

p
≤ ϑ(G) ≤ 2

√

n

p
w.p. at least 1− 1

n
.

More recently, Coja-Oghlan studied the concentration properties of the ϑ function for G(n, p)
random graphs [2]. He proved that the ϑ function is concentrated in intervals of length O(1) w.h.p.
when p < n−1/2. More precisely, he proves the following large deviation bound for ϑ(G): suppose
G ∼ G(n, p) and let µ be the median value of ϑ(G). Then

Pr[|ϑ(G)− µ| > t] ≤ e−t2/(µ+t).

Note that for say p = 1/2, this only says that ϑ(G) is concentrated in an interval of length roughly
n1/4 w.h.p.1 In this note, we will show a better tail bound. More precisely,

Theorem 1. Let G = (V,E) be a graph drawn from G(n, 1/2). Let µ denote the median of ϑ(G)
for this distribution. Then for some absolute constant C, we have

Pr[|ϑ(G)− µ| > t] ≤ e−t4/3/(C log3 n), (1)

1Throughout, when we say “w.h.p.”, we mean w.p. at least 1 − 1

nc
for any constant c (there will be certain

parameters which naturally depend on c).
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Our techniques are not specific to p = 1/2, but for ease of exposition, we will only work with
this case. This implies, for instance, that for G(n, 1/2) random graphs, ϑ(G) is concentrated in
intervals of size only polylog(n).

Comment. The exponent 4/3 is unnatural, and we believe it is an artefact of our proof – we
conjecture that the “true” tail bound is in fact (1) with e−t2/C logn on the RHS.

2 Proof

In what follows, let µ denote the median of ϑ(G) for G ∼ G(n, 1/2), and let t be a given parameter.
Let s be a parameter (we will set it to be max{t2/3, log n}). A graph G is said to be s-bad if for all
vector solutions vi which “realize” the optimum value for the relaxation ϑ(G), we have

∑

i∈V

‖vi‖4 > (1 + s) log2 n.

Lemma 2. Suppose G is s-bad for some s ≥ log n. Then there exists an S ⊆ V of size k ≥ s such
that the induced subgraph H on S has ϑ(H) >

√

k(1 + s) log n.

Proof. Let {vi}ni=1 denote an optimum vector solution for the ϑ relaxation on G. It is easy to see
that there exists a solution with value at least ϑ(G)/2 and the additional property ‖vi‖2 ≥ 1

2n (we
can simply set vectors which are smaller than this length to zero). Now divide the vi into logn
levels based on ‖vi‖2, such that the value of ‖vi‖2 varies by a factor at most 2 in each level.

Since G is s-bad, we have that
∑

i‖vi‖4 ≥ (1 + s) log2 n. There exists a level which contributes
at least a 1/ log n fraction to the sum: let S be the set of indices in this level, and let k = |S|. Thus
for each i ∈ S, we have ‖vi‖2 ≈

(

(1+s) logn
k

)1/2
, implying that

∑

i∈S v2i ≥ 1
2

√

k(1 + s) log n. Since

vi is a feasible solution to the relaxation ϑ(G), it is clear that the restriction to S gives a feasible
solution to ϑ(H). Thus ϑ(H) ≥

√

k(1 + s) log n.
Finally, since ‖vi‖2 ≤ 1, we must have k ≥ s, thus proving the lemma.

We can now bound the probability that G ∼ G(n, 1/2) is s-bad for some s ≥ log n. Fix some
set S ⊆ V of size k and let H be the induced subgraph on S in G. We now use a bound of [4]
relating ϑ(H) to the eigenvalues of its adjacency matrix.

Lemma 3. [4] Let G be a graph with adjacency matrix A(G), J denote the n× n matrix of ones,
and I the identity matrix. Then

ϑ(G) ≤ λmax(J − 2A(G)− I).

We refer to the paper of Lovász for the proof [4]. It follows from one of the equivalent definitions
of the ϑ function. The second ingredient is a concentration bound for the top eigenvalues of a
random matrix due to Alon, Krivelevich and Vu [1]. They prove the following.

Lemma 4. Let A be a symmetric n × n matrix with the upper diagonal entries drawn i.i.d. from
a distribution with mean zero and variance 1. Then for all t > 0, and integer r ≥ 1, we have

Pr[|λr(A)− µ(λr(A))| ≥ t] ≤ e−t2/2r2 . (2)

(As usual λr denotes the rth largest eigenvalue, and µ(λr) denotes the median of this value over
the distribution)
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Now we note that for any fixed S ⊆ V of size k, the matrix J − 2A(H)− I is a k× k symmetric
matrix with entries being i.i.d. ±1 (and zero on the diagonal). Thus the median of λmax(J −
2A(G)− I) is at most (2 + o(1))

√
k, and by Lemma 4, we have

Pr
[

λmax(A(H)) >
√

k(1 + s) log n
]

< e−k(1+s) logn.

Now by Lemma 3, the probability that ϑ(H) >
√

k(1 + s) log n is also bounded by the same
quantity. Thus we can take a union bound over all subsets of size k ≥ s, and by Lemma 2, we have

Pr[G is s-bad] ≤
∑

k≥s

(

n

k

)

· e−(1+s)k logn <
∑

k≥s

e−sk logn ≤ e−s2 logn.

(In the above we used k ≥ s, and a simple bound on
(

n
k

)

). We have thus proved that

Lemma 5. Let G ∼ G(n, 1/2), and s ≥ log n. The probability that G is s-bad is at most e−s2 logn.

We can now follow the proof of Coja-Oghlan [2] (and [1]) and use Talagrand’s inequality. Let
us first recall it.

Theorem 6. (Talagrand)[5] Let Ω be a set with a measure µ defined on it, and let A,B ⊆ Ωn.
Let µn denote the product measure obtained from µ. Suppose A and B are “t-separated” in the
following way: for every b ∈ B, there exist weights {αi}ni=1 with

∑

i α
2
i ≤ 1 such that

∀ a ∈ A,
∑

i:ai 6=bi

αi ≥ t.

Then we have µn(A)µn(B) ≤ e−t2.

The theorem is very powerful, and we typically use it with finite sets Ω. Let us now define two
sets of graphs as follows

A := {G : ϑ(G) ≤ µ}, and
B := {G : ϑ(G) ≥ µ+ t, and G is not s-bad for s = max{t2/3, logn}}.

Let m(A) (similarly B) denote the measure of A in the set of graphs G(n, 1/2). Since µ was
defined to be the median, m(A) = 1/2.

Lemma 7.

m(A) ·m(B) ≤ e−t2/(1+s) logn .

Proof. Consider a graph B ∈ B. Let {vi}ni=1 be the set of vectors in an optimal solution to the
ϑ-relaxation on B. Now consider any A ∈ A.

Let αi be 1 if vertex i has precisely the same set of neighbors in both A and B, and 0 oth-
erwise. Now observe that {αivi} is a feasible vector solution to the ϑ relaxation for B (because
αiαj 6= 0 implies {i, j} is an edge in B iff it is an edge in A). Thus

∑

i(αivi)
2 ≤ ϑ(B), hence

∑

i:ΓA(i)6=ΓB(i) v
2
i ≥ t (since ϑ(B) < µ).

Now by the definition of B, B is not s-bad, hence we have
∑

i(v
2
i )

2 ≤ (1 + s) log2 n. By
Talagrand’s inequality,2 we have

m(A) ·m(B) ≤ e−t2/(1+s) log2 n .

2Formally, the product space here is Ωn, where Ω consists of vectors in {0, 1}n representing the adjacency vectors
of a vertex in the graph. In these terms, αi is an indicator for the ith vectors corresponding to A, B being equal.
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Corollary 8. Let G ∼ G(n, 1/2). Then

Pr[ϑ(G) > µ+ t] ≤ e−t4/3/ log2 n.

Proof. From the above lemmas, we can bound the desired probability by

Pr[G is s-bad] + Pr[G ∈ B]
= e−s2 + e−t2/(1+s) log2 n ≤ e−t4/3/ log3 n.

The last inequality is due to our choice of s.

Lower tail. A bound for the lower tail is actually easier to prove: as before, define two sets

A := {G : ϑ(G) ≤ µ− t}, and
B := {G : ϑ(G) ≥ µ, and G is not log n-bad}.

The key is to note that the probability that G is log n-bad is only e− log2 n � 1/10, and thus
m(B) ≥ 1/3 (because without this restriction, the measure is 1/2, since µ is the median). Now
using precisely the same argument as above, we obtain

m(A) ≤ e−t2/ log3 n.

This completes the proof of Theorem 1.
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