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Abstract

We give a robust version of the celebrated result of Kruskal on the uniqueness of tensor
decompositions: we prove that given a tensor whose decomposition satisfies a robust form of
Kruskal’s rank condition, it is possible to approximately recover the decomposition if the tensor
is known up to a sufficiently small (inverse polynomial) error.

Kruskal’s theorem has found many applications in proving the identifiability of parameters
for various latent variable models and mixture models such as Hidden Markov models, topic
models etc. Our robust version immediately implies identifiability using only polynomially many
samples in many of these settings — an essential first step towards efficient learning algorithms.

Recently, algorithms based on tensor decompositions have been used to estimate the param-
eters of various hidden variable models efficiently in special cases as long as they satisfy certain
“non-degeneracy” properties. Our methods give a way to go beyond this non-degeneracy bar-
rier, and establish polynomial identifiablity of the parameters under much milder conditions.
Given the importance of Kruskal’s theorem in the tensor literature, we expect that this robust
version will have several applications beyond the settings we explore in this work.
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1 Introduction

Statisticians have long studied the identifiability of probabilistic models [Tei61, Tei67, TC82], i.e.
whether the parameters of a model can be learned from data. A central question in unsupervised
learning [Gha04] is the efficient computation of such latent model parameters from observed data.
The method of moments approach, pioneered by Pearson [Pea94], infers model parameters from
empirical moments. In general, very high order moments and exponential sample complexity may
be needed for this approach to succeed [MV10, BS10, GLPR12]. Our focus in this work is to
understand settings where polynomial sample complexity suffices.

Tensor decompositions have proved to be a valuable tool for reasoning about identifiability of
probabilistic models in the algebraic statistics literature [AMR09, APRS11, RS12]. The moments
are naturally represented by tensors (high dimensional analogs of matrices) and low rank decomposi-
tions of such tensors can be used to deduce the parameters of the underlying model. A fundamental
result of Kruskal [Kru77] on uniqueness of tensor decompositions plays a crucial role in ensuring
that the model parameters are correctly identified by this procedure. Unfortunately, this does
not give any sample complexity bounds for learning within specified error bounds, since Kruskal’s
theorem only guarantees uniqueness for low rank decompositions of the eract moment tensors. A
natural question here is: Does uniqueness also hold for decompositions of empirical moment tensors
which are approximations of the exact tensors? How small does the error in approximation of exact
tensors need to be for uniqueness to hold?

Our main technical contribution in this work is establishing such a robust version of Kruskal’s
classic uniqueness theorem for tensor decompositions for inverse polynomial error. This directly es-
tablishes polynomial identifiability in a host of applications where Kruskal’s theorem was used [AMR09]
to prove identifiability assuming access to exact moment tensors (because polynomially many sam-
ples from the distribution (typically) yield an approximation to these tensors up to 1/poly(n)
error).To the best of our knowledge, no such robust version of Kruskal’s theorem is known in the
literature. Given the importance of this theorem in the tensor literature, we expect that this robust
version will have applications beyond the settings we explore in this work.

1.1 Tensors and their Decompositions

Tensors are mutlidimensional arrays — a generalization of vectors and matrices — which have been
studied intensively as methods of extracting structure from data. The low-rank decomposition of a
tensor often provides valuable insights into the structure of the data used to generate it. In sharp
contrast to matrices, where a matrix of rank r (> 1) can be expressed in many ways as a sum
of r rank-one matrices, higher order tensors typically have a unique decomposition up to much
higher ranks (r roughly c- (dimension), as we will see). The classic result of Kruskal [Kru77] gives
a sufficient condition for uniqueness, which has since found numerous applications.

Let us start with three dimensions. Suppose that a 3-tensor 7" has the following decomposition:

R
T=[ABC]=) A4 ®B.®C, (1)

r=1

Let the Kruskal rank or K-rank k4 of matrix A (formed by column vectors A4,) be the maximum
value of k such that any k& columns of A are linearly independent. kp and ko are similarly defined.



Kruskal’s result says that a sufficient condition for the uniqueness of the decomposition (1) is
ka+kp+kc>2R+2 (2)

Several alternate proofs of this fundamental result have been given [tBS02, JS04, SS07, Rhol0,
Lan12]. Sidiropoulos and Bro [SB00] extended this result to ¢-order tensors.

We give a robust version of of Kruskal’s uniqueness theorem and its higher dimensional gen-
eralizations. To this end, we need a natural robust analogue of Kruskal rank: we say that
K-rank,(A) > k if every submatrix of A formed by k of its columns has minimum singular value
at least 1/7.A matrix is called bounded if its column vectors have bounded length, and we call
two matrices (or tensors) close if the Frobenius norm of the difference is small. (See Section 2 for
precise definitions.)

Our main result (for three dimensions) can then be stated as follows:

Informal Theorem. If any order 3 tensor T' has a bounded rank R decomposition [A B C], where
the robust K-rank. ka, kg, kc satisfy ka+kp+kc > 2R+2, then any decomposition [A" B" C'| that
produces a tensor e-close to T has A', B',C" being individually '-close to A, B and C' respectively
(up to permutation and re-scaling) for e < €' - poly(R,n,T).

(See Theorem 3.1 for a formal version.) A similar result also holds for higher order tensors. For

order ¢ tensors, a decomposition consists of n x R matrices UV, U@, ... . U® and if k; denotes
the robust K-rank, of U, then a sufficient condition for uniqueness (in the sense above) is
ki4+ko+---+ke>2R+2. (3)

(See Theorem 3.14 for a formal version.)

How should we interpret the uniqueness theorems? The first observation is that a typical tensor
of dimension n*¢ and rank < ¢n/2 — 1 has a unique decomposition. This is because an n x (¢n/2)
matrix typically (for instance, a random one) has K-rank, equal to n. For ¢ > 3, this corresponds
to the so-called over-complete setting in applications to machine learning (to follow).

Second, we can view the Kruskal condition (Eq. 3) as a sufficient condition for proving a lower
bound on tensor rank (because of the uniqueness, there cannot exist a smaller decomposition).
Thus our robust version can be viewed as giving a lower bound on approximability using low-rank
tensors (or a lower bound on the so-called border rank).

Can our uniqueness results go beyond linear rank (¢n/2)? Typical order ¢ tensors have a rank
Q(n~1), so this is a natural question. While Kruskal’s conditions are known to be tight, it is
possible that stronger assumptions help. Indeed for ¢ = 3, algebraic geometry approaches [CO12]
show that typical tensors of rank n?/16 have a unique decomposition. Obtaining a robust version
of these results is a very interesting open problem. However for £ > 5, some of our tools, combined
with many ideas from random matrix theory, can be used [BCMV13] to obtain robust uniqueness
(as well as algorithms) for ranks up to nlT*) in a smoothed analysis setting.

The other immediate question that arises is, can uniqueness proofs in the over-complete setting
lead to new algorithmic tools? This is a challenging open problem (see Section 6) — we suspect that
it is computationally hard to find decompositions of 3-tensors when the rank is (1 4+ ¢)n. However,
some of the tools (such as the Khatri-Rao product) can be used to obtain decompositions when we
have access to higher order tensors. This is explored in recent work with Ankur Moitra [BCMV13].

In this work we show (Theorem 4.2) that a very simple SVD based algorithm can be used to
find low-rank approximations, albeit in time exponential in the rank. This can be viewed as a
tensor analog of low-rank approximation, which is very well-studied for matrices.



Informal Theorem. Given a tensor with a bounded, rank R decomposition up to an error €, we
can find a rank R approzimation with error O(g) in time exp(R?log(n/c))poly(n).

1.2 Related Work

Tensor decompositions have been applied in a variety of fields, from psychology and chemometrics,
to statistics and machine learning. Consequently, there has been a lot of theoretical as well as
heuristic work on algorithms for tensor decomposition. However all the algorithms with theoretical
guarantees (we are aware of) require non-degeneracy assumptions, such as the matrices in the
decomposition (i.e. A, B,C) having full rank. This approach thus intrinsically fails when the
number of terms in the decomposition R is larger than the dimension n. This is often referred to
as the over-complete case.

It is, for example, an explicitly stated barrier in the works of Anandkumar et al. [AGH"12],
who give power iteration style algorithms for the case R < n. Even the earlier work of Leurgans et
al. [LRA93] require the matrices to be of full rank.

The only works we are aware of in the over-complete case are those of de Lathauwer et
al. [DLCCO07] (the so-called FOOBI algorithm), and the subsequent works of Goyal et al. [GVX13]
and [BCMV13]. De Lathauwer et al. [DLCCO07] assumes that the tensor is generic (i.e. does not
lie on any low dimensional manifold), which does not yield robustness. The last two works do
give robust guarantees, however they work under assumptions that have a different flavor from our
Kruskal rank conditions. For instance, [GVX13] assume that certain higher dimensional matrices
obtained from the decomposition are full rank, while [BCMV13] analyse a smoothed analysis model
for tensor decompositions.

1.3 Applications to Latent Variable Models

The robust version of Kruskal’s theorem that we establish can be applied to get polynomial sample
complexity bounds for learning several different latent variable models including multi-view mixture
models, exchangeable (single) topic models, Hidden Markov Models, and mixtures of spherical
Gaussians without separation assumptions.

We will formally state the identifiability and algorithmic results we obtain for each of these in
Section 5. As an illustration, we describe the application to multi-view mixture models and Hidden
Markov models:

Multi-view models are mixture models with a discrete latent variable h € [R], such that
Pr[h = r] = w,. We are given multiple observations or views W 2@ 20 that are condition-
ally independent given the latent variable h, with E [$(j)|h = r] = u? ). Let MU) be the n x R

matrix whose columns are the means {uy(«j )}7’6[ r]- The goal is to learn the matrices { M (j)}je[@ and
the mixing weights {w },c[r)-

Multi-view models are very expressive, and capture many well-studied models like Topic Mod-
els [AHK12], Hidden Markov Models (HMMs) [MR06, AMR09, AHK12], random graph mixtures
[AMRO9], and the techniques developed for this class have also been applied to phylogenetic tree
models [Cha96, MRO6] and certain tree mixtures [AHHK12].

Hidden Markov Models (HMMs) are extensively used in speech recognition, image classi-
fication, bioinformatics etc[Edd96, GY08]. We follow the same setting as in [AMR09]: there is a
hidden state sequence Z1, Zs, ..., Z,, taking values in [R], that forms a stationary Markov chain



Zy — Zy — -+ + — Zp, with transition matrix P and initial distribution w = {wy },¢[r] (assumed to
be the stationary distribution). The observation X, is represented by a vector in z® € R"™. Given
the state Z; at time ¢, X; (and hence x(t)) is conditionally independent of all other observations and
states. The matrix M (of size n x R) represents the probability distribution for the observations:
the 7" column M, represents the probability distribution conditioned on the state Z; = r i.e.

Vr € [R],t € [m],i € [n], Pr[X;=1i|Z; =r]= M,.

In many important applications of HMMs, n is much smaller than R. For instance in image

classification, the commonly used SIFT features [Low99] are 128 dimensional, while the number
of image classes is much larger, e.g. 256 classes in the Caltech-256 dataset [GHPO07] and several
thousands in the case of ImageNet [DDST09]. A similar situation arises in speech, where HMMs
have been very successful. Further, in some other applications, even when the feature vectors lie in
a large dimensional space (n > R), the set of relevant features or the effective feature space could
be a space of much smaller dimension (k < R), that is unknown to us.
Results: Here is a representative result for multi-view models that applies when the dimension of
the observations (n) is R where ¢ is a small positive constant and R is the size of the range of the
hidden variable, and hence the rank of the associated tensors. In order to establish this, we apply
our robust uniqueness result to the £ moment tensor for £ = [2/6] + 1.

Informal Theorem. For a multi-view model with R topics or distributions, such that each of the
parameter matrices M9 has robust K-rank of at least 6R for some constant 8, we can learn these
parameters upto error e with high probability using polys(n, R) samples.

Polynomial identifiability was not known previously for these models in the settings that we
consider. For instance, the best known algorithms for learning multi-view mixture models in the
worst case are from a recent work Rabani et al [RSS14], who give an algorithm that has complexity
ROXE®) 4 poly(n, R) and show that exp(€(R)) samples are necessary for learning multi-view models
in one dimension (n = 1). Anandkumar et al. [AHKI12] gave polynomial time algorithms in a
restricted setting called the non-singular or non-degenerate setting. When each of these matrices
{M(j)}je[e} to have rank R in a robust sense i.e. or(M W) > 1/7 for allj € [¢], their algorithm has

running time poly(R,n, 7,1/¢)) for learning the parameters up to error €. However, their algorithm
fails even when R = n+1. (We now know [BCMV13] of algorithms for much larger R in a smoothed
setting, but the results in the present paper apply whenever Kruskal’s condition is satisfied).

1.4 Overview of Techniques
Robust Uniqueness of Tensor decompositions. Our proof broadly follows the outline of
Kruskal’s original proof [Kru77]: It proceeds by establishing a permutation lemma, which gives
sufficient conditions to conclude that the columns of two matrices are permutations of each other
(up to scaling). Given two decompositions [A B C] and [A" B’ C’] for the same tensor, it is shown
that A, A’ satisfy the conditions of the lemma, and thus are permutations of each other (so also for
B, (). Finally, it is shown that the three permutations for A, B and C (respectively) are identical.
The first step in our argument is to prove that if A, B, C are “well-conditioned” (i.e., satisfy the
K-rank conditions of the theorem), then any other “bounded” decomposition which is e-close is also
well-conditioned. This step is crucial to our argument, while an analogous step was not required
in Kruskal’s original proof.! Besides, this statement is interesting in its own right: it implies, for

Note that the uniqueness theorem, in hindsight, establishes that the other decomposition is also well-conditioned.



instance, that there cannot be a smaller rank (bounded) decomposition.

The second and most technical step is to prove the robust permutation lemma. The (robust)
Permutation lemma needs to establish that for every column of C’, there is some column of C' close
to it. Kruskal’s proof [Kru77] roughly uses downward induction to establish the following claim:
for every set of i < K-rank columns of C’, there are at least ¢ columns of C' that are in the span of
the chosen vectors. The downward induction infers this by considering the intersection of columns
that are close to 7 + 1 dimensional spaces.

The natural analogue of this approach would be to consider columns of C' which are e-close to
the span of 7 columns of C’. However, the inductive step involves considering combinations and
intersections of the different spans that arise, and such arguments do not seem very tolerant to
noise. In particular, we lose a factor of 7n in each iteration, i.e., if the statement was true for i + 1
with error €;41, it will be true for ¢ with error £; = 7n - €;41. Since k steps of downward induction
need to be unrolled, we recover a robust permutation lemma only when the error < 1/(7n)* to
start with, which is exponentially small since k is typically O(n).

We overcome this issue by using a careful mix of combinatorial and linear algebra arguments:
instead of keeping track of sets of vectors close to the span of ¢ columns, we maintain an intersection
of certain sets of vectors, and use the observation that they form a sunflower set system to obtain
the desired bound on the size. This allows us to avoid losing any error in the recursion. We describe
this in detail in Section 3.2. To carry forth this argument we crucially rely on the fact that C’ is
also “well-conditioned”.

Uniqueness for higher order tensors The idea here is to “combine the modes”. Suppose we
have a 4th order tensor [ABCD] = S"2 | A;® B;® C; ® D; (and for simplicity suppose each matrix
is n x R). Now suppose we view (C; ® D;) as an n? dimensional vector F;, then what can we say
about the robust K-rank of the n? x R dimensional matrix E (with columns E;)? This notion is
called the Khatri-Rao Product, and we can show that (robustly)

K-rank(E) > K-rank(C) + K-rank(D) — 1.

While this is tight in general, it can often be improved — and this increases the R for which we
obtain uniqueness. See Remark 3.13 in Section 3.4 for a discussion.

Algorithms for low-rank tensor approximation. A simple SVD based algorithm can be used
to obtain a constant approximation to the best rank-R approximation problem for tensors, with
running time exp(R?)poly(n) (which is practical for small R). At a high level, our algorithm for
finding a rank R approximation proceeds by finding a small (O(R)) dimensional space and then
exhaustively searching inside it. This improves upon the naive search over an e-net over R", which
takes time exp(Rn)poly(n).

2 Notation and Preliminaries

We start with basic notation on tensors which we will use throughout the paper.

Tensors are higher dimensional arrays. An fth order, or ¢-dimensional tensor is an element in
R xm2xXne - for positive integers n;. The various “dimensions” ni,ns,... are referred to as the
modes of the tensor.



While tensors have classically been defined over complex numbers for certain applications, but
we will consider only real tensors. We now define the rank of a tensor. Firstly, a rank-1 tensor as
a product a® @ a® @ ... @ a®, where a is an n; dimensional vector.

Definition 2.1 (Tensor rank, Rank R decomposition). The rank of a tensor T € R™*m2xXn¢ ig
defined to be the smallest R for which there exist R rank-1 tensors T whose sum is 7.

A rank-R decomposition of T is given by a set of matrices UM, U® ... U® with U® of
dimension n; x R, such that we can write T = [U®M) U®?) ... U®)], which is defined by

R
oM u® [ u®].= Z UMD oU? @...0UY, where A, to denotes the rth column of A.
r=1
Third order tensors (or 3-tensors) play a central role in understanding properties of tensors in
general (as in many other areas of mathematics, the jump in complexity occurs most dramatically
when we go from two to three dimensions, in this case from matrices to 3-tensors). For 3-tensors, we
often write the decomposition as [A B C], where A, B, C have dimensions n4, ng, nc respectively.

Definition 2.2 (e-close, p-bounded). Two tensors T and T3 are said to be e-close if the Frobenius
norm of the difference is small, i.e., |71 — T3| p < e. We will sometimes write this as 11 =, Tb.

An n x R matrix A is said to be p-bounded if each of the columns has length at most p, for
some parameter p. A tensor [U(1) U®?) .. U] s called (p1, pa, . . ., pe)-bounded if the matrix U
is p; bounded for all 3.

Unless mentioned specifically, the errors in the paper will be ¢5 (or Frobenius norm, which is
the square root of the sum of squares of entries in a matrix/tensor), since they add up conveniently.
We next define the notion of Kruskal rank, and its robust counterpart.

Definition 2.3 (Kruskal rank, K-rank.(.)). Let A be an n x R matrix. The K-rank (or Kruskal
rank) of A is the largest k for which every set of k columns of A are linearly independent.

Let 7 be a parameter. The 7-robust k-rank is denoted by K-rank,(A), and is the largest k for
which every n x k sub-matrix Ajg of A has oy(Ag) > 1/7.

Note that we only have a lower bound on the (kth) smallest singular value of A, and not for
example the condition number opax/0k. This is because we will usually deal with matrices that
are also p-bounded, so such a bound will automatically hold, but our definition makes the notation
a little cleaner. We also note that this is somewhat in the spirit of (but much weaker than) the
Restricted Isometry Property (RIP) [CT05] from the Compressed Sensing literature.

Another simple linear algebra definition we use is the following

Definition 2.4 (e-close to a space). Let V' be a subspace of R™, and let II be the projection matrix
onto V. Let u € R". We say that u is e-close to V if |Ju — ITul|| <.

Other notation. For z € R?, diag(z) is the d x d diagonal matrix with the entries of z occupying
the diagonal. For a vector z € R?, nz(z) denotes the number of non-zero entries in z. Further,
nze(z) denotes the number of entries of magnitude > . As is standard, we denote by o;(A) the
ith largest singular value of a matrix A. Also, we abuse the notation of ® at times, with u ® v
sometimes referring to a matrix of dimension dim(u) x dim(v), and sometimes a dim(u) - dim(v)
vector. This will always be clear from context.



Normalization. To avoid complications due to scaling, we will assume that our tensors are
scaled such that all the 74,75,..., are > 1 and < poly(n). So also, our upper bounds on lengths
PA,PB,--. are all assumed to be between 1 and some poly(n). This helps simplify the statements
of our lemmas.
Error polynomials. We will, in many places, encounter statements such as “if )1 < €, then @3 <
(3n2+) - £”, with polynomials ¥ (in this case 3n27) involving the variables n, R, k4, kg, kc, T, p, .. . .
In order to keep track of these, we use the notation 1, %5, .... Sometimes, to refer to a polynomial
introduced in Lemma 3.11, for instance, we use 9311. Unless specifically mentioned, they will be
polynomials in the parameters mentioned above, so we do not mention them each time.

In our proofs we will require several simple (mostly elementary linear algebra) lemmas. The
Section A is a medley of such lemmas. Most of the proofs are reasonably straightforward, and thus
we place them in the Appendix.

3 Uniqueness of Tensor Decompositions

First we consider third order tensors and prove our robust uniqueness theorem for 3-tensors (Sec-
tions 3.1 and 3.3). Our proof broadly follows along the lines of Kruskal’s original proof of the
uniqueness theorem [Kru77]. The key ingredient, which is a robust version of the so-called permu-
tation lemma is presented in Section 3.2, since it seems interesting its own right. Finally we will
see how to reduce the case of higher order tensors, to that of third order tensors (Section 3.4).

3.1 Uniqueness Theorem for Third Order Tensors

Theorem 3.1 (Unique Decompositions). Suppose a rank-R tensor T = [A B C| is (pa, pB, pc)-
bounded, with K-rank.,(A) = ka, K-rank,,(B) = kg, K-rank,.(C) = k¢ satisfying ka + kg + kc >
2R + 2. Then for every 0 < &' < 1, there exists

e =¢'/(R%3.1(7a, pa, P4, na)03.1(7B, pB, Pl nB)V3.1(TC, POy Py 1C)),
for some polynomial 931 such that for any other (p'y, p'g, pi)-bounded decomposition [A" B' C'] of
rank R that is e-close to [A B C], there exists an (R x R) permutation matriz II and diagonal
matrices Aa, Ag, Ac such that

[AaABAc —I||p <& and ||A"— AlIA4||, <& (similarly for B and O) (4)

The proof of Theorem 3.1 broadly has two parts. First, we prove that if [A, B,C]| ~ [A", B', ("],
then A is essentially a permutation of A’, B of B/, and C of C’. Second, we prove that the
permutations in the (three) different “modes” (or dimensions) are indeed equal. Let us begin by
describing a lemma which is key to the first step.

The Permutation Lemma This is the core of Kruskal’s argument for the uniqueness of tensor
decompositions. Given two matrices X and Y, how does one conclude that the columns are per-
mutations of each other? Kruskal gives a very clever sufficient condition, involving looking at test
vectors w, and considering the number of non-zero entries of w? X and w?Y. The intuition is that
if X and Y are indeed permutations, these numbers are precisely equal for all w.

More precisely, suppose X,Y are n x R matrices of rank k. Let nz(x) denote the number of
non-zero entries in a vector x. The lemma then states that if for all w, we have

nz(w!'X)<R-k+1 = nz(w'Y) <nz(w’X),



then the matrices X and Y have columns which are permutations of each other up to a scaling.
That is, there exists an R x R permutation matrix I, and a diagonal matrix A s.t. Y = XTIIA.

We prove a robust version of this lemma, stated as follows (recall the definition of nz.(.),
Section 2)

Lemma 3.2 (Robust permutation lemma). Suppose X,Y are p-bounded n x R matrices such that
K-rank.(X) and K-rank:(Y') are > k, for some integer k > 2. Further, suppose that fore < 1/93.2,
the matrices satisfy:

Vw s.t.  nz(w! X) < R—k+1, we have nz-(w?Y) < nz(w’ X), (5)

then there exists an R x R permutation matriz I1, and a diagonal matriz A s.t. X and Y satisfy
| X —YTIA||p < U32-€. In fact, we can pick 939 := (nR?)VY33.

Remark 3.3. To see why this condition involving nz.(-) helps, let us imagine that nz.(w?Y) <
nz(w? X) for all w. Then, the proof of Lemma 3.7 actually shows that X and Y have columns that
are permutations of each other up to scaling. However, as we will soon see in Lemma 3.4, we only
have this condition for those w with nz(w? X) > R — k + 1.

A key component in the proofs that follow is to view the three-dimensional tensor [A B C] as a
bunch of matriz slices, and argue about the rank (or conditioned-ness) of weighted combinations of
these slices. One observation, which follows from the Cauchy-Schwarz inequality, is the following:
if [A B C] =: [A" B’ ('], then by taking a combination of “matrix” slices along the third mode
(with weights given by = € R"¢,

Vo € R™, ||A diag(e7C) BT — A’ diag(«7C") (B)T||% < &2 [l«|2. (6)

We now state the key technical lemma which allows us to verify that the hypotheses of Lemma 3.2
hold. Tt says for any ko — 1 vectors of C’ there are at least as many columns of C' which are close
to the span of the chosen columns from C’.

Lemma 3.4. Suppose A, B,C, A’, B', C' satisfy the conditions of Theorem 3.1, and suppose [A B C] =¢
[A" B" C"]. Then for any unit vector x, we have

V', nza(2TC') < R—ke+1 = nza(27C) < nzo(27C)

fore" =34 - (e +¢€), where V34 := 4R3(TATBTc)2pApoc(pi4pprlc)2.

Remark 3.5. This lemma, together with its corollary Lemma 3.6 will imply the conditions of the
permutation lemma. While the proof of the robust permutation lemma (Lemma 3.2) will directly
apply this Lemma with ¢/ = 0, we will need the & > 0 case for establishing Lemma 3.6 that lets
us conclude that K-rank,y(C’) > K-rank,(C') for some error polynomial ¥. This is essential in our
proof of the robust permutation lemma, and it also has other implications, as we will see.

The proof of the lemma is quite involved and tricky — we give a rough intuition and defer the
proof to the appendix B.1).

Intuition for Lemma 3.4. For convenience, let us define a to be the vector 7 C, and 3 the vector
z7C". Let t < R— k¢ + 1 be the number of entries of 3 of magnitude > &’. Now from (6), we have

M = Z%’Ai ® B; = ZBZA; ® B+ Z, where error matrix ||Z||p <e (7)
i i
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Now at most t < R— ko + 1 of the 5; are non-negligible. Thus the RHS above is essentially a rank
< R — k¢ + 1 matrix. Now suppose > R — ko + 1 of the «; are non-negligible. Then it turns out to
imply a contradiction to the Kruskal rank assumption for either A or B (because we cannot have
many terms A; ® B; with non-negligible coefficients summing to a very small rank matrix unless
there was a small combination of the terms which itself summed up to zero). This is where the
rank condition kg + kp + ko > 2R + 2 is crucially used. However, carrying out this approach in
the robust case (with errors) requires a delicate analysis that is handled in appendix B.1. O

The next lemma uses the above to conclude that K-ranky,(C”) > K-rank,(C), for some poly-
nomial ¢. i.e. if T" has a well-conditioned decomposition which satisfies the Kruskal conditions,
then any other bounded decomposition that approximates 7' sufficiently well should also be well-
conditioned. Further, it says that any decomposition [A" B" C'] has rank at least R. Other-
wise, we could add some zero-columns to each of A’, B’,C’" and apply this lemma to conclude
K-rank.(A") > 2, a contradiction if there exists a zero column.

Lemma 3.6. Let A, B,C, A',B',C’" be as in the setting of Theorem 3.1. Suppose [A B C| =,
[A" B" C'], with e < 1/¥3¢, where Y36 = RTATBTCU3.4 = 4R47'37%TgpApoc(p;‘pggplc)? Then
A',B',C" have K-rank,s to be at least ka, kg, kc respectively, where 7/ := 3.

Proof. We want to show that every nc X k¢ sub-matrix of C’ has min. singular value oy, > 0 =
1/7(. For contradiction, let C'q be a n¢ x k¢ sub-matrix of C’ and unit vector z € R" such that
HzTC’gHQ < 0. Then, it is easy to see (from Lemma 3.4) that

Z (z, C£>2 <8 = nz(TCN) <ng—ke = nz,(21C) <ng — ke
€S

for e1 = 93.4(¢ + §). Now, picking the sub-matrix of C given by the these k¢ co-ordinates of z7'C
that are small, we can contradict K-rank, ;r.)(C) > kc-. O

Let us check that the conditions of the robust permutation lemma hold with C’, C taking the
roles of XY in Lemma 3.2, and k = k¢, and 7 = ¥364 - 7¢. From Lemma 3.6, it follows that
K-rank,(C') and K-rank,(C") are both > k, and setting ¢’ = 0 in Lemma 3.4, the other condition
of Lemma, 3.2 holds. Now, we proceed to prove the robust permutation lemma.

3.2 A Robust Permutation Lemma

Let us now prove the robust version of the permutation lemma (Lemma 3.2). Recall that K-rank, (X)
and K-rank,(Y') are > k, and that the matrices X,Y are n x R.

Kruskal’s proof of the permutation lemma proceeds by induction. Roughly, he considers the
span of some set of ¢ columns of X (for i < k), and proves that there exist at least ¢ columns of
Y which lie in this span. The hypothesis of his lemma implies this for ¢ = k — 1, and the proof
proceeds by downward induction. Note that ¢ = 1 implies for every column of X, there is at least
one column of Y in its span. Since no two columns of X are parallel, and the number of columns
is equal in X, Y, there must be precisely one column, and this completes the proof.

The natural way to mimic this proof, as mentioned in the introduction, accumulates errors
in each inductive step. Thus the trick is to define the sets of columns differently. We start by
introducing some notation. If V' is a matrix and S a subset of the columns, denote by span(Vy) the



span of the columns of V' indexed by S. Now for S C [R] of size (k — 1), we define Ts to be the set
of indices corresponding to columns of Y which are e;-close to span(Xg), where 1 := (nR)e, and
¢ is as defined in the statement of Lemma 3.2. For smaller sets S (and this definition is crucial to
avoiding an accumulation of errors), we define: Tg := ﬂ Tor.
|57 |=(k—1),5'>8

The main inductive claim will be that for every S C [R] of size < (k — 1), we have |Tg| = |S].
Suppose we have this claim for a singleton, say S = {i}. Now if y is a column of Y which is in
span(Xg) for all (k — 1) element subsets S” (of [R]) which contain ¢, by Lemma 3.8 which we will
prove (applied with A = {i} and B being any set of size (k — 1) not containing i), we will obtain
that y is €1 - ¥3.8-close to span(X{;;), completing the proof of the permutation lemma.

Thus it remains to show the inductive claim. The base case is the following

Lemma 3.7. In the above notation, for any S C [R] of size k — 1, |Ts| is precisely k — 1.

Proof. Let V' be the (n — k + 1) dimensional space orthogonal to the span of Xg, and let ¢t be
the number of columns of Y which have a projection > €1 onto V. From Lemma A.3 (applied to
the projections to V'), there is a unit vector w € V (a random vector suffices) with dot-product
of magnitude > e1/(Rn) = ¢ with each of the ¢ columns. From the hypothesis, since w € V
(= nz(wf'X) < R—k+1), we have t < R — k+ 1. Thus at least (k — 1) of the columns are
e1-close to span(Xg). Now since K-rank,(Y) > k, it follows that k& columns of Y cannot be £1-close
to the (k — 1)-dimensional space span(Xg) (Lemma A.2). Thus |Tg| =k — 1. O

The next two lemmas are crucial to the analysis. The first is our main linear algebraic lemma.

Lemma 3.8. Let X be a matriz as above, with K-rank.(X) > k. Let A,B C [R], with |B| = q
and ANB =10. For1<1i<gq, define T; to be the union of A with all elements of B except the ith
one (when indezxed in some way). Suppose further that |A| + |B| < k. Then if y € R™ is e-close to
span(Xr,) for each i, it is in fact 938 - € close span(Xa), where 938 := 4ntp.

We postpone the proof to the end of the section. A counting argument lies at the core of the
claim. We present it in the language of sunflower set systems.

Definition 3.9 (Sunflower set system). A set system F is said to be a “sunflower on [R] with core
T* if F C 28] and for any Fy, Fb € F, we have Fy N Fy C T*.

Lemma 3.10. Let {T,T5,...,T,}, ¢ > 2, be a sunflower on [R] with core T*, and suppose |T1| +
|To| + -+ |Ty] > R+ (¢ — 1)0, for some §. Then we have |T*| > 6, and furthermore, equality
occurs iff T* CT; for all1 <i<gq.

The proof is by a counting argument which we also defer to the end of the section. With these
lemmas in place, we can prove the main inductive claim.

Proof of Lemma 3.2. We need to prove the following inductive claim:
Claim. For every S C [R] of size < (k — 1), we have |Ts| = |S].

We show this by downward induction on |S|, for which the base case |S| = k — 1 is proved in
Lemma 3.7.
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Now consider some S of size |S| < k—2. W.lLo.g., we may suppose it is {R—|S|+1,..., R}. Let
W; denote Tgygs, for 1 <i < R —[S], and let us write ¢ = R — [S|. By the inductive hypothesis,
|Wi| > |S| + 1 for all .

Let us define T* to be the set of indices of the columns of Y which are £1 -¥3 g-close to span(Xg).
We claim that W; NW; C T* for any ¢ # j € S. This can be seen as follows: first note that W; NW;
is contained in the intersection of Ts/, where the intersection is over S’ O S such that |S'| = k — 1,
and S’ contains either i or j. Now consider any k —|S| element set B which contains both 7, j (note
|S| < k —2). The intersection above includes sets which contain S along with all of B except the
rth element (indexed arbitrarily), for each r. Thus by Lemma 3.8, we have that W; N W; C T™*.

Thus the sets {Wi,...,W,} form a sunflower family with core T*. Further, we can check that
the condition of Lemma 3.10 holds with § = |S|: since |W;| > |S| + 1 by the inductive hypothesis,
it suffices to verify that

R+ (q—1)|S] <q(|S] + 1), which is true since R = ¢ + |S|.

Thus we must have |T%| > |5].

But now, note that 7™ is defined as the columns of Y which are £; - ¥3g-close to span(Xg),
and thus |T*| < |S| (by Lemma A.2), and thus we have |T*| = |S|. Now we have equality in
Lemma 3.10, and so the ‘furthermore’ part of the lemma implies that T C W; for all 4.

Thus we have Ts = [, W; = T™ (the first equality follows from the definition of Ty), thus
completing the proof of the claim, by induction.

Once we have the claim, the theorem follows by applying to singleton sets. O

Let us now prove the main linear algebraic lemma and the sunflower lemma.

Proof of Lemma 3.8. W.l.o.g., let us suppose B = {1,...,q}. Also, let z; denote the jth column
of X. From the hypothesis, we can write:

y:m—i—zoqﬂfj-i-zl
j#1

y:U2+ZOé2ja?j+22
#2

Y= ug+ Zarj:pj + zq,
J7#q
where u; € span(X4) and z; are the error vectors, which by hypothesis satisfy | z;||, < e. We will
use the fact that |A| 4+ |B| < k to conclude that each oyj; is tiny. This then implies the desired
conclusion.
By equating the first and ith equations (i > 2), we obtain

up + Zaljij + 21 =u; + Zoéijfb’j + z;.
J#1 #1
Thus we have a combination of the vectors xz; being equal to z; — z1, which by hypothesis is small:

|zi — 21l < 2e. Now the key is to observe that the coefficient of x; is precisely a1;, because it is
zero in the ith equation. Thus by Lemma A.1 (since K-rank,(X) > k), we have that |ay;| < 27e.

11



Since we have this for all ¢, we can use the first equation to conclude that

ly —willy < S langlleslly + llzal, < 27pe + & < dnrpe
#1

The last inequality is because ¢ < n, and this completes the proof. ]

Proof of Lemma 3.10. The proof is by a counting argument. By the sunflower structure, each T;
has some intersection with 7™ (possibly empty), and some elements which do not belong to T} for
any i’ # i. Call the number of elements of the latter kind ¢;. Then we must have

R+(g—-10 <D L= (L+|TinT*) <> ti+qlT7.

(3

Now since all T; C [R], we have
Y ti+|T* <R
i

Combining the two, we obtain
R+(¢q—1)0 <R+ (¢— DT = |T7| >80,

as desired. For equality to occur, we must have equality in each of the places above, in particular,
we must have |T; N T™*| = |T™| for all 4, which implies T* C T; for all 1. O

3.3 Wrapping up the proof

We are now ready to complete the robust Kruskal’s theorem. From what we saw above, the main
part that remains is to prove that the permutations in the various dimensions are equal.

Proof of Theorem 3.1. Suppose we are given an € < 1 as in the statement of the theorem. For a
moment, suppose ¢ is small enough, and A, B,C, A’, B', C’ satisfying the conditions of the theorem
produce tensors which are e-close.

From the hypothesis, note that k4, kp, kc > 2 (since k4, kp, kc < R, and ka+kp+kc > 2R+2).
Thus from the Lemmas 3.6 and 3.4 (setting &’ = 0), we obtain that C, C’ satisfy the hypothesis of the
Robust permutation lemma (Lemma 3.2) with C’, C set to X,Y respectively, and the parameters

O 193.6 : “g? . 193.46.

Hence, we apply Lemma 3.2 to A, B and C, and get that there exists permutation matrices
II4, IIg and Il and scalar matrix A4, Ag, Ac such that for eg = 9391934 - €,

HA/ — AHAAAHF < €9, HB/ — BHBABHF < g9 and HC/ — C'HcAcHF < €92 (8)

We now need to prove that these three permutations are in fact identical, and that the scalings
multiply to the identity (up to small error). Here, we just use a robust analog of Kruskal’s argument
in the exact case. However, error analysis is a little tedious and we refer the interested reader to
the appendix B.3 for details.

O
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3.4 Uniqueness Theorem for Higher Order Tensors

We show the uniqueness theorem for higher order tensors by a reduction to third order tensors as
in [SB00]. This reduction will proceed inductively, i.e., the robust uniqueness of order ¢ tensors is
deduced from that of order (¢ — 1) tensors. We will convert an order ¢ tensor to a order (¢ — 1)
tensor by combining two of the components together (say last two) as a ny_1ny dimensional vector
(U(Zfl) QUW® say). This is precisely captured by the Khatri-Rao product of two matrices:

Definition 3.11 (Khatri-Rao product). Given two matrices A (size n; x R) and B (size ny X R),
the (n1n2) x R matrix M = A® B constructed with the i** column equal to M; = A; ® B; (viewed
as a vector) is the Khatri-Rao product.

The following Lemma 3.12 (proof in the appendix A.1) relates the robust K-rank of A® B with
the robust K-rank of A and B. This turns out to be crucial to the proof of uniqueness in the general
case, which we present right after.

Lemma 3.12 (K-rank of the Khatri-Rao product). For two matrices A, B with R columns with
robust K-rank ks = K-rank. (A) and kg = K-rank.,(B), the K-rank of the Khatri-Rao product
M = A® B is super-additive:

K-ranki, ., /ixig) (M) = min{ky + k2 — 1, R}.

Remark 3.13. While the above lemma is tight in the worst case (see appendix A.1l), we could
expect that typically , the robust K-rank of the A ® B grows multiplicatively (for R = Q(kakp)),
since the vectors are now in nanpg dimensions. In fact, we show that this can be formalized in
our subsequent work with Ankur Moitra [BCMV13], by considering a smoothed setting. This at
once leads to uniqueness results under weaker K-rank conditions for tensors of order > 3 in the
smoothed analysis setting.

Theorem 3.14 (Uniqueness of Decompositions for Higher Orders). Suppose we are given an order ¢
tensor (with € < R), T = [UM U® ... UWO)], where Vj € [¢] the n;-by-R matriz UY) is p;-bounded,
with K—mnij(U(j)) = k; > 2 satisfying

L
> kj>2R+(0-1.
j=1

, -1
Then for every 0 < & < 1, there exists € = <19§%4 (%)) . (Hje[e] 193,14(Tj,pj,p;,nj)) such

that, for any other (pl, ph, ..., py)-bounded decomposition [V V2 . V] which is e-close to
T, there exists an R x R permutation matriz I1 and diagonal matrices {A(j)}jem such that

[[a0—1| <& endvjeld, |[vO)—vOma0| <« 9)
JE] F "

Setting 19&24(33) = 22" and V3.14(75, pjs P m5) = (ijjp;-nj)o(l) suffice for the theorem.
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Proof Outline. The proof proceeds by induction on ¢. The base case is £ = 3, and for higher ¢,
the idea is to reduce to the case of £ — 1 by taking the Khatri-Rao product of the vectors in two of
the dimensions. That is, if [T U@ ... U®O] and [VD V@ | VO] are close, we conclude that
Wy o wYeou®)]and VO VE L (VED o V)] are close, and use the inductive
hypothesis, which holds because of Lemma 3.12 we mentioned above. We then need an additional
step to conclude that if A ® B and C' ® D are close, then so are A,C and B, D up to some loss
(Lemma A.4 — this is where we have a square root loss, which is why we have a bad dependence on
the ¢’ in the statement). We now formalize this outline.

Proof of Theorem 3.14. We will prove by induction on £. The base case of £ = 3 is established by
Theorem 3.1. Thus consider some £ > 4, and suppose the theorem is true for £ — 1. Furthermore,
suppose the parameters ¢ and €’ in the statement of Theorem 3.14 for (¢ —1) be g1 and €),_,. We
will use these to define ey and €, which correspond to parameters in the statement for £.

Now consider U and V() as in the statement of the theorem. Let us assume without loss of
generality that k1 > ko > -+ > k. Also let K = ) el k;. We will now combine the last two
components (¢ — 1) and ¢ by the Khatri-Rao product.

U=UYoUu®and V=vEDoy®,

Since we know that the two representations are close in Frobenius norm, we have

Y uWerPe - oUuf el -Y VWev@e eV Pal| <o  (10)
r€[R] r€(R] F

Let us first check that the conditions for (¢ — 1)-order tensors hold for 7 = (re_1mVEK) <
(te—17¢V3R). From Lemma 3.12, K-rank;(U) > min{k, + k;—1 — 1, R}.
Suppose first that ky + ky_1 < R+ 1, then

SE;= > kithkeatk—1>2R+(0-1)-1.
jele—1] jel—2]

Otherwise, if kg + ky—1 > R+ 1, then ky_3+ ky_o > R+ 2 (due to our ordering, and ¢ > 4). Hence
Y Kz -4)+[R+2)+(R+1)>2R+(-1
Jjele-1]
We now apply the inductive hypothesis on this (¢ — 1)th order tensor. Note that p < (py—1p¢),
5’S(PZ4PDa?f£(2w7rwv73 and 1 = ng_1ny.

We will in fact apply it with €, | < min{(R - 7—17¢ - p,_,p}) "2, (€})?/R}, so that we can later
use Lemma A.4. To ensure these, we will set

_ R R
€y 1 79%.14 (5/) . H 193.14(Tj,pj,p;-,nj) 193.14(7'7P710/7n)7
¢ jele-2]
where ¥4, = 292 From the values of 7, p,n above, this can easily be seen to be of the form in
the statement of the theorem.
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The inductive hypothesis implies that there is a permutation matrix II and scalar matrices
{AW A AED A’} such that [[AMAR) L AEDA — I <€) and

Vil -2 HV(j) . U(j)HA(j)HF <<,

Hf/— OTIN

/
< €Ep_
I (-1

Since g;,_; < €}, equation (9) is satisfied for j € [(—2]. We thus need to show that HV(j) — UWIIAG) HF <
gy for j =¢—1 and ¢. To do this, we appeal to Lemma A.4, to say that if the Frobenius norm of
the difference of two tensor products u ® v and v ® v is small, then the component vectors are
nearly parallel.

Let us first set the parameters for applying Lemma A.4. Each column vector is of length at
most Lyax < p~’ < (py_,py) and length at least Ly, > 1/7 > (QTg,ng\/ﬁ). Hence, because of our

-1
choice of €),_; <« (4\/@(747175)(,0'4_1 p’e)) earlier, the conditions of Lemma A.4 are satisfied with

/
0 <e¢gy.

~71'(1ﬂ)AI(T> H2
Now applying Lemma A.4 with § = ¢, to column r, we see that there are scalars a,-(¢ — 1) and
a(¢) such that

/

1= ar(t = Dar(0)] < 52 <

min

By setting for all r € [R], A"V (r) = a(¢ — 1), and A©(r) = a(2)A’(r), we see that the first part
of (9) is satisfied. Finally, Lemma A.4 shows that

Vie{0—1,0 HV,@ ~ U4 A0)( H <6, , VrelR]
i i 4 . .
HV(]) —UWIAL) HF < RY \/€r_1 ( by Cauchy-Schwartz inequality).
<ep
This completes the proof of the theorem. O

We show a similar result for symmetric tensors, which shows robust uniqueness upto permuta-
tions (and no scaling) which will be useful in applications to mixture models (Section 5).

Corollary 3.15 (Unique Symmetric Decompositions). For every 0 < n < 1, 7,p,p' > 0 and
LREN, dgy = 19%015( R,n,7,p,p") such that, for any (-order symmetric tensor (with ¢ < R)

12
-y @
re[R] j=1

where the matriz U is p-bounded with K-rank.(U) =k > 2R L 11, and for any other p' bounded,
symmetric, rank-R decomposition of T which is e-close, i.e.,

> @v- Y Qu <

re[R] j=1 re[R] j=1 F
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there exists an R X R permutation matriz 11 such that
IV = Ull[p <n (11)

The mild intricacy here is that applying Theorem 3.14 gives a bunch of scalar matrices whose
product is close to the identity, while we want each of the matrices to be so. This turns out to be
easy to argue — see Section A.2.

4 Computing Tensor Decompositions

For matrices, the theory of low rank approximation is well understood, and they are captured using
singular values. In contrast, the tensor analog of the problem is in general ill-posed: for instance,
there exist rank-3 tensors with arbitrarily good rank 2 approximations [Lan12]. For instance if u, v
are orthogonal vectors, we have

1
u®v®v+v®u®v+v®v®u:g[(v—keu)@(U+€u)®(v+€u)—v®v®v] + N,

where |V < O(e), while it is known that the LHS has rank 3. However note that the rank-
2 representation with error € uses vectors of length 1/e, and such cancellations, in a sense are
responsible for the ill-posedness.

Hence in order to make the problem well-posed, we will impose a boundedness assumption.

Definition 4.1 (p-bounded Low-rank Approximation). Suppose we are given a parameter R and
an m X n X p tensor T which can be written as

R
T=> a;®b®c+N, (12)
i=1
where a; € R™,b; € R", ¢; € RP satisfy max{||a;||y , [|bill5 . [|cilly} < p, and NV is a noise tensor which
satisfies |V < e, for some small enough €. The p-bounded low-rank decomposition problem asks
to recover a good low rank approximation, i.e.,

R
T=> a@bed+N,
=1

such that a}, b}, ¢, are vectors with norm at most p, and |N'[|x < O(1) - €.

We note that if the decomposition into [A B C] above satisfies the conditions of Theorem 3.1,
then solving the p-bounded low-rank approximation problem would allow us to recover A, B, C' up
to a small error. The algorithmic result we prove is the following.

Theorem 4.2. The p-bounded low-rank approzimation problem can be solved in time poly(n) -
exp(R*log(Rp/¢)).

In fact, the O(1) term in the error bound N < O(1)-¢ will just be 5. Our algorithm is extremely
simple conceptually: we identify three R-dimensional spaces by computing appropriate SVDs, and
prove that for the purpose of obtaining an approximation with O(g) error, it suffices to look for
a;, b;, ¢; in these spaces. We then find the approximate decomposition by a brute force search using
an epsilon-net. Note that the algorithm has a polynomial running time for constant R, which is
typically when the low rank approximation problem is interesting.
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Proof. In what follows, let M4 denote the m X np matrix whose columns are the so-called j, kth
modes of the tensor T', i.e., the m dimensional vector of Tj;; values obtained by fixing j, & and
varying 4. Similarly, we define Mp (n x mp) and M¢ (p x mn). Also, we denote by A the m x R
matrix with columns being a;. Similarly define B (n x R),C (p X R).

The outline of the proof is as follows: we first observe that the matrices M4, Mg, Mc are all
approximately rank R. We then let V4, Vg and Vi be the span of the top R singular vectors of
Ma, Mp and M¢ respectively, and show that it suffices to search for a;, b;, and ¢; in these spans.
We note that we do not (and in fact cannot, as simple examples show) obtain the true span of the
a;, b; and ¢;’s in general. Our proof carefully gets around this point. We then construct an e-net for
Va, Vg, Ve, and try out all possible R-tuples. This gives the roughly exp(R?) running time claimed
in the Theorem.

We now make formal claims following the outline above.

Claim 4.3. Let V4 be the span of the top R singular vectors of M 4, and let 114 be the projection
matriz onto V4 (i.e., I1qv is the projection of v € R™ onto V4 ). Then we have

[Ma —TaMalp<e

Proof. Because the top R singular vectors give the best possible rank- R approximation of a matrix
for every R, for any R-dimensional subspace S, if Ilg is the projection matrix onto S, we have

[Ma —TaMallp < ||Ma — HgMal|p
Picking S to be the span of the vectors {ai,...,ar}, we obtain
[Ma = gMallp < [|N|p < e

The first inequality above is because the j, kth mode of the tensor ) . a; ® b; ® ¢; is a vector in
the span of {a1,...,ar}, in particular, it is equal to ) . b;(j)ci(k)a;, where b;(j) denotes the jth
coordinate of b;.

This completes the proof. O

Next, we will show that looking for a;, b;, ¢; in the spaces Va, Vg, Vo is sufficient. The natural
choices are Il 4a;, I1gb;, [Icc;, and we show that this choice in fact gives a good approximation. For
convenience let a; := Il4a;, and af- = a; — a;.

Claim 4.4. For T,Va,a;,... as defined above, we have

< 3e.
F

T—N—ZZL}'@E’@@

Proof. The proof is by a hybrid argument. We write

T—N—Z’(ii@)gi@’c}: (Zai@bi@ci—az‘@bi@ci)

+(Eai®bi®cz’_ai®gi®ci)
i
-+ (Z'@@E@q—’di@@@’c}).

(2
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We now bound each of the terms in the parentheses, and then appeal to triangle inequality (for
the Frobenius norm). Now, the first term is easy:

One way to bound the second term is as follows. Note that:

= |Ma —TsMa|lp <e.
F

Zai@)bi@q*a}@bi@@

)

Zai®bi®ci_ai®gi®cz’: <25i®bi®ci—5i®gi®0i> + (Zaﬁ_@bi@%_a%@a@ci)-

Now let us denote the two terms in the parenthesis on the RHS by G, H — these are tensors which
we view as mnp dimensional vectors. We have |G 4+ H||, < ¢, because the Frobenius norm of the
LHS is precisely |Mp —lpMp| < e. Furthermore, (G, H) = 0, because (a;, ajﬂ = 0 for any 4,7
(one vector lies in the span V4 and the other orthogonal to it). Thus we have |G|, < € (since in
this case |G+ H|3 = [|G||5 + | H]3)-

A very similar proof lets us conclude that the Frobenius norm of the third term is also < e.
This completes the proof of the claim, by our earlier observation. O

The claim above shows that there exist vectors Ei,gi, ¢; of length at most p in Vu, Vg, Vi resp.,
which give a rank-R approximation with error at most 4c. Now, we form an ¢/(Rp?)-net over the
ball of radius p in each of the spaces V4, Vp, Vo Since these spaces have dimension R, the nets

have size
O(Rp?)

(T> f < exp(O(R)log(Rp/c)).

Thus let us try all possible candidates for 61-,51',51 from these nets. Suppose we have ai,Bi,a-
being vectors which are £/(6Rp?)-close to a;, b;, ¢; respectively, it is easy to see that

SZ‘

Now by a hybrid argument exactly as above, and using the fact that all the vectors involved are
< p in length, we obtain that the LHS above is at most ¢.

’di®3i®'c]-—a,»®3i®a- »

Z’di@)gi@'c}—ai@@@a

(2

F

Thus the algorithm finds vectors such that the error is at most 5e. The running time depends
on the time taken to try all possible candidates for 3R vectors, and evaluating the tensor for each.
Thus it is poly(m,n, p) - exp(O(R?) log(Rp/e)). O

This argument generalizes in an obvious way to order ¢ tensors, and gives the following. We
omit the proof.

Theorem 4.5. There is an algorithm, that when given an order £ tensor of size n with a rank R
approzimation of error € (in ||-||p), finds a rank-R approzimation of error O({le) in time poly(n) -
exp(O(¢R?)log(¢Rp/<)).
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4.1 Removing the p-boundedness Assumption

The assumption that there exists a low-rank decomposition which is p-bounded seems appropriate
in many settings, but it is natural to ask if it can be removed. Note that the Claim 4.4 still holds,
i.e., the spaces V4, Vg, Vo as defined earlier still contain vectors which give a good approximation.
However, we cannot use the same searching algorithm, since we do not have a bound on the lengths
of the vectors we should search for.

Another way to look at the above is as follows: let us consider some orthonormal basis for each
of V4, Vg, Vo (call them {v% }le, etc), and write our tensor in this basis, plus some noise. Formally,
we write e; of the standard basis as a combination of the vectors ,UZP plus noise, then write out
e; ® e; ® e}, as a combination of vf;ll ® fug ® véi”, plus noise. This transforms the original low-rank
approximation problem to one for an R x R X R tensor, and we need to find a decomposition with
6i,5i,& being R dimensional vectors. However our main problem persists — we do not know a
bound on the vectors in the decomposition.

We thank Ravi Kannan for suggesting the following to get around this issue: the key is to
simply view this as a system of polynomial inequalities! Let us have 3R? variables, R each for the
entries a;, b;,¢;. Now the fact that the squared Frobenius error with the original tensor is small
(< 25¢?) can be written down as a constraint the variables need to satisfy. We can then solve for our
variables using algorithmic results on solving general polynomial systems over the reals [BPRI6]
(which are based on the decidability of the ezistential theory of reals). The best algorithms here
end up giving a running time which is exp(poly(R)) for our problem without the p-boundedness
assumption. We will not go into the details here.

However the algorithms to solve polynomial systems of equalities are extremely involved, as
opposed to the simple search process under the p-bounded assumption.

5 Polynomial Identifiability of Latent Variable and Mixture Mod-
els

We now show how our robust uniqueness theorems for tensor decompositions can be used for
learning latent variable models, with polynomial sample complexity bounds.

Definition 5.1 (Polynomial Identifiability). An instance of a hidden variable model of size m with
hidden variables set T is said to be polynomial identifiable if there is an algorithm that given any
n > 0, uses only N < poly(m,1/n) samples and finds with probability 1 — o(1) estimates of the
hidden variables Y’ such that | Y/ — Y| < 7.

Consider a simple mixture-model, where each sample is generated from mixture of R distri-
butions {D; },¢(r), with mixing probabilities {w },c[r). Here the latent variable h corresponds to
the choice of distribution and it can have [R] possibilities. First the distribution h = r is picked
with probability w,, and then the data is sampled according to D,., which has parameter u, € R"”
(say its mean). Let M, g represent the matrix of these R parameters. The goal is to learn these
hidden parameters (M and weights {w,}) after observing many samples. This setting captures
many latent variable models including topic models, HMMs, gaussian mixtures etc.

While practitioners typically use Expectation-Maximization (EM) methods to learn the pa-
rameters, a good alternative in the case of mixture models is the method of moments approach (
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starting from the work by Pearson [Pea94] for univariate gaussians ), which tries to identify the
parameters by estimating higher order moments. However, one drawback is that the number of
moments required is typically as large as the number of mixtures R (or parameters), resulting in a
sample complexity that is exponential in R [MV10, BS10, FOS05, FSO06, RSS14].

In a recent exciting line of work [MR06, AHK12, HK12, AFH't12, AGH"12], it is shown
that poly(R,n) samples suffice for identifiability in a special case called the non-singular or non-
degenerate case i.e. when the matrix M has full rank (rank = R)? for many of these models.
Their algorithms for this case proceed by reducing the problem of finding the latent variables
(the means and weights) to the problem of decomposing Symmetric Orthogonal Tensors of or-
der 3, which are known to be solvable in poly(n, R) time using power-iteration type methods
[KRO1, ZG01, AGH"12]. However, their approach crucially relies on these non-degeneracy condi-
tions, and are not robust: even in the case when these R-means reside in a (R — 1)-dimensional
space, these algorithms fail, and the best known sample complexity upper bounds for these problems
are exp(R)poly(n).

In many settings like speech recognition and image classification, the dimension of the feature
space n is typically much smaller than R, the number of topics or clusters. For instance, the
(effective) feature space corresponds to just the low-frequency components in the fourier spectrum
for speech, or the local neighborhood of a pixel in images (SIFT features [Low99]). These are
typically much smaller than the different kinds of objects or patterns (topics) that are possible.
Further, in other settings, the set of relevant features (the effective feature space) could be a space
of much smaller dimension (k < R) that is unknown to us even when the feature vectors are actually
represented in a large dimensional space (n > R).

In this section, we show that we can use our Robust Uniqueness results for Tensor Decom-
positions (Theorem 3.1 and Theorem 3.14) to go past the non-degeneracy barrier and prove that
poly(R,n) samples suffice even under the milder condition that no k& = JR of these parameters
(means) lie in a (k — 1) dimensional space (for some constant § > 0). These results apply to
learning latent variable models like Hidden Markov models, Multi-view mixture models, Mixtues of
Gaussians, Topic models etc. One interesting aspect of our approach is that, unlike previous works,
we get a smooth tradeoff : we get polynomial identifiability under successively milder conditions
by using higher order tensors (¢ = 2/§). This reinforces the intuition that higher moments capture
more information at the cost of efficiency.

In the rest of this section, we will first describe Multi-view models and show how the robust
uniqueness theorems for tensor decompositions immediately imply polynomial identifiability in this
model. We will then see two popular latent variable models which fit into the multi-view mixture
model: the exchangeable (single) Topic Model and Hidden Markov models. We note that the results
of this section (for ¢ = 3 views) also apply to other latent variable models like Latent Dirichlet
Allocation (LDA) and Independent Component Analysis (ICA) that were studied in [AGHT12].
We omit the details in this version of the paper.

5.1 Multi-view Mixture Model

Multi-view models are mixture models with a latent variable h, where we are given multiple ob-
servations or views (), 2@ .. 2® that are conditionally independent given the latent variable
h. Multi-view models are very expressive, and capture many well-studied models like Topic Mod-

*For polynomial identifiability, or > 1/poly(n).
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els [AHK12], Hidden Markov Models (HMMs) [MR06, AMR09, AHK12], random graph mixtures
[AMRO09]. Allman et al [AMRO09] refer to these models by finite miztures of finite measure products.
We first introduce some notation, along the lines of [AMRO09, AHK12].

Definition 5.2 (Multi-view mixture models).

e The latent variable h is a discrete random variable having domain [R], so that Pr[h =1] =
wy, Vr € [R].

e The views {zU )}jGW] are random vectors € R™ (with ¢; norm at most 1), that are conditionally
independent given h, with means p?) € R™ i.e.
E {x(j)\h = r} =9 and E |29 @ 29 |h = r| = ul) @ 49 for i # j

e Denote by M), the n x R matrix with the means {ugj)}rew (normalized with ¢; norm at
most 1) comprising its columns i.e.

MY = 1]l ).

The parameters of the model to be learned are the matrices { M (j)}je[g] and the mixing weights
{wr}rer)- In many settings, the n-dimensional vectors 2 are actually indicator vectors: this is
commonly used to encode the case when the observation is one of n discrete events.

The following key lemma shows how to obtain a higher order tensor (to apply our results from
previous sections) in terms of the hidden parameters that we need to recover. It follows easily
because of conditional independence.

Lemma 5.3 (JAMRO09, AHK12]). In the notation established above for multi-view models, V¢ € N
the (" moment tensor

E[x(1)®...x(j)®...x(£)} = Z wrug)®M$=2)"-®u$j)®~-'®u$,€).
r€[R]

In our usual representation of tensor decompositions,
ElzVe. .20 0. .20 = MO M@ . M)

In the worst case, the best known algorithms for this problem are from a recent work Rabani
et al [RSS14], who give an algorithm that has complexity RO(R?) 4 poly(n, R) (both running time
and sample complexity). In fact they also show a sample complexity lower-bound of Q(exp(R)) for
learning multiview models in one dimension (k = n = 1). When k£ = K-rank,(M) > R for each
of these matrices (the non-degenerate or non-singular setting), Anandkumar et al. [AHK12] give
a polynomial time algorithm to learn the hidden variables using only poly(R, 7,n) samples (hence
polynomial identifiability). We now show how our tensor decomposition results immediately imply
polynomial identifiability even when k& = R for any constant § > 0.

Theorem 5.4 (Polynomial Identifiability of Multi-view mixture model). The following statement
holds for any constant integer £. Suppose we are given samples from a multi-view mizxture model
(see Def 5.2), with the parameters satisfying:

21



(a) For each mixture r € [R], the mizture weight w, > 7.

. ; R
(b) For each j € [¢], K-rank, (M) >k > 2H 4.

then there is a algorithm that given any n > 0 uses N = 195,4“) (%, R,n,T, 1/7) samples,

and finds with high probability {M(j)}je[@ and {Wr },¢[r) (upto renaming of the mirtures {1,2,..., R})
such that A o
Vi €[], HM(J)—M(J)Han and Vr € [R], |w, —w,| <n (13)

The function 954(-,...,-) = poly(Rn/(’yn))eroly(n,T, 1/7)¢ is a polynomial for constant /
and satisfies the theorem.

Remarks:

1. Note that the condition (a) in the theorem about the mizring weights w, > ~ is required to
recover all the parameters, since we need poly(l/w,) samples before we see a sample from
mizture . However, by setting v < €', the above algorithm can still be used to recover the
mixtures components of weight larger than &'.

2. The theorem also holds when for different j, the K—mnkT(M(j)) have bounds k; which are
potentially different, and satisfy the same condition as in Theorem 3.14.

Proof Sketch. We will consider the ¢/* moment tensor for £ = [2/6] + 1. The proof is simple, and
proceeds in three steps. First, we use enough samples to obtain an estimate T of the /" moment
tensor 7', upto inverse polynomial error. Then we find a good rank-R approximation to T (it exists
because T has rank R). We then use the Robust Uniqueness theorem for tensor decompositions to
claim that the terms of this decomposition are in fact close to the hidden parameters. The error
analysis is a little tedious, but straightforward, so we defer it to the appendix C. O

We will now see two popular latent variable models which fit into the multi-view mixture
model: the exchangeable (single) Topic Model and Hidden Markov models. While the topic model
fits directly into the multi-view framework, in the case of Hidden Markov Models we need to come
up these independent views cleverly to apply our results. We note that the results of this section
(for £ = 3 views) also apply to other latent variable models like Latent Dirichlet Allocation (LDA)
and Independent Component Analysis (ICA) that were studied in [AGH"12]. Anandkumar et al.
[AFHT12, AGH™12] show how we can obtain third order tensors by looking at “third” moments
and applying suitable transformations. Applying our robust uniqueness theorem (Theorem 3.1) to
these 3-tensors identify the parameters. We omit the details in this version of the paper.

5.2 Exchangeable (single) Topic Model

The simplest latent variable model that fits the multi-view setting is the Exchangeable Single Topic
model as given in [AHK12|. This is a simple bag-of-words model for documents, in which the words
in a document are assumed to be exchangeable. This model can be viewed as first picking the topic
r € [R] of the document, with probability w,. Given a topic r € [R], each word in the document
is sampled independently at random according to the probability distribution p, € R™ (n is the
dictionary size). In other words, the topic r € R is a latent variable such that the ¢ words in a
document are conditionally i.i.d given r.
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Figure 1: An HMM with 2¢ + 1 time steps. Figure 2: Embedding the HMM into the Multi-

view model

The views in this case correspond to the words in a document. This is a special case of the multi-
view model since the distribution of each of the views j € [¢] is identical. As in [AHK12, AGH12],
we will represent the £ words in a document by indicator vectors (1), 2 ... 2O € {0,1}" (cmae =
1 here). Hence, the (i1,12,...,i7) entry of the tensor E [x(l) RzP®... x(g)] corresponds to the
probability that the first words is 41, the second word is 4g, ... and the ¢** word is 7. The following
is a simple corollary of Theorem 5.4.

Corollary 5.5 (Polynomial Identifiability of Topic Model). The following statement holds for any
constant & > 0. Suppose we are given documents generated by the topic model described above,
where the topic probabilities of the R topics are {wr}TE[R], and the probability distribution of words
in a topic r are given by u, € R™ (represented as a n-by-R matriz M ). If Vr € [R] w, > v, and if
K-rank; (M) > k > 2R/ + 1,

then there is a algorithm that given any n > 0 uses N = V5.4 (%,R,TL,T, 1/~, 1) samples, and
finds with high probability M' and {w; },cg) such that

HM—M’HFSn and Vr € [R], |w, —w,| <n (14)

5.3 Hidden Markov Models

The next latent variable model that we consider are (discrete) Hidden Markov Model which is
extensively used in speech recognition, image classification, bioinformatics etc. We follow the
same setting as in [AMRO09]: there is a hidden state sequence Zi,Zs,...,Z,, taking values in
[R], that forms a stationary Markov chain 77 — Zy — .-+ — Z,,, with transition matrix P and
initial distribution w = {wr},c[r) (assumed to be the stationary distribution). The observation
X, is from the set of discrete events® {1,2,...,n} and it is represented by an indicator vector in
z® e R™. Given the state Z; at time t, X; (and hence z()) is conditionally independent of all
other observations and states. The matrix M (of size n X R) represents the probability distribution
for the observations: the r** column M, represents the probability distribution conditioned on the
state Z; = r i.e.
Vr € [R],V] € [n], Pr [X] = ’L|ZJ = r] = M,;,.

The HMM model described above is shown in Fig. 1.

Corollary 5.6 (Polynomial Identifiability of Hidden Markov models). The following statement
holds for any constant § > 0. Suppose we are given a Hidden Markov model as described above,
with parameters satisfying :

3in general, we can also allow x; to be certain continuous distributions like multivariate gaussians
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(a) The stationary distribution {w;,},c(r has Vr € [R] wy > 71,
(b) The observation matriz M has K-rank.(M) >k > 0R,

(¢) The transition matriz P has minimum singular value og(P) > 72,

then there is a algorithm that given any n > 0 uses N = 195_4(%“) (%, R,n, 1,1 ) samples

7 2
of m = 2[%} + 3 consecutive observations (of the Markov Chain), and finds with high probability,
P, M'" and {0, },¢[r) such that

|M—M|,<n ||P=P|,<n andVre[R], |w,—w|<n (15)

O5(R? log(-1-)) <n r )Oé(”

g time.

Further, this algorithm runs in time n

Proof sketch. Here, the idea is to cleverly come up with three independent of the HMM, so that
it fits into our framework. The proof follows along the lines of Allman et al [AMRO09], so we only
sketch the proof here. We now show to cast this HMM into a multi-view model (Def. 5.2) using a
nice trick of [AMRO09]. We can then apply Theorem 5.4 and prove identifiability (Corollary 5.6).
We will choose m = 2q + 1 where ¢ = [%W + 1, and then use the hidden state Z, 1 as the
latent variable h of the Multi-view model. We will use three different views (¢ = 3) as shown in
Fig. 2: the first view A comprises the tuple of observations (X4, X4—1,...,X1) (ordered this way
for convenience), the second view B is the observation X1, while the third view C' comprises the
tuple V3 = (Xg42, Xg43, ..., Xao¢4+1). This fits into the Multi-view model since the three views are
conditionally independent given the latent variable h = Z, 4.

Abusing notation a little, let A, B, C be matrices of dimensions n? x R, n x R, n? x R respectively.
They denote the conditional probability distributions as in Definition 5.2. For convenience, let
P = diag(w)PTdiag(w)~!, which is the “reverse transition” matrix of the Markov chain given by
P. We can now write the matrices A, B, C in terms of M and the transition matrices. The matrix
product X @Y refers to the Khatri-Rao product (Lemma 3.12). Showing that these are indeed the
transition matrices is fairly straightforward, and we refer to Allman et al. [AMRO9] for the details.

A=((...(MP)® M)P)® M)...P)® M)P (16)
B=M (17)
C=((...(MP)® M)P)®M)...P)® M)P (18)

(There are precisely ¢ occurrences of M, P (or P) in the first and third equalities). Now
we can use the properties of the Khatri-Rao product. For convenience, define CV) = MP, and
CU) = (CU-DeM)P for j > 2, so that we have C' = C(9). By hypothesis, we have K-rank, (M) > k,
and thus K-rank,, (M P) > k (because P is a stochastic matrix with all eigenvalues > 7). Now by
the property of the Khatri-Rao product (Lemma 3.12), we have K—rank(TTQ)T(C(Q)) > min{ R, 2k}.
We can continue this argument, to eventually conclude that K-rank,.(C9) = min{R, ¢k} = R for
7 = 7iy§ (qk)?.

Precisely the same argument lets us conclude that K-rank,/(A) > R, for the 7/ = T‘W%Z (qk)9/2.
Now since K-rank.(B) > 2, we have that the conditions of Theorem 3.1 hold. Now using the
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arguments of Theorem 5.4 (here, we use Theorem 3.1 instead of Theorem 3.14), we get matrices
A’, B',C" and weights w’ such that

A" - AHF < ¢  and similarly for B,C
Hw' — wH <0

for some § = poly(1/n,...). Note that M = B. We now need to argue that we can obtain a good
estimate P’ for P, from A’, B’,C’. This is done in [AMRO9] by a trick which is similar in spirit to
Lemma A.4. It uses the property that the matrix C above is full rank (in fact well conditioned, as
we saw above), and the fact that the columns of M are all probability distributions.

Let D = C4=1) as defined above. Hence, C' = (D ® M)P. Now note that all the columns of
M represent probability distributions, so they add up to 1. Thus given D ® M, we can combine
(simply add) appropriate rows together to get D. Thus by performing this procedure (adding rows)
on C, we obtain DP. Now, if we had performed the entire procedure by replacing ¢ with (¢ — 1)
(we should ensure that (¢ — 1)k > R for the Kruskal rank condition to hold), we would obtain the
matrix D. Now knowing D and DP, we can recover the matrix P, since D is well-conditioned. [

Remark: Allman et al. [AMR09] show identifiability under weaker conditions than Corollary 5.6
when they have infinite samples. This is because they prove their results for generic values of the
parameters M, P (this formally means their results hold for all M, P except a set of measure zero,
but they do not give an explicit characterization). Our bounds are weaker, but hold whenever the
K-rank: (M) > én condition holds. Further, the main advantage is that our result is robust to
noise: the case when we only have finite samples.

5.4 Mixtures of Spherical Gaussians

Suppose we have a mixture of R spherical gaussians in R™, with mixing weights wi, w2, ... wg,
means /i1, fi2, . - . , ftr, and the common variance o2. Let us denote this mixture distribution by D,
and the n x R matrix of means by M.

We define the p-tensor of fth order to be

Momy := Z wm?g.
%

The empirical mean g := Momj, and can be estimated by drawing samples =z ~ D, and
computing E [z]. Similarly, we will show how to compute Momy for larger ¢ by computing higher
order moment tensors, assuming we know the value of ¢. We can then use the robust Kruskal’s
theorem (Theorem 3.14) and the sampling lemma (Lemma F.2) to conclude the following theorem.

Theorem 5.7. Suppose we have a mizture of gaussians given by D, with hidden parameters
{wr}rerr) and M (in particular, we assume we know o )*. Suppose also that Vr € [R] w, > 7,
and K-rank. (M) =k for some k > dR.

Then there is a algorithm that given any n > 0 and o, uses N = ¥5.71/%) <%,R,n,7’,1/7)
samples drawn from D, and finds with high probability M' and {w;}Te[R] such that

HM—M’HFSn and Vr € [R], ‘wr—w;,|<17 (19)

4As will be clear, it suffices to know it up to an inverse polynomial error, so from an algorithmic viewpoint, we
can “try all possible” values.
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Proof. This will follow the same outline as Theorem 5.4. So, we sketch the proof here. The theorem
works for error polynomial 95 7 being essentially as the same error polynomial in 95 4. However, we
first need to gain access to an order ¢-tensor, where each rank-1 term corresponds to a mean .
Hence, we show how to obtain this order-¢ tensor of means, by subtracting out terms involving o,
by our estimates of moments upto £.

Pick ¢ = (%] + 2. We will use order ¢ tensors given by the /" moment. We will first show
how to obtain Momy, from which we learn the parameters. The computation of Mom; will be done
inductively. Note that Mom; is simply E [x]. Now observe that

E[m®2] =E[z®z]=E

Zwi(,ui + E,‘i) & (,U«i + 51’)

Zwi,ui & W Zwif‘:i R &g
i i

= Momy + o’I.

=K +E

We compute E [x®2] by sampling, and since we know o, we can find Momsy up to any polyno-
mially small error. In general, we have

E [xw] =Y wE [(ui + az-)@ﬂ (20)
:Zwi Z Elz1 @z2® ... ® xy]. (21)

xjE€{pi,ei}

The last summation has 2¢ terms. One of them is u?e , which produces Mom, on the RHS. The
other terms have the form 1 ® zo ® ... ® x4, where some of the z; are u; and the rest ¢;, and there
is at least one ¢;.

If a term has r terms being p; and £ —r being ¢;, the tensor obtained is essentially a permutation
of fi(r,0) == p¥" ® 6?(£_T). By permutation, we mean that the (ji,...,j¢)th entry of the tensor
would correspond to the (jr(1), -, Jx(¢))th entry of fi(r, £), for some permutation 7. Thus we focus
on showing how to evaluate the tensor fi(r, ¢) for different r, £.

Note that if £ — r is odd, we have that E [fi(r,£)] = 0. This is because the odd moments of a

Gaussian with mean zero, are all zero (since it is symmetric). If we have ¢ — r being even, we can
{—r

describe the tensor E [ei } explicitly as follows. Consider an index (j1, ..., js—r), and bucket the j

into groups of equal coordinates. For example for index (1,2, 3,2), the buckets are {(1), (22), (3)}.
Now suppose the bucket sizes are by, ..., b (they add up to £ —r). Then the (ji,...,js—)th entry
of 5;@(6_r) is precisely the product my, my, ...mp,, where mg is the sth moment of the univariate
Gaussian N(0,0?).

The above describes the entries of E {554} . Now E [zi(r, £)] is precisely Mom, @ E {554} (since
the p; is fixed). Thus, since we have inductively computed Mom, for r < ¢, this gives a procedure
to compute each entry of E [fi(r, £)]. Thus each of the 2¢ terms in the RHS of (20) except Momy
can be calculated using this process. The LHS can be estimated to any inverse polynomial small
error by sampling (Lemma F.2). Thus we can estimate Mom, up to a similar error.

Hence, we can use the algorithm from Section 4 and apply Corollary 3.15 to obtain vectors
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{tr }re[r) such that

Vr € [R] ‘ uy — w'p,

<.

Similarly, applying the same process with Momy (the Kruskal conditions also hold for ¢ — 1) we get
1/(¢-1)

n-close approximations to w; pir- Now, we appeal to Lemma D.1 to obtain {w, tiy }re(r). U

Remark: Note that the previous proof worked even when the gaussians are not spherical: they
just need to have the same known covariance matrix .

6 Discussion and Open Problems

The most natural open problem arising from our work is that of computing approximate small
rank decompositions efficiently. While the problem is NP hard in general, we suspect that well
conditioned assumptions regarding robust Kruskal ranks being sufficiently large, as in the uniqueness
theorem (Theorem 3.1) for decompositions of 3-tensors for instance, could help. In particular,

Question 6.1. Suppose T is a 3-tensor, that is promised to have a rank R decomposition [A B C],
with kg = K-rank,(A) (similarly kp and k¢ ) satisfying ka + kp + ko > 2R + 2. Can we find the
decomposition A, B,C" (up to a specified error €) in time polynomial in n, R and 1/c?

In the special case that the decomposition [A B C] is known to be orthogonal (i.e., the columns
of A, B,C are mutually orthogonal), which in particular implies n > R, then iterative methods
like power iteration [AGH'12], and “alternating least squares” (ALS) [CLAA09] ° converge in
polynomial time.

A result in the spirit of finding alternative sufficient conditions for uniqueness was by Chiantini
and Ottaviani [CO12], who use ideas from algebraic geometry (in particular a notion called weak
defectivity), to prove that generic n x n x n tensors of rank k¥ < n?/16 have a unique decomposition
(here the word ‘generic’ is meant to mean all except a measure zero set of rank k tensors, which
they characterize in terms of weak defectivity). Note that this is much stronger than the bound
obtained by Kruskal’s theorem, which is roughly 3n/2. It is also roughly the best one can hope
for, since every 3-tensor has rank at most n? (and a random tensor has rank > n?/2). It would
be very interesting to prove robust versions of their results, as it would imply identifiability for a
much larger range of parameters in the models we consider.

A third question is that of certifying that a given decomposition is unique. Kruskal’s rank
condition, while elegant, is not known to be verifiable in polynomial time (unless we are certifying
that the K-rank is essentially the rank). Given an n x R matrix, certifying that every k& columns
are linearly independent is known to be NP-hard [Kha95, TP12]. Even the average case version
i.e. when the matrix is random with independent gaussian entries, has received much attention
as it is related to certifying the Restricted Isometry Property (RIP), which plays a key role in
compressed sensing [CT05, KZ11]. It is thus an fascinating open question to find uniqueness (and
robust uniqueness) theorems which natural parameters that can be computed efficiently.

From the perspective of learning latent variable models, it would be very interesting to obtain
efficient learning algorithms with polynomial running times for the settings considered in Section 5.
Recall that we give algorithms which need only polynomial samples (in the dimension n, and

This is the method of choice in practice for computing tensor decompositions.
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number of mixtures R), when the parameters satisfy the robust Kruskal conditions. In subsequent
work with Ankur Moitra [BCMV13], we address this partially and give efficient algorithms through
tensor decompositions in a smoothed analysis setting. Finally, we believe that our approach can
be extended to learning the parameters of general mixtures of gaussians [MV10, BS10], and more
generally to a broader class of problems on learning probabilistic problems.
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A A Medley of Auxiliary Lemmas

We now list some of the (primarily linear algebra) lemmas we used in our proofs. They range in
difficulty from trivial to ‘straightforward’, but we include them for completeness.

Lemma A.1l. Suppose X is a matriz in R™* with o, > 1/7. Then if |3, i X||, < &, for some
@i, we have |la|| = />, a2 < Te.
Proof. From the singular value condition, we have for any y € R¥,
2 2
IXyllz > of Iyl
from which the lemma follows by setting y to be the vector of «;. O
Lemma A.2. Let A € R™® have K-rank, = k and be p-bounded. Then,

1. If § = span(S), where S is a set of at most k — 1 column vectors of A, then each unit vector
in S has a small representation in terms of the columns denoted by S':

1
v = ZZiAi = (Z 22)/ [[ol* < max{r? 1}

— <
2 —_—
= (p? + 1)k

2. If S = span(S) where S is any subset of k — 1 column vectors S of A, the other columns are
far from the span S:

vielr\s, [msa;]> -

3. If S is any £-dimensional space with { < k, then at most £ column vectors of A are e-close to

it for e = 1/(1V1):
1
< w}’ =

Proof. We now present the simple proofs of the three parts of the lemma.

(i HngAi

1. The first part simply follows because from change of basis. Let M be the n X n matrix,
where the first |S| columns of M correspond to S and the rest of the n — |S| columns being
unit vectors orthogonal to S. Since Ag is well-conditioned, then Apax(M) < (p + 1)y/n and
Amin(M) > 1/max7,1. The change of basis matrix is exactly M~': hence z = (M) lv.
Thus, Amin(M 1) < ||12]] € Amax(M 1) = 1/Amin (M) < max{1,7}.
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2. Let S ={1,...,k — 1} and j = k without loss of generality. Let v = Y, ¢ 2;4; be a vector
e-close to Ag. Let M’ be the n X k matrix restricted to first k£ columns: i.e. M’ = Alsugy-
Hence, the vector z = (z1,..., 251, —1) has square length 1+ >, 22, and ||[M'z|| = €. Thus,

€ > Amin(M') |1 —i—sz >1/7

3. Let ¢ = 1/(7Vk). For contradiction, assume that S = {i : HH§A1H < ¢} is of size £+ 1. Let
v; = gA; € S. Since {v;}ies are £ + 1 vectors in a ¢ dimension space,

H i }ics with Za? =1, st Zaivi =0
i i

Hence, ||>cqidi]| < || es illg 4i|| < (Xieqlail)e < v/|SJe (where the last inequality
follows from Cauchy-Schwarz inequality). But these set of «; contradict the fact that the
minimum singular value of any n-by-k submatrix of A is at least 1/7.

O]

Lemma A.3. Let ui,...,us € R? (for some t,d) satisfy ||uilly > & > 0 for all i. Then there exists
a unit vector w € R? s.t. [(u;,w)| > 555 for all i € [t].

Proof. The proof is by a somewhat standard probabilistic argument.

Let r ~ R% be a random vector drawn from a uniform spherical Gaussian with a unit variance
in each direction. It is well-known that for any y € R? the inner product (y,r) is distributed
as a univariate Gaussian with mean zero, and variance ||y[|3. Thus for each y, from standard
anti-concentration properties of the Gaussian, we have

Pr e, < 14l <
Thus by a union bound, with probability at least 1/2, we have

€ .
Pr [|(u;, r)] > 1—%} for all 4. (22)
Next, since E [||r||§] =d, Pr[Hng > 4d] < 1/4, and thus there exists a vector r s.t. Hr||§ < 4d, and

Eq. (22) holds. This implies the lemma (in fact we obtain v/d in the denominator). O

Lemma A.4. Suppose |[u®@v —u' @V ||z <0, and Lyin < |[ull, |v]|, |&/||, |V']] € Lmax,

) min{L?ninvl} y
with 0 < Gy -

orthogonal to u',v' respectively, then we have

Ifu= oy + B, and v = agv' + B0, where i and v, are unit vectors
11— ajon| < 6/L2,, and B < V0o, By < V.

Proof. We are given that u = aju’ + 14, and v = asv’ + 320, . Now, since the tensored vectors
are close
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Hu@v—d@v’”? < 62

(1 = arag)u’ @0 + Bragiy ® v + feont’ @ 01 + B2l ® mH? <4

Liin(1 — a1a2)? + B{a3 Lo, + B308 L, + B3 < 82 (23)
This implies that |1 — ajas| < §/L2.  as required.
Now, let us assume £; > v/8. This at once implies that 82 < V6.
Also
2
Liin < l0l* = o3 [/]|* + 53
L12nin =9 < agL?nax
Lmin
H >
ence, a2 T
Now, using (23), we see that 31 < v/d. O

Lemma A.5. For A > 0, a vector v € R™ with ||v||; € [1—¢/4,14¢/4], a probability vector u € R™
(lully =>25u = 1), if
lv — Aull, < £
2= 4y/n

then we have
1-¢/2<A<1+4¢/2 and |v—ul,<e¢

Proof. First we have ||v — Aul|; < /4 by Cauchy-Schwartz. Hence, by triangle inequality, |A| |lul|; <
1+¢/2.
Since ||ull; =1, we get A <1+ ¢/2. Similarly A > 1 —¢/2.

Finally, ||v — ully < [lv — Aully + |A = 1| |Jully < & (since A > 0). Hence, the lemma follows. O

A.1 Khatri-Rao product

We now prove the lemma that shows that the K-rank of the Khatri-Rao product is at least additive
in the worst case.

Proof of Lemma 3.12. Let 7 = 711719v/ka + kp. Suppose for contradiction M has K-rank, (M) <
k=ks+kp—1< R (otherwise we are done).

Without loss of generality let the sub-matrix M’ of size (n1ng) x k, formed by the first k columns
of M have \y(M) < 1/7. Note that for a vector z € R"®, ||z||, = ||Z|| where Z is the natural
n X R matrix representing z. Hence

Haitiep with Z 0412 =1 s.t. Z o A; @ Bil| <e.
i€[k] i€[k] F
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Clearly 3i* € [k] s.t || > 1/Vk : let i* = k without loss of generality. Let S = span({A1, A3, ... A, 1}),
and pick = =I5 A/ ||z Ax| (it exists because K-rank.(M) < R).
Pre-multiplying the expression in (A.1) by x, we get

k
Z BiBi|| < e where §; = «; (z, A;)

i=ka

But |Bx] > 1/(vVkr1) (by Lemma A.2), and there are only k — k4 + 1 < kp terms in the expression.
Again, by Lemma A.2 applied to these (at most) kp columns of B, we get that 1/e < mmVk,
which establishes the lemma. O

Remark. Note that the bound of the lemma is tight in general. For instance, if A is an n x 2n
matrix s.t. the first n columns correspond to one orthonormal basis, and the next n columns to
another (and the two bases are random, say). Then K-rankjo(A) = n, but for any 7, we have
K-rank, (A ® A) = 2n — 1, since the first n terms and the next n terms of A ® A add up to the
same vector (as a matrix, it is the identity).

A.2 Symmetric Decompositions

Proof of Corollary 3.15. Applying Theorem 3.14 with &’ < 7(2pTv/R)™!, to obtain a permutation
matrix IT and scalar matrices A; such that

Vi € [V - UTIA | < &
By triangle inequality, Vj,j" € [(], ||UTI(A; — Aj)]|, < 2€’

lr

Since II is a permutation matrix and U has columns of length at least 1/7, we get that
vre[Rl,jell,j €], |A(r)—Ay(r)|<ér
However, we also know that
H, A =TI < g’
jel
vre R, (1-¢&)<J[A6)<1+¢
Jjeld

Hence, substituting (A.2) in the last inequality, it is easy to see that Vi € [n], |\;(i) — 1| < 2&'T. But
since each column of A is p-bounded, this shows that ||A’ — ATI||» < 2¢'7pVR < 7, as required. [J

B Complete proofs for the Robust Uniqueness Theorem for 3-
tensors.

B.1 Proof of Lemma 3.4

W.lo.g., we may assume that k4 > kp (the proof for k4 < kp will follow along the same lines).
For convenience, let us define o to be the vector 7'C, and S the vector 7 C’. Let t be the number
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of entries of 8 of magnitude > &’. The assumption of the lemma implies that t < R — k¢ + 1. Now
from (6), we have

where Z is an error matrix satisfying ||Z|| < e. Now, since the RHS has at most ¢ terms with
|Bi| > €', we have that o441 of the LHS is at most Rp/yp/ze’ + €. Using the value of ¢, we obtain

OR—ke+2(M) < 0141 (M) < &+ (Rplapp)e’ (25)

We will now show that if 7 C has too many co-ordinates which are larger than ¢’ then we
will contradict (25). One tricky case we need to handle is the following: while each of these non-
negligible co-ordinates of z7C will give rise to a large rank-1 term, they can be canceled out by
combinations of the rank-1 terms corresponding to entries of 27'C which are slightly smaller than
¢”. Hence, we will also set a smaller threshold § and first handle the case when there are many
co-ordinates in 27 C' which are larger than 6. § is chosen so that the terms with (z7C); < & can
not cancel out any of the large terms ((z7C); > £").

Define S; = {i : |[(27C);| > "} and Sy = {i : |(z7C);| > &}, where § = £” /9 for some error
polynomial ¥ = 2R?papppcpspgpioTaTeTe (which is always > 1). Thus we have S; C Ss. We
consider two cases.

Case 1: S| > kp.

In this case we will give a lower bound on o gk, 4+2(M), which gives a contradiction to (25). The
intuition is roughly that A, B have k4, kp large singular values, and thus the product should have
enough large ones as well. To formalize this, we use the following well-known fact about singular
values of products, which is proved by considering the variational characterization of singular values:

Fact B.1. Let P,Q be matrices of dimensions p x m and m X q respectively. Then for all £,i such
that £ < min{p, ¢}, we have

0e(PQ) = orpm—i(P)oi(Q) (26)

Now, let us view M as PQ, where P = A, and Q = diag(a)B?. We will show that o, (Q) >
d/7B, and that oorto—kp—ko(A) > 1/74. These will then imply a contradiction to (25) by setting
{=R—kc+2andi=kp since

6 5//

TATE  UTATH

> (Rp/yp'se’ +¢) by our choice of 93 4.

(It is easy to check that £ < min{ky, kp} < min{na,np}, and thus we can use the fact above.)

Thus we only need to show the two inequalities above. The latter is easy, because by the
hypothesis we have 2R + 2 — kp — k¢ < k4, and we know that oy, (A) > 1/74, by the definition
of K-rank;,(A). Thus it remains to prove the second inequality. To see this, let J C Sy of size
kp. Let B? and Qs be the submatrices of BT and @ restricted to rows of J. Thus we have
Qg = diag(a) JB;. Because of the Kruskal condition, every kp sized sub matrix of B is well-
conditioned, and thus oy, (By) = ok, (BY) > 1/7p.

Further, since |a;| > § Vj € J, multiplication by the diagonal cannot lower the singular values by
much, and we get 04,Q; > §/7p. This can also be seen formally by noting that oy, (diag(c)s) > 9,
and applying Fact B.1 with P = diag(a);,Q = BY and ¢ =m =i = kg.
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Finally, since @ is essentially @)y along with additional rows, we have 0., (Q) > 0-5(QJ) > §/7B.
From the argument earlier, we obtain a contradiction in this case.

Case 2: |S2| < kp.

Roughly, by defining Si,S2, we have divided the coefficients «; into large (> €”), small, and
tiny (< 6). In this case, we have that the number of large and small terms together (in M, see
Eq. (24)) is at most kp. For contradiction, we can assume the number of large ones is > ¢ + 1,
since we are done otherwise. The aim is to now prove that this implies a lower bound on o411 (M),
which gives a contradiction to Eq. (25).

Now let us define M' = 3, ¢ @i(A;®B;). Thus M and M’ are equal up to tiny terms. Further,
let IT be the matrix which projects a vector onto the span of {B] : |3;| > €'}, i.e., the span of the
columns of B” which correspond to |3;| > ¢’. Because there are at most ¢ such f;, this is a space of
dimension < ¢t. Thus we can rewrite Eq. (24) as

t
M =Y ai(Ai®B)+ > aj(A;@Bj) =Y Bi(A;® Bj)+ Err, (27)
i€s, JES2\S1 i=1

where we assumed w.l.o.g. that |3;| > ¢ for i € [t], and Err is an error matrix of Frobenius norm
at most € + R(pappd + p4p’pe") < e+ (Rpapppyp’s) (0 +€).

Now because |Si| > t + 1, and K-rank,,(B) > kg > t + 1, there must be one vector among
the B;, i € S1, which has a reasonably large projection orthogonal to the span above, i.e., which
satisfies

1B: — 11Bill, > 1/(r5VR).

Let us pick a unit vector y along B; — IIB;. Consider the equality (27) and multiply by y on both
sides. We obtain

> @i (Bi,y) Ai = (Err)y.

1€S2
Thus we have a combination of the A;’s, with at least one coefficient being > &”/(R7p), having a
magnitude at most ||(Err)yll, < 91(6 4+ €’ + €), where 9; was specified above.
Now ky > kp > |S2|. So, we obtain a contradiction by Lemma A.1 since:

[(Err)ylly < 91(6 + €' +¢€) = Rpapppapp(6 + &' +¢)

8//
= Rpappparp( +e' +e)

1 €

74 Rtp

The last inequality follows because ¥ = 2R2papppcpspgPeTATETC.
This completes the proof in this case, hence concluding the proof of the lemma.

B.2 Proof of Lemma 3.6

By symmetry, let us just show this for matrix C’ (dimensions n x R), and let k = k¢ for convenience.
We need to show that every n-by-k submatrix of C’ has minimum singular value > 6 = 1/7¢.

For contradiction let C'y be the submatrix corresponding to the columns in S (|S| = k), such
that o1(C%) < 6. Let us consider a left singular vector z which corresponds to o4(C%), and suppose
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z is normalized to be unit length. Then we have

S (200 <8

€S
Thus | (z,C!) | < § for all i € S, so we have nzs(27'C’) <n — k. Now from Lemma 3.4, we have
nze, (2C) < n —k, where 1 = ¥3.4(¢ + 0).

Let J denote the set of indices in 27 C' which are < 7 in magnitude (by the above, we have |.J| >
k). Thus we have [|zCyl|, < Re1, which leads to a contradiction if we have K-rank, /r.)(C) > k.
Since this is true for our choice of parameters, the claim follows.

B.3 Wrapping up the Proof of Theorem 3.1

Suppose we are given an ¢’ < 1 as in the statement of the theorem. For a moment, suppose ¢ is
small enough, and A, B,C, A’, B', C' satisfying the conditions of the theorem produce tensors which
are e-close.

From the hypothesis, note that k4, kg, kc > 2 (since ka, kg, kc < R, and ka+kp+kc > 2R+2).
Thus from the Lemmas 3.6 and 3.4 (setting &’ = 0), we obtain that C, C’ satisfy the hypothesis of the
Robust permutation lemma (Lemma 3.2) with C’, C set to X, Y respectively, and the parameters

“ W (1%}

= "936 ; e = 193.46.

Hence, we apply Lemma 3.2 to A, B and C, and get that there exists permutation matrices
114, IIg and Il¢ and scalar matrix A4, Ag, Ac such that for eg = 939934 - €,

|A" = AlL4A 4|, < &2, ||B'— BllpAg||, < &2 and ||C' — CllcAc||, < &2 (28)

We follow the outline given in the proof sketch. To show II4 = Ilp = Il¢:

Let us assume for contradiction that 114 # IIg. We will use an index where the permutations
disagree to obtain a contradiction to the assumptions on the K-rank .

For notational convenience, let m4 : [R] — [R] correspond to the permutation given by Il4,
with 74(r) being the column that A/ maps to. Permutation 7p : [R] — [R] similarly corresponds
to IIp. Using (28) for A we have

Z (A;’_AA(T)AWA(T)) ®B,®C| < Z H P Aar TFA(T)) ®B7/“®C7/“HF
r€[R)] F TE[R]

< &9V Rp) "spe using Cauchy-Schwarz

By a similar argument, and using triangle inequality ( along with o <1 < p/5) we get

Y A @B @C, - > Aa(r)Ap - Ary) @ Bryry @ Crl| < 262V R(plpple + plaplc)
re(R)| re[R) F
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Let us take linear combinations given by unit vectors v and w, of the given tensor T'= [A B (]
along the first and second dimensions. By combining the above inequality along with the fact that

the two decompositions are e-close i.e. HZ c[R] A, @B, ®C.—A.@B.®C! ‘ < ¢, we have

HZ — 7'|| < es =€+ 2e9Rp(p'y + plz) Where

7 = Z (v, Ay) B,)C, and Z'= Z Aa(r)Ap(r <U Az, 7“)> <w7BTFB(T)>C7I‘
re[R] re[R)

Note that the € term above is negligible compared to the second term involving es.

We know that m4 # g, so there exist s # ¢t € [R] such that 7* = 7w4(s) = wp(t). We will now use
this r* to pick v and w carefully so that the vector Z’ is negligible while Z is large. We partition
[R] into V,W with |V| = kg — 1 and |W| < kp — 1, so that m4(t) € V and 7wp(s) € W and
for each r € [R] — {s,t}, either ma(r) € V or wg(r) € W. Such a partitioning is possible since
R<ksg+kp—2.

Let V = span(V) and W = span(W). We know that r* = m4(s) ¢ S and r* = mwa(t) ¢ T.
Hence, pick v as unit vector along H)%Ar* and w as unit vector along H%Br*. By this choice, we
ensure that Z' =0 (since v L V and w L W).

However, K-rank.,(A) > ka and K-rank,,(B) > kg, so (v, Ap)(w,By+) > 1/7atp (by
Lemma A.2). Further, |V| = k4 — 1 implies that at most R — kg + 1 < k¢ — 1 terms of Z is
non-zero.

Z BrCr|| < e3 where 3, = (v, Ay) (w, By)

re[R\V

Further, |B,«| > (ta7p) ™!, and since K-rank,.(C) = k¢ > R — |V|+ 1, we have a contradiction
if e3 < (Ta77c)”! due to Lemma A.2. This will be true for our choice of parameters. Hence
II4 = IIp, and similarly 114 = IIz. Let us denote II = II4 = Il = IIg. In the remainder, we
assume II is the identity, since this is without loss of generality.

To show ApApAc = IR:
Let us denote 8; = Aa(i)Ag(i)Ac(i). From (28) and triangle inequality, we have as before

Z A;‘ ® B;“ ® C;“ - Z AA(T)AB<T)AC(T) ’ Aﬂ'A(T) ® BﬂB(r) ® CTI'c(T) < 582\/ﬁpi4ppr/C
r€[R] re[R] F

Combining this with the fact that the decompositions are e-close we get

Y (=B84, ® B, ® Cy|| < e4 = & + 5VRpuplppces < 6V Rpluplpploea.
re[R]

By taking linear combinations given by unit vectors x,y along the first two dimensions (i.e. zA
and yB) we have

> (1= B) (@A) (yB)Cr|| < ea.

re[R]
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We will show each S, is negligible. Since R+2 < ka+ kp, let S;W C [R] — {r} be disjoint sets
of indices not containing 7, such that [S| = k4 — 1 and |W| < kp — 1. Let S = span({4; : j € S})
and W = span({Bj : j € W}). Let z and y be unit vectors along HéAT and H#VBT respectively.

Since K-rank,,(A) > k4 and K-rank,,(B) > kg, we have that ||[IIgA,| > 1/74 (similarly for
B,). Hence, from Lemma A.2

1
(1 — ,BT)(%) HCTH <eg = 1-— 57« < EATATBTC.

Thus, ||[AaApAc —I|| < eqmatT7e < € (our choice of & will ensure this). This implies the
theorem.
Let us now set the e for the above to hold (note that 32 involves a 7 term which depends on

U36)

6/

6(RTATBTC) P AP PE - V34032
which can easily be seen to be of the form in the statement of the theorem. This completes the
proof.

€:=

C Multi-view models

Proof of Theorem 5.4. Set 1/ = }}-. We know from Lemma F.1 that the " moment tensor can
be estimated to accuracy

g1 = <€ 0514 D (R/1) - 9314(7 /7, Cmae /Tl Cmaz /s n)> ' in ||| p norm using N = O(e7?R(cmaz)*v/Clogn)
samples. This estimated tensor T has a rank-R decomposition upto error 1.
Next, we will apply our algorithm for getting approximate low-rank tensor decomp081t10ns from
Section 4 on T'. Since each M7(~ 7 is a probability distribution, we can obtain vectors {ur }ielrelR]
(let us call the corresponding n x R matrices U)) such that

Viel[l—1],re]| H J)H [1—06,1+ ] \7vhe1re5—51\/><27
~(7)

This is possible since the algorithm in Section 4 searches for the vectors 4,”’, by just enumerating
over g-nets on an R-dimensional space. An alternate way to see this is to obtain any decomposition
and scale all but the last column in the matrices UY) so that they have ¢; norm of 1 (upto error §).
Note that this step of finding an e-close rank-R decomposition can also just comprise of brute force
enumeration, if we are only concerned with polynomial identifiability. Hence, we have obtained a
rank-R decomposition which is O(leq) far in || - || 7.

Now, we apply Theorem 3.14 to /" moment tensor T to claim that these UU) are close to M)
upto permutations. When we apply Theorem 3.14, we absorb the co-efficients w, into M @, In
other words

UD =M0U) forall je¢—1], and U® = MOdiag(w).
We know that K-rank,(M")) = k;, and K-rank, ,,(U®) = ky. We now apply Theorem 3.14 with

T/
our choice of €1, and assuming that the permutation is identity without loss of generality, we get
Vr € [R] Hﬂﬁj) — A(j)(r),uﬁj)‘ <n < % Vje[l—1]
.

42



for some scalar matrices A; (on R-dims) such that

T8 = 1el < g,

Note that the entries in the diagonal matrices A; (the scalings) may be negative. We first transform
the vectors so that each of the entries in A; are non-negative (this is possible since the product of
A;j is close to the identity matrix, which only has non-negative entries).

viellreR), o) =sm(A0@)) 0l (29)
This ensures that
Vj el —1],r € [R] ‘ aY) — ‘A(j)(r)‘ pl) ) <n < % and (30)
(0 _ ‘A(@ ‘ (e)H il 1
vr € [R] ||of )| wonl®|| <o < 2 (31)
Moreover, the ,u7(~j ) correspond to probability vectors which have ||)||; = 1, we have ensured
that || ‘1 € [1—-6,1+6]. Applying Lemma A.5 we get that the required estimates ) (i.e. ,19))
satisfy:
Vielt—1], R,‘w)_ 0| <« M d ‘A@ R R}
S0 _ o = _ |50 .
Now, set jir’ = =ty and @, = ||o; X for all r € [R]. Now, from equations (C) and (C) we
get that '
vre[R] |A® —1)<ﬂ
relrl [aOm -1 <
Hence from (31), || —w,pul?| < %
= =) O < 1
‘wT/J’T‘ w’r/‘LT — 4\/ﬁ
Wr 0y _ @0 < M
Wy THT' ILLT — 4\/ﬁ

Using the fact that w, > v and using Lemma A.5, we see that w, and ﬁﬁ“ are also n-close estimates

(0)

to w, and pu,’ respectively, for all r. O

D Mixtures of Gaussians

The following lemma (used in the proof of Theorem 5.7) allows us to recover the weights after

/ /(e=1)

obtaining estimates to w} é,uT and wi wr through decompositions for the ¢ — 1 and the /¢

moment tensors.
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Lemma D.1 (Recovering Weights). For every §' > 0,w > 0, Ly > 0,£ € N, 3§ = Q(%)

such that, if u € R™ be a vector with length ||p|| > Lmin, and suppose

HU —wl/g,uH <d and Hu—wl/w—l)uH < 0.

()"

Proof. From (D.1) and triangle inequality, we see that

<d (32)

Hwil/év — wil/(#l)uH < 5(w*1/(€) + wil/(#l)) =4.

Let a; = w1 and ap = w/%. Suppose v = Bu+et, where @, is a unit vector perpendicular

to u. Hence 8 = (v,u) / ||ul.

1w — agul|* = ||(Bon — a)u + anetiy || < 62
(Bar — a2)? ||ul]® + afe? < &7

a9 51
a1

Lmin

Now, substituting the values for ay, ag, we see that

‘5—wﬁ_% < ul

5
M-y
’B w ‘<w1/<4—1>Lmin

§lwl/ -1

‘Bﬁ(ﬁ—l) - w‘ < 5/ when § < m

E Properties of Tensors

E.1 A necessary condition for Uniqueness

Consider a 3-tensor T of rank R represented by [A B C] where these three matrices are of size
n x R.
T=)>) A®BC,.
re(R)

We now show a necessary condition in terms of the n? dimensional vectors A, ® B, from the
decomposition.
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Claim E.1 (A necessary condition for uniqueness). Suppose for a subset S C [R], there exist {c}
with ||a| = 1.

> ;A @B, =0

res

then there exists multiple rank-R decompositions for T

Proof. Consider any fixed non-zero vector u (it can be also chosen to be not close to any of the
other vectors in ). This is because > ¢ A, ® B, Q@u =) g0, (A, ® B;) ® u = 0.
Hence, T =3, cg Ar ® By @ (Cr + cytr) + 3 g s Ar @ By @ G O

The above example showed that one necessary condition is that the A ® B should be full rank
R (and well-conditioned). These examples are ruled out when the Kruskal ranks of A and B are
such that k4 + kg > R by Lemma 3.12.

F Sampling Error Estimates for Higher Moment Tensors

In this section, we show error estimates for ¢-order tensors obtained by looking at the ¢/* moment
of various hidden variable models. In most of these models, the sample is generated from mixture of
R distributions {D; },¢[g), with mixing probabilities {w; },c[r). First the distribution D, is picked
with probability w,, and then the data is sampled according to D;, which is characteristic to the
application.

Lemma F.1 (Error estimates for Multiview mixture model). For every ¢ € N, suppose we have
a multi-view model, with parameters {w; },¢(r) and {M(J)}Jem, such that every entry of z9) € R™
is bounded by Cmax (or if it is multivariate gaussian). Then, for every e > 0, there exists N =
O(ct uwe 2/ llogn) such that

if N samples {x(l)(j)}je[@, {x(2)(j)}j€m, e {az(N)(j)}jem are generated, then with high probability

1
1) & 32 O] - (1) 2) (0
E[m 1@ ®. . .x ] A DBEOREEIOREEI0 <c (33)
te[N] 0o
Proof. We first bound the || - || norm of the difference of tensors i.e. we show that

V{i1,i2,...,9¢} € [n Hx]) —% ZHQ? (] <5/n€/2.

JE te[N]jefe

Consider a fixed entry (i1, 2, ...,%¢) of the tensor.
Each sample t € [N] corresponds to an independent random variable with a bound of ¢/,

Hence, we have a sum of N bounded random variables. By Bernstein bounds, probability for
en—t/ 2)2N2
2Nct

max

(33) to not occur exp = exp (—&’N/ (2(cmazn)’)). We have n’ events to union

bound over. Hence N = O(e™2(cmazn)’v/Zlogn) suffices. Note that similar bounds hold when the
() € R™ are generated from a multivariate gaussian. O
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Lemma F.2 (Error estimates for Gaussians). Suppose z is generated from a mizture of R-gaussians
with means {Mr}re[R] and covariance oI , with the means satisfying ||pr|l < cmaz-

For every e > 0,f € N, there exists N = Q(poly(%)),az,n,R) such that if 2,23 . 2W) ¢ Rn
were the N samples, then

V{il,ig,.. Zg}E HIIZZJ —% Z H <eE. (34)

JEle] te[N] jE]
In other words,

1

o 1 (t)\&¢
E {x } N( Z (2| <e
te[N] 0o

Proof. Fix an element (iy,1i2,...,1) of the f-order tensor. Each point ¢ € [N] corresponds to an
ii.d random variable Z! = ZC( )x(t). .xgt). We are interested in the deviation of the sum S =

~ ZtE[N Z'. Each of the i.i. d rvs has value Z = z;, x4, ...x¢. Since the gaussians are spherical

(axis-aligned suffices) and each mean is bounded by ¢z, |Z]| < (Cmaz + to)! with probability
(@) (exp(—t2 / 2)) Hence, by using standard sub-gaussian tail inequalities, we get

Pr|S —E[z]] > ¢ < N
r|S — xp | —
‘ P (M + ollogn)t
Hence, to union bound over all n’ events N = O (¢=2(¢log nM)*) suffices. O
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