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Smoothed Analysis of Tensor Decompositions
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Abstract

Low rank tensor decompositions are a powerful tool for learning generative models, and
uniqueness results give them a significant advantage over matrix decomposition methods. How-
ever, tensors pose significant algorithmic challenges and tensors analogs of much of the matrix
algebra toolkit are unlikely to exist because of hardness results. Efficient decomposition in the
overcomplete case (where rank exceeds dimension) is particularly challenging. We introduce a
smoothed analysis model for studying these questions and develop an efficient algorithm for ten-
sor decomposition in the highly overcomplete case (rank polynomial in the dimension). In this
setting, we show that our algorithm is robust to inverse polynomial error – a crucial property
for applications in learning since we are only allowed a polynomial number of samples. While
algorithms are known for exact tensor decomposition in some overcomplete settings, our main
contribution is in analyzing their stability in the framework of smoothed analysis.

Our main technical contribution is to show that tensor products of perturbed vectors are
linearly independent in a robust sense (i.e. the associated matrix has singular values that are
at least an inverse polynomial). This key result paves the way for applying tensor methods
to learning problems in the smoothed setting. In particular, we use it to obtain results for
learning multi-view models and mixtures of axis-aligned Gaussians where there are many more
“components” than dimensions. The assumption here is that the model is not adversarially
chosen, formalized by a perturbation of model parameters. We believe this an appealing way
to analyze realistic instances of learning problems, since this framework allows us to overcome
many of the usual limitations of using tensor methods.
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1 Introduction

1.1 Background

Tensor decompositions play a central role in modern statistics (see e.g. [27]). To illustrate their
usefulness, suppose we are given a matrix M =

∑R
i=1 ai ⊗ bi When can we uniquely recover the

factors {ai}i and {bi}i of this decomposition given access to M? In fact, this decomposition is
almost never unique (unless we require that the factors {ai}i and {bi}i are orthonormal, or that M
has rank one). But given a tensor T =

∑R
i=1 ai ⊗ bi ⊗ ci there are general conditions under which

{ai}i, {bi}i and {ci}i are uniquely determined (up to scaling) given T ; perhaps the most famous
such condition is due to Kruskal [24], which we review in the next section.

Tensor methods are commonly used to establish that the parameters of a generative model can
be identified given third (or higher) order moments. In contrast, given just second-order moments
(e.g. M) we can only hope to recover the factors up to a rotation. This is called the rotation
problem and has been an important issue in statistics since the pioneering work of psychologist
Charles Spearman (1904) [31]. Tensors offer a path around this obstacle precisely because their
decompositions are often unique, and consequently have found applications in phylogenetic recon-
struction [11], [29], hidden markov models [29], mixture models [20], topic modeling [5], community
detection [3], etc.

However most tensor problems are hard: computing the rank [17], the best rank one approxi-
mation [18] and the spectral norm [18] are all NP -hard. Also many of the familiar properties of
matrices do not generalize to tensors. For example, subtracting the best rank one approximation
to a tensor can actually increase its rank [34] and there are rank three tensors that can be approx-
imated arbitrarily well by a sequence of rank two tensors. One of the few algorithmic results for
tensors is an algorithm for computing tensor decompositions in a restricted case. Let A,B and C
be matrices whose columns are {ai}i, {bi}i and {ci}i respectively.

Theorem 1.1. [25], [11] If rank(A) = rank(B) = R and no pair of columns in C are multiples
of each other, then there is a polynomial time algorithm to compute the minimum rank tensor
decomposition of T . Moreover the rank one terms in this decomposition are unique (among all
decompositions with the same rank).

If T is an n × n × n tensor, then R can be at most n in order for the conditions of the theorem
to be met. This basic algorithm has been used to design efficient algorithms for phylogenetic
reconstruction [11], [29], topic modeling [5], community detection [3] and learning hidden markov
models and mixtures of spherical Gaussians [20]. However algorithms that make use of tensor
decompositions have traditionally been limited to the full-rank case, and our goal is to develop
stable algorithms that work for R = poly(n). Recently Goyal et al [16] gave a robustness analysis
for this decomposition, and we give an alternative proof in Appendix A.

In fact, this basic tensor decomposition can be bootstrapped to work even when R is larger
than n (if we also increase the order of the tensor). The key parameter that dictates when one can
efficiently find a tensor decomposition (or more generally, when it is unique) is the Kruskal rank:

Definition 1.2. The Kruskal rank (or Krank) of a matrix A is the largest k for which every set of
k columns are linearly independent. Also the τ -robust k-rank is denoted by Krankτ (A), and is the
largest k for which every n× k sub-matrix A|S of A has σk(A|S) ≥ 1/τ .

How can we push the above theorem beyond R = n? We can instead work with an order ℓ tensor.
To be concrete set ℓ = 5 and suppose T is an n× n× ...× n tensor. We can “flatten” T to get an
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order three tensor

T =

R∑

i=1

A
(1)
i ⊗A

(2)
i︸ ︷︷ ︸

factor

⊗A
(3)
i ⊗A

(4)
i︸ ︷︷ ︸

factor

⊗ A
(5)
i︸︷︷︸

factor

Hence we get an order three tensor T̂ of size n2×n2×n. Alternatively we can define this “flattening”
using the following operation:

Definition 1.3. The Khatri-Rao product of U and V which are size m× r and n× r respectively
is an mn× r matrix U ⊙ V whose ith column is ui ⊗ vi.

Our new order three tensor T̂ can be written as:

T̂ =

R∑

i=1

(
A(1) ⊙A(2)

)
i
⊗
(
A(3) ⊙A(4)

)
i
⊗A(5)

The factors are the columns of A(1)⊙A(2), the columns of A(3)⊙A(4) and the columns of A(5). The
crucial point is that the Kruskal rank of the columns of A(1)⊙A(2) is in fact at least the sum of the
Kruskal rank of the columns of A(1) and A(2) (and similarly for A(3)⊙A(4)) [1], [9], but this is tight
in the worst-case. Consequently this “flattening” operation allows us use the above algorithm unto
R = 2n; since the rank (R) is larger than the largest dimension (n), this is called the overcomplete
case.

Our main technical result is that in a natural smoothed analysis model, the Kruskal rank robustly
multiplies and this allows us to give algorithms for computing a tensor decomposition even in the
highly overcomplete case, for any R = poly(n) (provided that the order of the tensor is large -
but still a constant). Moreover our algorithms have immediate applications in learning mixtures of
Gaussians and multiview mixture models.

1.2 Our Results

We introduce the following framework for studying tensor decomposition problems:

• An adversary chooses a tensor T =
∑R

i=1 A
(1)
i ⊗A

(2)
i ⊗ ...⊗A

(ℓ)
i .

• Each vector aji is ρ-perturbed to yield ãji .
1

• We are given T̃ =
∑R

i=1 Ã
(1)
i ⊗ Ã

(2)
i ⊗ ...⊗ Ã

(ℓ)
i (possibly with noise.)

Our goal is to recover the factors {Ã(1)
i }i, {Ã

(2)
i }i, ..., {Ã

(ℓ)
i }i (up to rescaling). This model is

directly inspired by smoothed analysis which was introduced by Spielman and Teng [32], [33] as a
framework in which to understand why certain algorithms perform well on realistic inputs.

In applications in learning, tensors are used to encode low-order moments of the distribution. In
particular, each factor in the decomposition represents a “component”. The intuition is that if these
“components” are not chosen in a worst-case configuration, then we can obtain vastly improved
learning algorithms in various settings. For example, as a direct consequence of our main result,
we will give new algorithms for learning mixtures of spherical Gaussians again in the framework of
smoothed analysis (without any additional separation conditions). There are no known polynomial

1An (independent) random gaussian with zero mean and variance ρ2/n in each coordinate is added to aj
i to obtain

ãj
i . We note that we make the Gaussian assumption for convenience, but our analysis seems to apply to more general

perturbations.
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time algorithms to learn such mixures if the number of components (k) is larger than the dimension
(n). But if their means are perturbed, we give a polynomial time algorithm for any k = poly(n)
by virtue of our tensor decomposition algorithm.

Our main technical result is the following:

Theorem 1.4. Let R ≤ nℓ/2 for some constant ℓ ∈ N. Let A(1), A(2), . . . A(ℓ) be n × R matrices
with columns of unit norm, and let Ã(1), Ã(2), . . . Ã(ℓ) ∈ R

n×m be their respective ρ-perturbations.
Then for τ = (n/ρ)3

ℓ
, the Khatri-Rao product satisfies

Krankτ

(
Ã(1) ⊙ Ã(2) ⊙ . . .⊙ Ã(ℓ)

)
= R w.p. at least 1− exp

(
−Cn1/3ℓ

)
(1)

In general the Kruskal rank adds [1, 9] but in the framework of smoothed analysis it robustly
multiplies. What is crucial here is that we have a lower bound τ on how close these vectors are
to linearly dependent. In almost all of the applications of tensor methods, we are not given T
exactly but rather with some noise. This error could arise, for example, because we are using a
finite number of samples to estimate the moments of a distribution. It is the condition number of
Ã(1) ⊙ Ã(1) ⊙ . . .⊙ Ã(ℓ) that will control whether various tensor decomposition algorithms work in
the presence of noise.

Another crucial property our method achieves is exponentially small failure probability for any
constant ℓ, for our polynomial bound on τ . In particular for ℓ = 2, we show (in Theorem 3.1) for
ρ-perturbations of two n × n2/2 matrices U and V , the Krankτ (Ũ ⊙ Ṽ ) = n2/2 for τ = ρ2/nO(1),
with probability 1 − exp(−√n). We remark that it is fairly straightforward to obtain the above
statement (for ℓ = 2) for failure probability δ, with τ = (n/δ)O(1) (see Remark 3.7 for more on the
latter); however, this is not desirable since the running time has a polynomial dependence on the
minimum singular value 1/τ (and hence δ).

We obtain the following main theorem from the above result and from analyzing the stability
of the algorithm of Leurgans et al [25] (see Theorem 2.3):

Theorem 1.5. Let R ≤ n⌊ ℓ−1
2

⌋/2 for some constant ℓ ∈ N. Suppose we are given T̃ + E where
T̃ and E are order ℓ-tensors and T̃ has rank R and is obtained from the above smoothed analysis
model. Moreover suppose the entries of E are at most ε(ρ/n)3

ℓ
where ε < 1. Then there is an

algorithm to recover the rank one terms ⊗ℓ
i=1ã

j
i up to an additive ε error. The algorithm runs in

time nC3ℓ and succeeds with probability at least 1− exp(−Cn1/3ℓ).

As we discussed, tensor methods have had numerous applications in learning. However algo-
rithms that make use of tensor decompositions have traditionally been limited to the full-rank
case, and hence can only handle cases when the number of “components” is at most the dimension.
However by using our main theorem above, we can get new algorithms for some of these problems
that work even if there are many more “components” than dimensions.

Multi-view Models (Section 4)

In this setting, each sample is composed of ℓ views x(1), x(2), . . . , x(ℓ) which are conditionally in-
dependent given which component i ∈ [R] the sample is generated from. Hence such a model
is specified by R mixing weights wi and R discrete distributions µi

(1), . . . , µi
(j), . . . , µi

(ℓ), one for
each view. Such models are very expressive and are used as a common abstraction for a number
of inference problems. Anandkumar et al [2] gave algorithms in the full rank setting. However,
in many practical settings like speech recognition and image classification, the dimension of the
feature space is typically much smaller than the number of components. If we suppose that the
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distributions that make up the multi-view model are ρ-perturbed (analogously to the tensor set-
ting) then we can give the first known algorithms for the overcomplete setting. Suppose that the

means (µi
(j)) are ρ-perturbed to obtain {µ̃(j)

i }. Then:

Theorem 1.6. This is an algorithm to learn the parameters wi and {µ̃(j)
i } of an ℓ-view multi-

view model with R ≤ n⌊ ℓ−1
2

⌋/2 components up to an accuracy ε. The running time and sample

complexity are at most polyℓ(n, 1/ε, 1/ρ) and succeeds with probability at least 1− exp(−Cn1/3ℓ) for
some constant C > 0.

Mixtures of Axis-Aligned Gaussians (Section 5)

Here we are given samples from a distribution F =
∑k

i=1wiFi(µi,Σi) where Fi(µi,Σi) is a Gaussian
with mean µi and covariance Σi and each Σi is diagonal. These mixtures are ubiquitous throughout
machine learning. Feldman et al [14] gave an algorithm for PAC-learning mixtures of axis aligned
Gaussians, however the running time is exponential in k, the number of components. Hsu and
Kakade [20] gave a polynomial time algorithm for learning mixtures of spherical Gaussians provided
that their means are full rank (hence k ≤ n). Again, we turn to the framework of smoothed analysis
and suppose that the means are ρ-perturbed. In this framework, we can give a polynomial time
algorithm for learning mixtures of axis-aligned Gaussians for any k = poly(n). Suppose that the
means of a mixture of axis-aligned Gaussians and suppose the means have been ρ-perturbed to
obtain µ̃i. Then

Theorem 1.7. There is an algorithm to learn the parameters wi, µ̃i and Σi of a mixture of k ≤
n⌊ ℓ−1

2
⌋/(2ℓ) axis-aligned Gaussians up to an accuracy ε. The running time and sample complexity

are at most polyℓ(n, 1/ε, 1/ρ) and succeeds with probability at least 1 − exp(−Cn1/3ℓ) for some
constant C > 0.

We believe that our new algorithms for overcomplete tensor decomposition will have further
applications in learning. Additionally this framework of studying distribution learning when the
parameters of the distribution we would like to learn are not chosen adversarially, seems quite
appealing.

Remark 1.8. Recall, our main technical result is that the Kruskal rank robustly multiplies. In fact,
is is easy to see that for a generic set of vectors it multiplies [1]. This observation, in conjunction
with the algorithm of Leurgans et al [25] yields an algorithm for tensor decomposition in the
overcomplete case. Another approach to overcomplete tensor decomposition was given by [13]

which works up to r ≤ n⌊ ℓ
2
⌋. However these algorithms assume that we know T exactly, and are

not known to be stable when we are given T with noise. The main issue is that these algorithms
are based on solving a linear system which is full rank if the factors of T are generic, but what
controls whether or not these linear systems can handle noise is their condition number.

Alternatively, algorithms for overcomplete tensor decomposition that assume we know T exactly
would not have any applications in learning because we would need to take too many samples to
have a good enough estimate of T (i.e. the low-order moments of the distribution).

In recent work, Goyal et al [16] also made use of robust algorithms for overcomplete tensor
decomposition, and their main application is underdetermined independent component analysis
(ICA). The condition that they need to impose on the tensor holds generically (like ours, see e.g.
Corollary 2.4) and can show in a smoothed analysis model that this condition holds with inverse
polynomial failure probability. However here our focus was on showing a lower bound for the
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condition number of M⊙ℓ that does not depend (polynomially) on the failure probability. We focus
on the failure probability being small (in particular, exponentially small), because in smoothed
analysis, the perturbation is “one-shot” and if it does not result in an easy instance, you cannot
ask for a new one!

1.3 Our Approach

Here we give some intuition for how we prove our main technical theorem, at least in the ℓ = 2
case. Recall, we are given two matrices U (1) and U (2) whose R columns are ρ-perturbed to obtain
Ũ (1) and Ũ (2) respectively. Our goal is to prove that if R ≤ n2

2 then the matrix Ũ (1) ⊙ Ũ (2) has
smallest singular value that is at least poly(1/n, ρ) with high probability. In fact, it will be easier
to work with what we call the leave-one-out distance (see Definition 3.4) as a surrogate for the
smallest singular value (see Lemma 3.5). Alternatively, if we let x and y be the first columns of
Ũ (1) and Ũ (2) respectively, and we set

U = span({Ũ (1)
i ⊗ Ũ

(2)
i , 2 ≤ i ≤ R})

then we would like to prove that with high probability x ⊗ y has a non-negligible projection on
the orthogonal complement of U . This is the core of our approach. Set V to be the orthogonal
complement of U . In fact, we prove that for any dimension at least n2

2 subspace V, with high
probability x⊗ y has a non-negligible projection onto V.

How can we reason about the projection of x ⊗ y onto an arbitrary (but large) dimensional
subspace? If V were (say) the set of all low-rank matrices, then this would be straightforward.
But what complicates this is that we are looking at the projection of a rank one matrix onto a
large dimensional subspace of matrices, and these two spaces can be structured quite differently.
A natural approach is to construct matrices M1,M2, ...,Mp ∈ V so that with high probability at
least one quadratic form xTMiy is non-negligible. Suppose the following condition were met (in
which case we would be done): Suppose that there is a large set S of indices so that each vector
xTMi has a large projection onto the orthogonal complement of span({xTMi, i ∈ S}). In fact, if
such a set S exists with high probability then this would yield our main technical theorem in the
ℓ = 2 case. Our main step is in constructing a family of matrices M1,M2, ...Mp that help us show
that S is large. We call this an (θ, δ)-orthogonal system (see Definition 3.13). The intuition behind
this definition is that if we reveal a column in one of the Mi’s that has a significant orthogonal
component to all of the columns that we have revealed so far, this is in effect a fresh source of
randomness that can help us add another index to the set S. See Section 3 for a more complete
description of our approach in the ℓ = 2 case. The approach for ℓ > 2 relies on the same basic
strategy but requires a more delicate induction argument. See Section 3.4.

2 Prior Algorithms

Here we review the algorithm of Leurgans et al [25]. Alternatively, this is sometimes referred to as
Chang’s lemma [11].

Suppose we are given a third-order tensor T =
∑R

i=1 ui ⊗ vi ⊗ wi which is n × m × p. Let
U, V and W be matrices whose columns are ui, vi and wi respectively. Then suppose that (1)
rank(U) = rank(V ) = R and (2) k-rank(W ) ≥ 2. Then we can recover the factors of T using the
algorithm Decompose:

Theorem 2.1. [25], [11] The algorithm Decompose runs in polynomial time and recovers the
(unique) factors of T provided that (1) rank(U) = rank(V ) = R and (2) k-rank(W ) ≥ 2.
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Proof: We can write Ta = UDaV
T where Da = diag(aTw1, a

Tw2, ..., a
Twn) and similarly Tb =

UDbV
T where Db = diag(bTw1, b

Tw2, ..., b
Twn). Moreover we can write Ta(Tb)

−1 = UDaD
−1
b U−1

and Tb(Ta)
−1 = V DbD

−1
a V −1. So we conclude U and V diagonalize Ta(Tb)

−1 and Tb(Ta)
−1 respec-

tively. Note that almost surely the diagonals entries of DaD
−1
b and of DbD

−1
a are distinct. Hence

the eigendecompositions of Ta(Tb)
−1 and Tb(Ta)

−1 are unique, and we can pair up columns in U and
columns in V based on their eigenvalues (we pair up u and v if their eigenvalues are reciprocals).
We can then solve a linear system to find the remaining factors (columns in W ) and since this
is a valid decomposition, we can conclude that these are also the true factors of T appealing to
Kruskal’s uniqueness theorem [24]. �

In fact, this algorithm is also stable, as Goyal et al [16] recently showed. It is intuitive that if U and
V are well-conditioned and each pair of columns in W is well-conditioned then this algorithm can
tolerate some inverse polynomial amount of noise. For completeness, we give a robustness analysis
of Decompose in Appendix A.

Condition 2.2. 1. The condition numbers κ(U), κ(V ) ≤ κ,

2. The column vectors of W are not close to parallel: for all i 6= j, ‖ wi
‖wi‖ −

wj

‖wj‖‖2 ≥ δ ,

3. The decompositions are bounded : for all i, ‖ui‖2, ‖vi‖2, ‖wi‖2 ≤ C.

Theorem 2.3. Suppose we are given tensor T + E ∈ R
n×n×p with the entries of E being bounded

by ǫ · poly(1/κ, 1/n, 1/δ) and moreover T has a decomposition T =
∑R

i=1 ui ⊗ vi ⊗ wi that satisfies
Condition 2.2. Then Decompose returns each rank one term in the decomposition of T (up to
renaming), within an additive error of ǫ.

However this algorithm is limited by the condition that rank(U) = rank(V ) = R since this requires
that R ≤ min(m,n). But as we have seen before, by “flattening” a higher order tensor, we can
handle overcomplete tensors. The following is an immediately corollary of Theorem 2.3:

Corollary 2.4. Suppose we are given an order-ℓ tensor T +E ∈ R
n×ℓ

with the entries of E being
bounded by ǫ · polyℓ(1/κ, 1/n, 1/δ), and matrices U (1), U (2) . . . U (ℓ) ∈ R

n×r, whose columns give a

rank-r decomposition T =
∑R

i=1 u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(ℓ)
i . If Condition 2.2 is satisfied by

U = U (1)⊙U (2)⊙. . .⊙U (⌊ ℓ−1
2

⌋) , V = U (⌊ ℓ−1
2

⌋+1)⊙. . .⊙U (2⌊ ℓ−1
2

⌋) and W =

{
U (ℓ) if ℓ is odd

U (ℓ−1) ⊙ U (ℓ) otherwise

then Decompose returns each rank one term in this decomposition within an additive error of ǫ.

Note that Corollary 2.4 does not the decomposition to be symmetric. Further, any tri-partition of
the ℓ modes that satisfy Condition 2.2 would have sufficed. To understand how large a rank we can
handle, the key question is: When does the Kruskal rank (or rank) of ℓ-wise Khatri-Rao product
become R?

The following lemma is well-known (see [9] for a robust analogue) and is known to be tight in
the worst case. This allows us to handle a rank of R ≈ ℓn/2.

Lemma 2.5. Krank(U ⊙ V ) ≥ min
(
Krank(U) +Krank(V )− 1, R

)

But, for generic vectors set of vectors U and V , a much stronger statement is true [1]: Krank(U⊙
V ) ≥ min

(
Krank(U)×Krank(V ), R

)
. Hence given a generic order ℓ tensor T with R ≤ n⌊(ℓ−1)/2⌋,

“flattening” it to order three and appealing to Theorem 2.1 finds the factors uniquely. The algorithm
of [13] follows a similar but more involved approach, and works for R ≤ n⌊(ℓ)/2⌋.
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Algorithm 1 Decompose, Input: T

1. Let Ta = T (·, ·, a), Tb = T (·, ·, b) where a, b are uniformly random unit vectors in ℜp

2. Set U to be the eigenvectors of Ta(Tb)
−1

3. Set V to be the eigenvectors of Tb(Ta)
−1

4. Solve the linear system T =
∑n

i=1
ui ⊗ vi ⊗ wi for the vectors wi

5. Output U, V,W

However in learning applications we are not given T exactly but rather an approximation to
it. Our goal is to show that the Kruskal rank robustly multiplies typically, so that these types of
tensor algorithms will not only work in the exact case, but are also necessarily stable when we
are given T with some noise. In the next section, we show that in the smoothed analysis model,
the robust Kruskal rank multiplies on taking Khatri-Rao products. This then establishes our main
result Theorem 1.5, assuming Theorem 3.3 which we prove in the next section.

Proof of Theorem 1.5: As in Corollary 2.4, let U = Ũ (1) ⊙ . . . ⊙ Ũ (⌊ ℓ−1
2

⌋) , V = Ũ (⌊ ℓ−1
2

⌋+1) ⊙
. . .⊙ Ũ (ℓ−1) and W = Ũ (ℓ). Theorem 3.3 shows that with probability 1− exp

(
− n1/3O(ℓ))

over the

random ρ-perturbations, κR(U), κR(V ) ≤ (n/ρ)3
ℓ
. Further, the columns W are δ = ρ/n far from

parallel with high probability. Hence, Corollary 2.4 implies Theorem 1.5. �

3 The Khatri-Rao Product Robustly Multiplies

In the exact case, it is enough to show that the Kruskal rank almost surely multiplies and this
yields algorithms for overcomplete tensor decomposition if we are given T exactly (see Remark 1.8).
But if we want to prove that these algorithms are stable, we need to establish that even the robust
Kruskal rank (possibly with a different threshold τ) also multiplies. This ends up being a very
natural question in random matrix theory, albeit the Khatri-Rao product of two perturbed vectors
in R

n is far from a perturbed vector in R
n2
.

Formally, suppose we have two matrices U and V with columns u1, u2, . . . , uR and v1, v2, . . . , vR
in R

n. Let Ũ , Ṽ be ρ-perturbations of U, V i.e. for each i ∈ [R], we perturb ui with an (independent)
random gaussian perturbation of norm ρ to obtain ũi (and similarly for ṽi). Then we show the
following:

Theorem 3.1. Suppose U, V are n×R matrices and let Ũ , Ṽ be ρ-perturbations of U, V respectively.
Then for any constant δ ∈ (0, 1), R ≤ δn2 and τ = nO(1)/ρ2, the Khatri-Rao product satisfies
Krankτ (Ũ ⊙ Ṽ ) = R with probability at least 1− exp(−√n).

Remark 3.2. The natural generalization where the vectors ui and vi are in different dimensional
spaces also holds. We omit the details here.

In general, a similar result holds for ℓ-wise Khatri-Rao products which allows us to handle rank

as large as δn⌊ ℓ−1
2

⌋ for ℓ = O(1). Note that this does not follow by repeatedly applying the above
theorem (say applying the theorem to U ⊙V and then taking ⊙W ), because perturbing the entries
of (U ⊙V ) is not the same as Ũ ⊙ Ṽ . In particular, we have only ℓ ·nR “truly” random bits, which
are the perturbations of the columns of the base matrices. The overall structure of the proof is the
same, but we need additional ideas followed by a delicate induction.
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Theorem 3.3. For any δ ∈ (0, 1), let R = δnℓ for some constant ℓ ∈ N. Let U (1), U (2), . . . U (ℓ)

be n × R matrices with unit column norm, and let Ũ (1), Ũ (2), . . . Ũ (ℓ) ∈ R
n×m be their respective

ρ-perturbations. Then for τ = (n/ρ)3
ℓ
, the Khatri-Rao product satisfies

Krankτ

(
Ũ (1) ⊙ Ũ (1) ⊙ . . .⊙ Ũ (ℓ)

)
= nℓ/2 w.p. at least 1− exp

(
−δn1/3ℓ

)
(2)

Let A denote the nℓ × R matrix Ũ (1) ⊙ Ũ (2) ⊙ . . . ⊙ Ũ (ℓ) for convenience. The theorem states
that the smallest singular value of A is lower-bounded by τ .

How can we lower bound the smallest singular value of A? We define a quantity which is can
be used as a proxy for the least singular value and is simpler to analyze.

Definition 3.4. For any matrix A with columns A1, A2, . . . AR, the leave-one-out distance is

ℓ(A) = min
i

dist(Ai, span{Aj}j 6=i).

The leave-one-out distance is a good proxy for the least singular value, if we are not particular
about losing multiplicative factors that are polynomial in size of the matrix.

Lemma 3.5. For any matrix A with columns A1, A2, . . . AR, we have ℓ(A)√
R
≤ σmin(A) ≤ ℓ(A).

We will show that each of the vectors Ai = ũ
(1)
i ⊗ ũ

(2)
i ⊗· · ·⊗ ũ

(ℓ)
i has a reasonable projection (at

least nℓ/2/τ) on the space orthogonal to the span of the rest of the vectors span ({Aj : j ∈ [R]− {i}})
with high probability. We do not have a good handle on the space spanned by the rest of the R− 1
vectors, so we will prove a more general statement in Theorem 3.6: we will prove that a perturbed
vector x̃(1) ⊗ · · · ⊗ x̃(ℓ) has a reasonable projection onto any (fixed) subspace V w.h.p., as long as
dim(V) is Ω(nℓ). To say that a vector w has a reasonable projection onto V, we just need to exhibit
a set of vectors in V such that one of them have a large inner product with w. This will imply our
the required bound on the singular value of A as follows:

1. Fix an i ∈ [R] and apply Theorem 3.6 with x(t) = u
(t)
i for all t ∈ [ℓ], and V being the space

orthogonal to rest of the vectors Aj.

2. Apply a union bound over all the R choices for i.

We now state the main technical theorem about projections of perturbed product vectors onto
arbitrary subspaces of large dimension.

Theorem 3.6. For any constant δ ∈ (0, 1), given any subspace V of dimension δ ·nℓ in R
n×ℓ

, there
exists tensors T1, T2, . . . Tr in V of unit norm (‖·‖F = 1), such that for random ρ-perturbations
x̃(1), x̃(2), . . . , x̃(ℓ) ∈ Rn of any vectors x(1), x(2), . . . , x(ℓ) ∈ Rn, we have

Pr

[
∃j ∈ [r] s.t ‖Tj

(
x̃(1), x̃(2), . . . , x̃(ℓ)

)
‖ ≥ ρℓ

(
1

n

)3ℓ
]
≥ 1− exp

(
−δn1/(2ℓ)ℓ

)
(3)

Remark 3.7. Since the squared length of the projection is a degree 2ℓ polynomial of the (Gaussian)
variables xi, we can apply standard anti-concentration results (Carbery-Wright, for instance) to
conclude that the smallest singular value (in Theorem 3.6) is at least an inverse polynomial, with
failure probability at most an inverse polynomial. This approach can only give a singular value
lower bound of polyℓ(p/n) for a failure probability of p, which is not desirable since the running
time depends on the smallest singular value.
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Remark 3.8. For meaningful guarantees, we will think of δ as a small constant or n−o(1) (note
the dependence of the error probability on δ in eq (3)). For instance, as we will see in section 3.4,
we can not hope for exponential small failure probability when V ⊆ R

n2
has dimension n.

The following restatement of Theorem 3.6 gives a sufficient condition about the singular values
of a matrix P of size r × nℓ, that gives a strong anti-concentration property for values attained by
vectors obtained by the tensor product of perturbed vectors. This alternate view of Theorem 3.6
will be crucial in the inductive proof for higher ℓ-wise products in section 3.4.

Theorem 3.9 (Restatement of Theorem 3.6). Given any constant δℓ ∈ (0, 1) and any matrix T
of size r × (nℓ) such that σδnℓ ≥ η, then for random ρ-perturbations x̃(1), x̃(2), . . . , x̃(ℓ) ∈ R

n of any
vectors x(1), x(2), . . . , x(ℓ) ∈ R

n, we have

Pr

[
‖M

(
x̃(1), x̃(2), . . . , x̃(ℓ)

)
‖ ≥ ηρℓ

(
1

n

)3O(ℓ)
]
≥ 1− exp

(
−δn1/3ℓ

)
(4)

Remark 3.10. Theorem 3.6 follows from the above theorem by choosing an orthonormal basis for
V as the rows of T . The other direction follows by choosing V as the span of the top δℓn

ℓ right
singular vectors of T .

Remark 3.11. Before proceeding, we remark that both forms of Theorem 3.6 could be of indepen-
dent interest. For instance, it follows from the above (by a small trick involving partitioning the
coordinates), that a vector x̃⊗ℓ has a non-negligible projection into any cnℓ dimensional subspace

of Rnℓ
with probability 1 − exp(−fℓ(n)). For a vector x ∈ R

nℓ
whose entries are all independent

Gaussians, such a claim follows easily, with probability roughly 1−exp(−nℓ). The key difference for
us is that x̃⊗ℓ has essentially just n bits of randomness, so many of the entries are highly correlated.
So the theorem says that even such a correlated perturbation has enough mass in any large enough
subspace, with high enough probability. A natural conjecture is that the probability bound can be
improved to 1− exp(−Ω(n)), but it is beyond the reach of our methods.

3.1 Khatri-Rao Product of Two Matrices

We first show Theorem 3.9 for the case ℓ = 2. This illustrates the main ideas underlying the general
proof.

Proposition 3.12. Let 0 < δ < 1 and M be a δn2 × n2 matrix with σδn2(M) ≥ τ . Then for
random ρ-perturbations x̃, ỹ of any two x, y ∈ R

n, we have

Pr
[
‖M (x̃⊗ ỹ)‖ ≥ τρ

nO(1)

]
≥ 1− exp

(
−
√
δn

)
. (5)

The high level outline is now the following. Let U denote the span of the top δn2 singular vectors
of M . We show that for r = Ω(

√
n), there exist n × n matrices M1,M2, . . . ,Mr whose columns

satisfy certain orthogonal properties we define, and additionally vec(Mi) ∈ U for all i ∈ [r]. We use
the orthogonality properties to show that (x̃ ⊗ ỹ) has an ρ/poly(n) dot-product with at least one
of the Mi with probability ≥ 1− exp(−r).

The θ-orthogonality property. In order to motivate this, let us consider some matrix Mi ∈
R
n×n and considerMi(x⊗y). This is precisely yTMix. Now suppose we have r matricesM1,M2, . . . ,Mr,

and we consider the sum
∑

i(y
TMix)

2. This is also equal to ‖Q(y)x‖2, where Q(y) is an r × n
matrix whose (i, j)th entry is 〈y, (Mi)j〉 (here (Mi)j refers to the jth column in Mi).
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Now consider some matrices Mi, and suppose we knew that Q(ỹ) has Ω(r) singular values of
magnitude ≥ 1/n2. Then, an ρ-perturbed vector x̃ has at least ρ/n of its norm in the space spanned
by the corresponding right singular vectors, with probability ≥ 1 − exp(−r) (Fact 3.26). Thus we
get

Pr[‖Q(ỹ)x̃‖ ≥ ρ/n3] ≥ 1− exp(−r).
So the key is to prove that the matrix Q(ỹ) has a large number of “non-negligible” singular values
with high probability (over the perturbation in ỹ). For this, let us examine the entries of Q(ỹ).
For a moment suppose that ỹ is a gaussian random vector ∼ N (0, ρ2I) (instead of a perturbation).
Then the (i, j)th entry of Q(ỹ) is precisely 〈ỹ, (Mi)j〉, which is distributed like a one dimensional
gaussian of variance ρ2‖(Mi)j‖2. If the entries for different i, j were independent, standard results
from random matrix theory would imply that Q(ỹ) has many non-negligible singular values.

However, this could be far from the truth. Consider, for instance, two vectors (Mi)j and (Mi′)j′

that are parallel. Then their dot products with ỹ are highly correlated. However we note, that as
long as (Mi′)j′ has a reasonable component orthogonal to (Mi)j , the distribution of the (i, j) and
(i′, j′)th entries are “somewhat” independent. We will prove that we can roughly achieve such a
situation. This motivates the following definition.

Definition 3.13. [Ordered θ-orthogonality] A sequence of vectors v1, v2, . . . , vn has the ordered
θ-orthogonality property if for all 1 ≤ i ≤ n, vi has a component of length ≥ θ orthogonal to
span{v1, v2, . . . , vi−1}.

Now we define a similar notion for a sequence of matrices M1,M2, . . . ,Mr, which says that a
large enough subset of columns should have a certain θ-orthogonality property. More formally,

Definition 3.14 (Ordered (θ, δ)-orthogonal system). A set of n×m matrices M1,M2, . . . ,Mr form
an ordered (θ, δ)-orthogonal system if there exists a permutation π on [m] such that the first δm
columns satisfy the followng property: for i ≤ δm and every j ∈ [R], the π(i)th column of Mj

has a projection of length ≥ θ orthogonal to the span of all the vectors given by the columns
π(1), π(2), . . . , π(i − 1), π(i) of all the matrices M1,M2, . . .Mr other than itself (i.e. the π(i)th
column of Mj).

The following lemma shows the use of an ordered (θ, δ) orthogonal system: a matrix Q(ỹ)
constructed as above starting with these Mi has many non-negligible singular values with high
probability.

Lemma 3.15 (Ordered θ-orthogonality and perturbed combinations.). Let M1,M2, . . . ,Mr be a
set of n ×m matrices of bounded norm (‖·‖F ≥ 1) that are (θ, δ) orthogonal for some parameters
θ, δ, and suppose r ≤ δm. Let x̃ be an ρ-perturbation of x ∈ R

n. Then the r × m matrix Q(x̃)
formed with the jth row of (Q(x̃))j being x̃TMj satisfies

Pr
x

[
σr/2 (Q(x̃)) ≥ ρθ

n4

]
≥ 1− exp (−r)

We defer the proof of this Lemma to section 3.3. Our focus will now be on constructing such a
(θ, δ) orthogonal system of matrices, given a subspace V of Rn2

of dimension Ω(n2). The following
lemma achieves this

Lemma 3.16. Let V be a δ · nm dimensional subspace R
nm, and suppose r, θ, δ′ satisfy δ′ ≤ δ/2,

r ·δ′m < δn/2 and θ = 1/(nm3/2). Then there exist r matrices M1,M2, . . . ,Mr of dimension n×m
with the following properties
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1. vec(Mi) ∈ V for all i ∈ [r].

2. M1,M2, . . . ,Mr form an ordered (θ, δ′) orthogonal system.

In particular, when m ≤ √n, they form an ordered (θ, δ/2) orthogonal system.

We remark that while δ is often a constant in our applications, δ′ does not have to be. We will
use this in the proof that follows, in which we use these above two lemmas regarding construction
and use of an ordered (θ, δ)-orthogonal system to prove Proposition 3.12.

Proof of Proposition 3.12 The proof follows by combining Lemma 3.16 and Lemma 3.15 in
a fairly straightforward way. Let U be the span of the top δn2 singular values of M . Thus U is a
δn2 dimensional subspace of Rn2

. It has three steps:

1. We use Lemma 3.16 withm = n, δ′ = δ
n1/2 , θ = 1

n5/2 to obtain r = n1/2

2 matricesM1,M2, . . . ,Mr ∈
R
n×n having the (θ, δ′)-orthogonality property.

2. Now, applying Lemma 3.15, we have that the matrix Q(x̃), defined as before, (given by linear
combinations along x̃) , has σr/2 (Q(x̃)) ≥ ρθ

n4 w.p 1− exp(−√n).

3. Applying Fact 3.26 along with a simple averaging argument, we have that for one of the terms
Mi, we have |Mi(x̃⊗ ỹ)| ≥ ρθ/n6 with probability ≥ 1− exp(−r/2) as required.

Please refer to Appendix B.2 for the complete details.
The proof for higher order tensors will proceed along similar lines. However we require an

additional pre-processing step and a careful inductive statement (Theorem 3.25), whose proof in-
vokes Lemmas 3.16 and 3.15. The issues and details with higher order products are covered in
Section 3.4. The following two sections are devoted to proving the two lemmas i.e. Lemma 3.16
and Lemma 3.15. These will be key to the general case (ℓ > 2) as well.

3.2 Constructing the (θ, δ)-Orthogonal System (Proof of Lemma 3.16)

Recollect that V is a subspace of Rn·m of dimension δnm in Lemma 3.16. We will also treat a
vector M ∈ V as a matrix of size n×m, with its co-ordinates indexed by [n]× [m].

We want to construct many matrices M1,M2, . . .Mr ∈ R
n×m such that a reasonable fraction

of the m columns satisfy θ-orthogonality property. Intuitively, such columns would have Ω(n)
independent directions in R

n, as choices for the r matrices M1,M2, . . . ,Mr. Hence, we need to
identify columns i ∈ [m], such that the projection of V onto these n co-ordinates (in column
i) spans a large dimension, in a robust sense. This notion is formalized by defining the robust
dimension of column projections, as follows.

Definition 3.17 (Robust Dimension of projections). For a subspace V of Rn·m, we define its robust
dimension dimτ

i (V) to be

dimτ
i (V) = max

d
s.t. ∃ orthonormal v1, v2, . . . , vd ∈ R

n and M1,M2, . . . ,Md ∈ V

with ∀t ∈ [d], ‖Mt‖ ≤ τ and vt = Mt(i).

This definition ensures that we do not take into account those spurious directions in R
n that

are covered to an insignificant extent by projecting (unit) vectors in V to the ith column. Now, we
would like to use the large dimension of V (dim=δnm) to conclude that there are many columns
projections having large robust dimensions of around δn .
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Lemma 3.18. In any subspace V in R
p1·p2 of dimension dim(V) for any τ ≥ √p2, we have

∑

i∈[p2]
dimτ

i (V) ≥ dim(V) (6)

Remark 3.19. This lemma will also be used in the first step of the proof of Theorem 3.6 to identify
a good block of co-ordinates which span a large projection of a given subspace V.

The above lemma is easy to prove if the dimension of the column projections used is the
usual dimension of a vector space. However, with robust dimension, to carefully avoid spurious or
insignificant directions, we identify the robust dimension with the number of large singular values
of a certain matrix.

Proof: Let d = dim(V). Let B be a (p1p2) × d matrix, with the d columns comprising an
orthonormal basis for V. Clearly σd(B) = 1. Now, we split the matrix B into p1 blocks of size
p1 × d each. For i ∈ [p2], let Bi ∈ R

p1×d be the projection of B on the rows given by [p1]× i. Let
di = max t such that σt(Bi) ≥ 1√

p2
.

We will first show that
∑

i di ≥ d. Then we will show that dimτ
i (V) ≥ di to complete our proof.

Suppose for contradiction that
∑

i∈[p2] di < d. Let Si be the (d − d1)-dimensional subspace of

R
d spanned by the last (d− d1) right singular vectors of Bi. Hence,

for unit vectors α ∈ Si ⊆ R
d, ‖Biα‖ <

1√
p2

.

Since, d −∑
i∈[p2] di > 0, there exists at least one unit vector α ∈ ⋂

i S⊥i . Picking this unit vector

α ∈ R
d, we can contradict σd(B) ≥ 1

To establish the second part, consider the di top left-singular vectors for matrix Bi (∈ R
p1) .

These di vectors can be expressed as small combinations (‖·‖2 ≤
√
p2) of the columns of Bi using

Lemma B.1. The corresponding di small combinations of the columns of the whole matrix B, gives
vectors in R

p1p2 which have length
√
p2 as required (since column of B are orthonormal). �

We will construct the matrices M1,M2, . . . ,Mr ∈ R
n×m in multiple stages. In each stage, we

will focus on one column i ∈ [m]: we fix this column for all the matrices M1,M2, . . . ,Mr, so that
this column satisfies the ordered θ-orthogonal property w.r.t previously chosen columns, and then
leave this column unchanged in the rest of the stages.

In each stage t of this construction we will be looking at subspaces of V which are obtained by
zero-ing out all the columns J ⊆ [m] (i.e. all the co-ordinates [n]× J), that we have fixed so far.

Definition 3.20 (Subspace Projections). For J ⊆ [m], let V∗J ⊆ R
n·(m−|J |) represent the subspace

obtained by projecting on to the co-ordinates [n]× ([m]− J), the subspace of V having zeros on all
the co-ordinates [n]× J .

V∗J =
{
M ′ ∈ R

n·(m−|J |) : ∃M ∈ V s.t. columns M(i) = M ′(i) for i ∈ [m]− J, and 0 otherwise .
}

The extension Ext∗J (M ′) for M ′ ∈ V∗J is the vector M ∈ V obtained by padding M ′ with zeros
in the coordinates [n]× J (columns given by J).

The following lemma shows that their dimension remains large as long as |J | is not too large:

Lemma 3.21. For any J ⊆ [m] and any subspace V of Rn·m of dimension δ · nm, the subspace
having zeros in the co-ordinates [n]× J has dim

(
V∗J

)
≥ n(δm− |J |).
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Proof of Lemma 3.21: Consider a constraint matrix C of size (1− δ)nm× nm which describes
V. V∗J is described by the constraint matrix of size (1− δ)nm× n(m− |J |) obtained by removing
the columns of C corresponding to [n]× J . Hence we get a subspace of dimension at least n(m−
|J |)− (1− δ)nm. �

We now describe the construction more formally.

The Iterative Construction of ordered θ-orthogonal matrices.

Initially set J0 = ∅ and Mj = 0 for all j ∈ [r], τ =
√
m and s = δm/2.

For t = 1 . . . s,

1. Pick i ∈ [m]− Jt−1 such that dimτ
i

(
V∗Jt−1

)
≥ δn/2. If no such i exists, report FAIL.

2. Choose Z1, Z2, . . . , Zr ∈ V∗Jt−1 of length at most
√
mn such that ith columns

Z1(i), Z2(i), . . . , Zr(i) ∈ R
n are orthonormal, and also orthogonal to the columns {Mj(i

′)}i′∈Jt−1,j∈[r].
If this is not possible, report FAIL.

3. Set for all j ∈ [r], the new Mj ← Mj + Ext∗J (Zj), where Ext∗J (Zj) is the matrix padded
with zeros in the columns corresponding to J . Set Jt ← Jt−1 ∪ {i}.

Let J = Js for convenience. We first show that the above process for constructingM1,M2, . . . ,Mr

completes successfully without reporting FAIL.

Claim 3.22. For r, s such that s ≤ δm/2 and r · s ≤ δn/3, the above process does not FAIL.

Proof: In each stage, we add one column index to J . Hence, |Jt| ≤ s at all times t ∈ [s].
We first show that Step 1 of each iteration does not FAIL. From Lemma 3.21, we have

dim
(
V∗Jt

)
≥ δnm/2. Let W = V∗Jt . Now, applying Lemma 3.18 to W, we see that there ex-

ists i ∈ [m]− Jt such that dimτ
i (W) ≥ δn/2, as required. Hence, Step 1 does not fail.

dimτ
i (W) ≥ δn/2 shows that there exist Z ′

1, Z
′
2, . . . Z

′
δn/2 with lengths at most

√
m such that

their ith columns {Z ′
t(i)}t≤δn/2 are orthonormal. However, we additionally need to impose that

the ith columns to also be orthogonal to the columns {Mj(i
′)}j∈[r],i′∈Jt−1

. Fortunately, the number

of such orthogonality constraints is at most r|Jt−1| ≤ δn/3. Hence, we can pick the r < δn/6
orthonormal ith columns {Zj(i)}j∈[r] and their respective extensions Zj , by taking linear combina-

tions of Z ′
t. Since the linear combinations result again in unit vectors in the ith column, the length

of Zj ≤
√
mn, as required. Hence, Step 2 does not FAIL as well. �

Completing the proof of Lemma 3.16. We now show that since the process completes, then
M1,M2, . . . ,Mr have the required ordered (θ, δ′)-orthogonal property for δ′ = s/m. We first check
that M1,M2, . . . ,Mr belong to V. This is true because in each stage, Ext∗J (Zj) ∈ V, and hence
Mj ∈ V for j ∈ [r]. Further, since we run for s stages, and each of the Zj are bounded in length by√
mn, ‖Mj‖F ≤ s

√
mn ≤

√
nm3. Our final matrices Mj will be scaled to ‖·‖F = 1. The s columns

that satisfy the ordered θ-orthogonality property are those of J , in the order they were chosen (we
set this order to be π, and select an arbitrary order for the rest).

Suppose the column it ∈ [m] was chosen at stage t. The key invariant of the process is that once
a column it is chosen at stage t, the itht column remains unchanged for each Mj in all subsequent
stages (t + 1 onwards). By the construction, Zj(it) ∈ R

n is orthogonal to {Mj(i)}i∈Jt−1 . Since
Zj(it) has unit length and Mj is of bounded length, we have the ordered θ-orthogonal property as

required, for θ = 1/
√
nm3. This concludes the proof.
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3.3 (θ, δ)-Orthogonality and ρ-Perturbed Combinations (Proof of Lemma 3.15)

Suppose M1,M2, . . . ,Mr be a (θ, δ)-orthogonal set of matrices (dimensions n ×m). Without loss
of generality, suppose that the permutation π in the definition of orthogonality is the identity, and
let I be the first δm columns.

Now let us consider an ρ-perturbed vector x̃, and consider the matrix Q(x̃) defined in the
statement – it has dimensions r ×m, and the (i, j)th entry is 〈x̃, (Mi)j〉, which is distributed as a
translated gaussian. Now for any column i ∈ I, the ith column in Q(x̃) has every entry having an
(ρ · θ) ‘component’ independent of entries in the previous columns, and entries above. This implies
that for a unit gaussian vector g, we have (by anti-concentration and θ-orthogonality that

Pr[(gTQ(x̃)i)
2 < θ2/4n] < 1/2n. (7)

Furthermore, the above inequality holds, even conditioned on the first (i− 1) columns of Q(x̃).

Lemma 3.23. Let Q(x̃) be defined above, and fix some i ∈ I. Then for g ∼ N (0, 1)n, we have

Pr[(gTQ(x̃)i)
2 <

θ2ρ2

4n2
| Q(x̃)1, . . . , Q(x̃)(i−1)] <

1

2n
,

for any given Q(x̃)1, Q(x̃)2, . . . , Q(x̃)(i−1).

Proof: Let g = (g1, g2, . . . , gr). Then we have

gTQi(x̃) = g1(x̃
T (M1)i) + g2(x̃

T (M2)i) + · · · + gr(x̃
T (Mr)i)

= 〈x̃, g1(M1)i + g2(M2)i + . . . gr(Mr)i〉

Let us denote the latter vector by vi for now, so we are interested in 〈x̃, vi〉. We show that vi has
a non-negligible component orthogonal to the span of v1, v2, . . . v(i−1). Let Π be the matrix which
projects orthogonal to the span of (Ms)i′ for all i′ < i. Thus any vector Πu is also orthogonal to
the span of vi′ for i

′ < i.
Now by hypothesis, every vector Π(Ms)i has length ≥ θ. Thus the vector Π (

∑
s gs(Ms)i) = Πvi

has length ≥ θ/2 with probability ≥ 1− exp(−r) (Lemma B.2).
Thus if we consider the distribution of 〈x̃, vi〉 = 〈x, vi〉+ 〈e, vi〉, it is a one-dimensional gaussian

with mean 〈x, vi〉 and variance ρ2. From basic anti-concentration properties of a gaussian (that the
mass in any ρ · (variance)1/2 interval is at most ρ), the conclusion follows. �

We can now do this for all i ∈ I, and conclude that the probability that Eq. (7) holds for all
i ∈ I is at most 1/(2n)|I|.

Now what does this imply about the singular values of Q(x̃)? Suppose it has < r/2 (which is
< |I|) non-negligible singular values, then a gaussian random vector g, with probability at least
n−r, has a negligible component along all the corresponding singular vectors, and thus the length
of gTQ(x̃) is negligible with at least this probability!

Lemma 3.24. Let M be a t× t matrix with spectral norm ≤ 1. Suppose M has at most r singular
values of magnitude > τ . Then for g ∼ N (0, 1)t, we have

Pr[‖Mg‖22 < 4tτ2 +
t

n2c
] ≥ 1

ncr
− 1

2t
.
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Proof: Let u1, u2, . . . , ur be the singular vectors corresponding to value > τ . Consider the event
that g has a projection of length < 1/nc onto u1, u2, . . . , ur. This has probability ≥ 1

ncr , by anti-
concentration properties of the Gaussian (and because N (0, 1)t is rotationally invariant). For any
such g, we have

‖Mg‖22 =

r∑

i=1

〈g, ui〉2 + τ2‖g‖2

≤ r

n2c
+ τ2‖g‖22.

�

This contradicts the earlier anti-concentration bound, and so we conclude that the matrix has
at least r/2 non-negligible singular values, as required.

3.4 Higher Order Products

We have a subspace V ∈ R
nℓ

of dimension δnℓ. The proof for higher order products proceeds
by induction on the order ℓ of the product. Recall from Remark 3.8 that Proposition 3.12 and
Theorem 3.3 do not get good guarantees for small values of δ, like 1/n. In fact, we can not
hope to get such exponentially small failure probability in that case, since the all the n degrees of
freedom in V may be constrained to the first n co-ordinates of Rn2

(all the independence is in just
one mode). Here, it is easy to see that the best we can hope for is an inverse-polynomial failure
probability. Hence, to get exponentially small failure probability, we will always need V to have a
large dimension compared to the dimension of the host space in our inductive statements.

To carry out the induction, we will try to reduce this to a statement about ℓ−1 order products,
by taking linear combinations (given by x̃(1) ∈ R

n) along one of the modes. Loosely speaking,
Lemma 3.15 serves this function of “order reduction”, however it needs a set of r matrices in R

n×m

(flattened along all the other modes) which are ordered (θ, δ) orthogonal.
Let us consider the case when ℓ = 3, to illustrate some of the issues that arise. We can

use Lemma 3.16 to come up with r matrices in R
n×n2

that are ordered (θ, δ) orthogonal. These
columns intuitively correspond to independent directions or degrees of freedom, that we can hope
to get substantial projections on. However, since these are vectors in R

n, the number of “flattened
columns” can not be comparable to n2 (in fact, δm ≪ n) — hence, our induction hypothesis for
ℓ = 2 will give no guarantees, (due to Remark 3.8).

To handle this issue, we will first restrict our attention to a smaller block of co-ordinates of size
n1×n2×n3 (with n1n2n3 ≪ n) , that has reasonable size in all the three modes (n1, n2, n3 = nΩ(1)).
Additionally, we want V’s projection onto this n1×n2×n3 block spans a large subspace of (robust)
dimension at least δn1n2n3 (using Lemma 3.18).

Moreover, choosing the main inductive statement also needs to be done carefully. We need some
property for choosing enough candidate “independent” directions T1, T2, . . . Tr ∈ R

nℓ
(projected on

the chosen block), such that our process of “order reduction” (by first finding θ-orthogonal system
and then combining along x̃(1)) maintains this property for order ℓ− 1. This is where the alternate
interpretation in Theorem 3.9 in terms of singular values helps: it suggests the exact property that
we need! We ensure that the matrix formed by the flattened vectors vec(T1), vec(T2), . . . vec(Tr)
(projected onto the n1 × n2 × n3 block) , as rows form a matrix with many large singular values.

We now state the main inductive claim. The claim assumes a block of co-ordinates of reasonable
size in each mode that span many directions in V, and then establishes the anti-concentration bound
inductively.
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Theorem 3.25 (Main Inductive Claim). Let T1, T2, . . . , Tr ∈ R
n×ℓ

be r tensors with bounded norm
(‖·‖F ≤ 1) and I1, I2, . . . Iℓ ⊆ [n] be sets of indices of sizes n1, n2, . . . nℓ. Let T be the r×nℓ matrix
obtained with rows vec(T1), vec(T2), . . . , vec(Tr). Suppose

• ∀j ∈ [r], Pj is Tj restricted to the block I1 × · · · × Iℓ, and matrix P ∈ R
r×(n1·n2...nℓ) has jth

row as vec(Pj),

• r ≥ δℓn1n2 . . . nℓ and ∀t ∈ [ℓ− 1], nt ≥ (nt+1nt+2 . . . nℓ)
2,

• σr(P ) ≥ η.

Then for random ρ-perturbations x̃(1), x̃(2) . . . x̃(ℓ) of any x(1), x(2) . . . x(ℓ) ∈ R
n, we have

Pr
x̃(1),...x̃(ℓ)

[
‖T

(
x̃(1) ⊗ · · · ⊗ x̃(ℓ)

)
‖ ≥ ρℓ

(
η

n1

)3ℓ
]
≥ 1− exp (−δℓnℓ)

Before we give a proof of the main inductive claim, we first present a standard fact that re-
lates the singular value of matrices and some anti-concentration properties of randomly perturbed
vectors. This will also establish the base case of our main inductive claim.

Fact 3.26. Let M be a matrix of size m × n with σr(M) ≥ η. Then for any unit vector u ∈ R
n

and an random ρ-perturbation x̃ of it, we have

‖Mx̃‖2 ≥ ηρ/n2 w.p 1− n−Ω(r)

Proof of Theorem 3.25: The proof proceeds by induction. The base case (ℓ = 1) is handled by
Fact 3.26. Let us assume the theorem for (ℓ− 1)-wise products. The inductive proof will have two
main steps:

1. Suppose we flatten the tensors {Pj}j∈[r] along all but the first mode, and imagine them

as matrices of size n1 × (n2n3 . . . nℓ). We can use Lemma 3.16 to construct ordered (θ, δ′)
orthogonal system w.r.t vectors in R

n1 (columns correspond to [m] = [n2 . . . nℓ]).

2. When we take combinations along x̃(1) as T
(
x̃(1), ·, ·, . . . , ·

)
, these tensors will now satisfy

the condition required for (ℓ − 1)-order products in the inductive hypothesis, because of
Lemma 3.15.

Unrolling this induction allows us to take combinations along x̃(1), x̃(2), . . . as required, until we are
left with the base case. For notational convenience, let y = x̃(1), δℓ = δ, rℓ = r and N = n1n2 . . . nℓ.

To carry out the first step, we think of {Pj}j∈[r] as matrices of size n1 × (n2n3 . . . nℓ). We then

apply Lemma 3.16 with n = n1, m = N
n1

= n2n3 . . . nℓ ≤
√
n1 ; hence there exists r′ℓ = n2 . . . nℓ

matrices {Qq}q∈[r′ℓ] with ‖·‖F ≤ 1 which are ordered (θ, δ′ℓ)-orthogonal for δ
′
ℓ = δℓ/3. Further, since

Qq are in the row-span of P , there exists matrix of coefficients α = (α(q, j))q∈[r′ℓ],j∈[rℓ]
such that

∀q ∈ [r′ℓ], Qq =
∑

j∈[rℓ]
α(q, j)Pj (8)

‖α(q)‖22 =
∑

j∈[rℓ]
α(q, j)2 ≤ 1/η (since σr(P ) ≥ η and ‖Qq‖F ≤ 1) (9)
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Further, Qq is the projection of
∑

j∈[rℓ] αq,jTj onto co-ordinates I1 × I2 · · · × Iℓ. Suppose we define

a new set of matrices{Wq}q∈[r′ℓ] in R
n×( N

n1
)
by flattening the following into a matrix with n rows:

Wq =


∑

j∈[r]
αq,jTj




[n]×(I2×···×Iℓ)

.

In other words, Qq is obtained by projecting Wq on to the n1 rows given by I1. Note that {Wq}q∈[r′ℓ]
is also ordered (θ′ℓ, δ

′
ℓ) orthogonal for θ

′
ℓ = θη.

To carry out the second part, we apply Lemma 3.15 with {Wq} and infer that the r′ℓ × (N/n1)
matrix W (y) with qth row being yTWq has σrℓ−1

(W (y)) ≥ η′ℓ = θ2ρ2/n4
1 with probability 1 −

exp(−Ω(r′ℓ)), where rℓ−1 = r′ℓ/2.
We will like to apply the inductive hypothesis for (ℓ− 1) with P being W (y); however W (y) does
not have full (robust) row rank. Hence we will consider the top rℓ−1 right singular vectors of W (y)
to construct an rℓ−1 tensors of order ℓ, whose projections to the block I2 × · · · × Iℓ, lead to a
well-conditioned rℓ−1 × (n2n3 . . . nℓ) matrix for which our inductive hypothesis holds.

Let the top rℓ−1 right singular vectors of W (y) be Z1, Z2, . . . Zrℓ−1
. Hence, from Lemma B.1,

we have a coefficient β of size rℓ−1 × rℓ such that

∀j′ ∈ [rℓ−1] Zj′ =
∑

q∈[r′ℓ]
βj′,qWq (y) and ‖β(j′)‖2 ≤ 1/η′ℓ.

Now let us try to represent these new vectors in terms of the original row-vectors of P , to construct
the required tensor of order (ℓ− 1) . Consider the rℓ−1 × rℓ matrix Λ = βα. Clearly,

rownorm(Λ) ≤ rownorm(β) · ‖α‖F ≤
√

r′ℓ · rownorm(β) · rownorm(α) ≤ r′ℓ
ηℓη

′
ℓ

.

Define ∀j′ ∈ [rℓ−1], an order ℓ tensor T ′
j′ =

∑
j∈[r] λj′,jTj; from the previous equation, ‖T ′

j′‖F ≤
r′ℓ/(ηℓη

′
ℓ) . We need to get a normalized order (ℓ − 1) tensor: so, we consider T̂j′ = T ′

j′/‖T ′
j′(y)‖F ,

and T̂ be the rℓ−1 × (nℓ) matrix with j′th row being T̂j′ . Hence,

σrℓ−1

(
T̂ (y, ·, ·, . . . , ·)

)
≥ η3ℓ

r′ℓn
3
1

.

We also have rℓ−1 ≥ 1
2 · n2n3 . . . nℓ. By the inductive hypothesis

‖T̂
(
y, x̃(2), . . . , x̃(ℓ)

)
‖ ≥ η′ ≡ ρℓ−1

(
η3ℓ

n4
1n2

)3ℓ−1

w.p 1− exp (−Ω(nℓ)) (10)

Hence, for one of the j′ ∈ [rℓ−1],
∣∣∣T̂j′

(
x̃(1), x̃(2), . . . x̃(ℓ)

)∣∣∣ ≥ η′/
√
rℓ−1. Finally, since T̂j′ is given

by a small combination of the {Tj}j∈[r], we have from Cauchy-Schwartz

‖T
(
x̃(1), x̃(1), . . . , x̃(1)

)
‖ ≥ η′ ·


 η3√

r2ℓn
4
1


 .

�

17



The main required theorem now follows by just showing the exists of the n1 × n2 × · · · × nℓ

block that satisfies the theorem conditions. This follows from Lemma 3.18.

Proof of Theorem 3.6: First we set n1, n2, nℓ by the recurrence ∀t ∈ [ℓ], nt = 2(nt+1·nt+2 . . . nℓ)
2

and n1 = O(n). It is easy to see that this is possible for nℓ = n1/3ℓ . Now, we partition the set of
co-ordinates [n]ℓ into blocks of size n1×n2× . . . nℓ. Let p1 = n1 ·n2 . . . nℓ and p2 = nℓ/p1. Applying
Lemma 3.18 we see that there exists indices I1, I2, . . . Iℓ of sizes n1, n2, . . . , nℓ respectively such that
projectionW = V|I1×I2×···×Iℓ on this block of co-ordinates has dimension dimτ

I (W) ≥ n1n2 . . . nℓ/4.
Let r = n1n2 . . . nℓ. Now we construct P ′ with the rows of P ′ being an orthonormal basis for W,
and let T ′ be the corresponding vectors in V. Note that ∀j ∈ [r], ‖T ′

j‖ ≤ nℓ. Let P be the
re-scaling of the matrix so that for the jth row(j ∈ [r]), Pj = P ′

j/‖T ′
j‖ and Tj = T ′

j/‖T ′
j‖. Hence

σr(P ) ≥ 1/nℓ. Applying Theorem 3.25 with this choice of P, T , we get the required result. �

4 Learning Multi-view Mixture Models

We now see how Theorem 1.5 immediately gives efficient learning algorithms for broad class of
discrete mixture models called multi-view models in the over-complete setting. In a multi-view
mixture model, for each sample we are given a few different observations or views x(1), x(2), . . . , x(ℓ)

that are conditionally independent given which component i ∈ [R] the sample is from. Typically,
the R components in the mixture are discrete distributions. Multi-view models are very expressive,
and capture many well-studied models like Topic Models [2], Hidden Markov Models (HMMs)
[29, 1, 2], and random graph mixtures [1]. They are also sometimes referred to as finite mixtures
of finite measure products[1] or mixture-learning with multiple snapshots [30].

In this section, we will assume that each of the components in the mixture is a discrete distri-
bution with support of size n. We first introduce some notation, along the lines of [2].

Parameters and the model: Let the ℓ-view mixture model be parameterized by a set of ℓ vec-
tors in R

n for each mixture component,
{
µi

(1), µi
(2), . . . , µi

(ℓ)
}
i∈[R]

, and mixing weights {wi}i∈[R] ,

that add up to 1. Each of these parameter vectors are normalized : in this work, we will assume
that ‖µi

(j)‖1 = 1 for all i ∈ [R], j ∈ [ℓ]. Finally, for notational convenience we think of the param-
eters are represented by n×R matrices (one per view) M (1),M (2), . . . ,M (ℓ), with M (j) formed by
concatenating the vectors µi

(j) (1 ≤ i ≤ R).

Samples from the multi-view model with ℓ views are generated as follows:

1. The mixture component i (i ∈ [R]) is first picked with probability wi

2. The views x(1), . . . , x(j), . . . , x(ℓ) are indicator vectors in n-dimensions, that are drawn accord-
ing to the distribution µi

(1), . . . , µi
(j), . . . , µi

(ℓ).

The state-of-the-art algorithms for learning multi-view mixture models have guarantees that
mirror those for mixtures of gaussians. In the worst case, the best known algorithms for this
problem are from a recent work Rabani et al [30], who give an algorithm that has complexity
RO(R2) + poly(n,R). In fact they also show a sample complexity lower-bound of exp(Ω̃(R)) for
learning multi-view models in one dimension (n = 1). Polynomial time algorithms were given by
Anandkumar et al. [2] in a restricted setting called the non-singular or non-degenerate setting.
When each of these matrices

{
M (j)

}
j∈[ℓ] to have rank R in a robust sense i.e. σR(M

(j)) ≥ 1/τ for

all j ∈ [ℓ], their algorithm runs in just poly(R,n, τ, 1/ε)) time to learn the parameters up to error
ε. However, their algorithm fails even when R = n+ 1.
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However, in many practical settings like speech recognition and image classification, the dimen-
sion of the feature space is typically much smaller than the number of components or clusters i.e.
n ≪ R. To the best of our knowledge, there was no efficient algorithm for learning multi-view
mixture models in such over-complete settings. We now show how Theorem 1.5 gives a polynomial
time algorithm to learn multi-view mixture models in a smoothed sense, even in the over-complete
setting R≫ n.

Theorem 4.1. Let (wi, µi
(1), . . . , µi

(ℓ)) be a mixture of R = O(nℓ/2−1) multi-view models with
ℓ views, and suppose the means

(
µi

(j)
)
i∈[R],j∈[ℓ] are perturbed independently by gaussian noise of

magnitude ρ. Then there is a polynomial time algorithm to learn the weights wi, the perturbed

parameter vectors
{
µ̃
(j)
i

}
j∈[ℓ],i∈[R]

up to an accuracy ε when given samples from this distribution.

The running time and sample complexity is polyℓ(n, 1/ρ, 1/ε).

The conditional independence property is very useful in obtaining a higher order tensor, in
terms of the hidden parameter vectors that we need to recover. This allows us to use our results
on tensor decompositions from previous sections.

Lemma 4.2 ([1]). In the notation established above for multi-view models, ∀ℓ ∈ N the ℓth moment
tensor

Momℓ = E
[
x(1) ⊗ . . . x(j) ⊗ . . . x(ℓ)

]
=

∑

r∈[R]

wrµ
(1)
r ⊗ µ(2)

r · · · ⊗ µ(j)
r ⊗ · · · ⊗ µ(ℓ)

r . (11)

Our algorithm to learn multi-view models consists of three steps:

1. Obtain a good empirical estimate T̂ of the order ℓ tensor Momℓ fromN = polyℓ(n,R, 1/ρ, 1/ε)
samples (given by Lemma C.3)

T̂ =
1

N

∑

t=1

xt
(1) ⊗ xt

(2) ⊗ · · · ⊗ xt
(ℓ).

2. Apply Theorem 1.5 to T̂ and recover the parameters µ̂
(j)
i upto scaling.

3. Normalize the parameter vectors µ̂i
(j) to having ℓ1 norm of 1, and hence figure out the weights

ŵi for i ∈ [R].

Proof of Theorem 4.1: The proof follows from a direct application of Theorem 1.5. Hence,
we just sketch the details. We first obtain a good empirical estimate of Momℓ that is given in
equation (11) using Lemma C.3. Applying Theorem 1.5 to T̂ , we recover each rank-1 term in the
decomposition wiµi

(1)⊗µi
(2)⊗· · ·⊗µi

(ℓ) up to error ε in frobenius norm (‖·‖F ). However, we know
that each of the parameter vectors are of unit ℓ1 norm. Hence, by scaling all the parameter vectors
to unit ℓ1 norm, we obtain all the parameters up to the required accuracy. �

5 Learning Mixtures of Axis-Aligned Gaussians

Let F be a mixture of k = poly(n) axis-aligned Gaussians in n dimensions, and suppose further
that the means of the components are perturbed by Gaussian noise of magnitude ρ. We restrict to
Gaussian noise not because our results change, but for notational convenience.
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Parameters: The mixture is described by a set of k mixing weights wi, means µi and covariance
matrices Σi. Since the mixture is axis-aligned, each covariance Σi is diagonal and we will denote
the jth diagonal of Σi as σ

2
ij. Our main result in this section is the following:

Theorem 5.1. Let (wi, µi,Σi) be a mixture of k = n⌊ ℓ−1
2

⌋/(2ℓ) axis-aligned Gaussians and suppose
{µ̃i}i∈[k] are the ρ-perturbations of {µi}i∈[k] (that have polynomially bounded length). Then there
is a polynomial time algorithm to learn the parameters (wi, µ̃i,Σi)i∈[k] up to an accuracy ε when
given samples from this mixture. The running time and sample complexity is polyℓ(

n
ρε).

Next we outline the main steps in our learning algorithm:

1. We first pick an appropriate ℓ, and estimateMℓ :=
∑

iwiµ̃
⊗ℓ
i .2

2. We run our decomposition algorithm for overcomplete tensors onMℓ to recover µ̃i, wi.

3. We then set up a system of linear equations and solve for σ2
ij .

We defer a precise description of the second and third steps to the next subsections (in particular,
we need to describe how we obtainMℓ from the moments of F and we need to describe the linear
system that we will use to solve for σ2

ij).

5.1 Step 2: Recovering the Means and Mixing Weights

Our first goal in this subsection is to construct the tensorMℓ defined above from random samples.
In fact, if we are given many samples we can estimate a related tensor (and our error will be an
inverse polynomial in the number of samples we take). Unlike the multi-view mixture model, we
do not have ℓ independent views in this case. Let us consider the tensor E[x⊗ℓ]:

E[x⊗ℓ] =
∑

i

wi(µ̃i + ηi)
⊗ℓ.

Here we have used ηi to denote a Gaussian random variable whose mean is zero and whose covariance
is Σi. Now the first term in the expansion is the one we are interested in, so it would be nice if we
could “zero out” the other terms. Our observation here is that if we restrict to ℓ distinct indices
(j1, j2, . . . , jℓ), then this coordinate will only have contribution from the means. To see this, note
that the term of interest is

∑

i

[
wi

ℓ∏

t=1

(µ̃i(jt) + ηi(jt))
]

Since the Gaussians are axis aligned, the ηi(jt) terms are independent for different t, and each is a
random variable of zero expectation. Thus the term in the summation is precisely

∑
i wi

∏ℓ
t=1 µ̃i(jt).

Our idea to estimate the means is now the following: we partition the indices [n] into ℓ roughly
equal parts S1, S2, . . . , Sℓ, and estimate a tensor of dimension |S1| × |S2| × · · · × |Sℓ|.

Definition 5.2 (Co-ordinate partitions). Let S1, S2, . . . , Sℓ be a partition of [n] into ℓ pieces of

equal size (roughly). Let µ̃
(t)
i denotes the vector µ̃i restricted to the coordinates St, and for a

sample x, let x(t) denote its restriction to the coordinates St.

2We do not estimate the entire tensor, but only a relevant “block”, as we will see.
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Now, we can estimate the order ℓ tensor E[x(1) ⊗ x(2) · · · ⊗ x(ℓ)] to any inverse polynomial
accuracy using polynomial samples (see Lemma C.3 or [20] for details), where

E[x(1) ⊗ x(2) · · · ⊗ x(ℓ)] =
∑

i

wi

(
µ̃
(1)
i ⊗ µ̃

(2)
i ⊗ · · · ⊗ µ̃

(ℓ)
i

)
.

Now applying the main tensor decomposition theorem (Theorem 1.5) to this order ℓ tensor, we

obtain a set of vectors ν
(1)
i , ν

(2)
i , . . . , ν

(t)
i such that

ν
(t)
i = citµ̃

(t)
i , and for all t, ci1ci2 · · · ciℓ = 1/wi.

Now we show how to recover the means µ̃i and weights wi.

Claim 5.3. The algorithm recovers the perturbed means {µ̃i}i∈[R] and weights wi up to any accuracy
ε in time polyℓ(n, 1/ε)

So far, we have portions of the mean vectors, each scaled differently (upto some ε/polyℓ(n)
accuracy. We need to estimate the scalars ci1, ci2, . . . , ciℓ up to a scaling (we need another trick to
then find wi). To do this, the idea is to take a different partition of the indices S′

1, S
′
2, . . . , S

′
ℓ, and

‘match’ the coordinates to find the µ̃i. In general, this is tricky since some portions of the vector
may be zero, but this is another place where the perturbation in µ̃i turns out to be very useful
(alternately, we can also apply a random basis change, and a more careful analysis to doing this
’match’).

Claim 5.4. Let µ be any d dimensional vector. Then a coordinate-wise σ-perturbation of µ has
length ≥ dσ2/10 w.p. ≥ 1− exp(−d).

The proof is by a basic anti-concentration along with the observation that coordinates are
independently perturbed and hence the failure probability multiplies.

Let us now define the partition S′
t. Suppose we divide S1 and S2 into two roughly equal

parts each, and call the parts A1, B1 and A2, B2 (respectively). Now consider a partition with
S′
1 = A1 ∪ A2 and S′

2 = B1 ∪ B2, and S′
t = St for t > 2. Consider the solution ν ′i we obtain

using the decomposition algorithm, and look at the vectors ν1, ν2, ν
′
1, ν

′
2. For the sake of exposition,

suppose we did not have any error in computing the decomposition. We can scale ν ′1 such that
the sub-vector corresponding to A1 is precisely equal to that in ν1. Now look at the remaining
sub-vector of ν1, and suppose it is γ times the “A2 portion” of ν2. Then we must have γ = c2/c1.

To see this formally, let us fix some i and write v11 and v12 to denote the sub-vectors of µ̃
(1)
i

restricted to coordinates in A1 and B1 respectively. Write v21 and v22 to represent sub-vectors of

µ̃
(2)
i restricted to A2 and B2 respectively. Then ν1 is c1v11⊕c1v12 (where ⊕ denotes concatenation).

So also ν2 is c2v21 ⊕ c2v22. Now we scaled ν ′1 such that the A1 portion agrees with ν1, thus we
made ν ′1 equal to c1v11 ⊕ c1v21. Thus by the way γ is defined, we have c1γ = c2, which is what we
claimed.

We can now compute the entire vector µ̃i up to scaling, since we know c1/c2, c1/c3, and so on.
Thus it remains to find the mixture weights wi. Note that these are all non-negative. Now from
the decomposition, note that for each i, we can find the quantity

Cℓ := wi‖µ̃i‖ℓ.

The trick now is to note that by repeating the entire process above with ℓ replaced by ℓ + 1, the
conditions of the decomposition theorem still hold, and hence we compute

Cℓ+1 := wi‖µ̃i‖ℓ+1.
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Thus taking the ratio Cℓ+1/Cℓ we obtain ‖µ̃i‖. This can be done for each i, and thus using Cℓ, we

obtain wi. This completes the analysis assuming we can obtain µ̃
(t)
i without any error. Please see

lemma C.4 for details on how to recover the weights wi in the presence of errors. This establishes
the above claim about recovering the means and weights.

5.2 Step 3: Recovering the Variances

Now that we know the values of wi and all the means µ̃i, we show how to recover the variances.
This can be done in many ways, and we will outline one which ends up solving a linear system of
equations. Recall that for each Gaussian, the covariance matrix is diagonal (denoted Σi, with jth
entry equal to σ2

ij).

Let us show how to recover σ2
i1 for 1 ≤ i ≤ R. The same procedure can be applied to the other

dimensions to recover σ2
ij for all j. Let us divide the set of indices {2, 3, . . . , n} into ℓ (nearly equal)

sets S1, S2, . . . , Sℓ. Now consider the expression

N1 = E[x(1)2(x|S1
⊗ x|S2

⊗ · · · ⊗ x|Sℓ
)].

This can be evaluated as before. Write µ̃
(t)
i to denote the portion of µ̃i restricted to St, and similarly

η
(t)
i to denote the portion of the noise vector ηi. This gives

N1 =
∑

i

wi(µ̃i(1)
2 + σ2

i1)(µ̃
(1)
i ⊗ µ̃

(2)
i ⊗ · · · ⊗ µ̃

(ℓ)
i ).

Now recall that we know the vectors µ̃i and hence each of the tensors µ̃
(1)
i ⊗ µ̃

(2)
i ⊗· · ·⊗ µ̃

(ℓ)
i . Further,

since our µ̃i are the perturbed means, our theorem (Theorem 3.3) about the condition number of

Khatri-Rao products implies that the matrix (call itM) whose columns are the flattened
∏

t µ̃
(t)
i

for different i, is well conditioned, i.e., has σR(·) ≥ 1/polyℓ(n/ρ). This implies that a system of
linear equations Mz = z′ can be solved to recover z up to a 1/polyℓ(n/ρ) accuracy (assuming we
know z′ up to a similar accuracy).

Now using this with z′ being the flattened N1 allows us to recover the values of wi(µ̃i(1) + σ2
i1)

for 1 ≤ i ≤ R. From this, since we know the values of wi and µ̃i(1) for each i, we can recover
the values σ2

i1 for all i. As mentioned before, we can repeat this process for other dimensions and
recover σ2

ij for all i, j.
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A Conditions when Decompose is Stable

Here we establish that Decompose is stable under various natural conditions (of course, the
challenge will be in proving that these conditions hold in the overcomplete case). Intuitively,
Decompose is stable provided that the matrices U and V are well-conditioned and the eigenvalues
of the matrices that we need to diagonalize are separated.

In this section we prove Theorem 2.3, which shows that the simple algorithm Decompose in
section 2 is actually robust to errors, under Condition 2.2.

The main step in Decompose is an eigendecomposition, so first we will establish perturbation
bounds. The standard perturbation bounds are known as sin θ theorems following Davis-Kahan and
Wedin. However these bounds hold most generally for the singular value decomposition of an arbi-
trary (not necessarily symmetric) matrix. We require perturbation bounds for eigen-decompositions
of general matrices. There are known bounds due to Eisenstat and Ipsen, however the notion of
separation required there is difficult to work with and for our purposes it is easier to prove a direct
bound in our setting.

Suppose M = UDU−1 and M̂ = M(I + E) + F and M and M̂ are n × n matrices. In order

to relate the eigendecompositions of M and M̂ respectively, we will first need to establish that the
eigenvalues of M are all distinct. We thank Santosh Vempala for pointing out an error in an earlier
version. We incorrectly used the Bauer-Fike Theorem to show that M̂ is diagonalizable, but this
theorem only shows that each eigenvalue of M̂ is close to some eigenvalue of M , but does not show
that there is a one-to-one mapping. Fortunately there is a fix for this that works under the same
conditions (but again see [16] for an earlier, alternative proof that uses a “homotopy argument”).

Definition A.1. Let sep(D) = mini 6=j |Di,i −Di,j|.
Our first goal is to prove that M̂ is diagonalizable, and we will do this by establishing that its

eigenvalues are distinct if the error matrices E and F are not too large. Consider

U−1(M(I + E) + F )U = D +R

where R = U−1(ME + F )U . We can bound each entry in R by κ(U)(‖ME‖2 + ‖F‖2). Hence
if E and F are not too large, the eigenvalues of D + R are close to the eigenvalues of D using
Gershgorin’s disk theorem, and the eigenvalues of D+R are the same as the eigenvalues of M̂ since
these matrices are similar. So we conclude:

Lemma A.2. If κ(U)(‖ME‖2 + ‖F‖2) < sep(D)/(2n) then the eigenvalues of M̂ are distinct and
it is diagonalizable.

Next we prove that the eigenvectors of M̂ are also close to those of M (this step will rely on

M̂ being diagonalizable). This technique is standard in numerical analysis, but it will be more

convenient for us to work with relative perturbations (i.e. M̂ = M(I + E) + F ) so we include the
proof of such a bound for completeness

Consider a right eigenvector ûi of M̂ with eigenvalue λ̂i. We will assume that the conditions of
the above corollary are met, so that there is a unique eigenvector ui of M with eigenvalue λi which
it is paired with. Then since the eigenvectors {ui}i of M are full rank, we can write ûi =

∑
j cjuj .

Then

M̂ûi = λ̂iûi∑

j

cjλjuj + (ME + F )ûi = λ̂iûi

∑

j

cj(λj − λ̂i)uj = −(ME + F )ûi

25



Now we can left multiply by the jth row of U−1; call this vector wT
j . Since U−1U = I, we have

that wT
j ui = 1i=j . Hence

cj(λj − λ̂i) = −wT
j (ME + F )ûi

So we conclude:

‖ûi − ui‖22 = 2dist(ûi, span(ui))
2 ≤ 2

∑

j 6=i

((wT
j (ME + F )ûi)

|λj − λ̂i|

)2
≤ 8

∑

j 6=i

‖U−1(ME + F )ûi‖22
sep(D)2

where we have used the condition that κ(U)(‖ME‖2 + ‖F‖2) < sep(D)/2 to lower bound the

denominator. Furthermore: ‖U−1MEûi‖2 = ‖DU−1Eûi‖2 ≤ σmax(E)λmax(D)
σmin(U) since ûi is a unit

vector.

Theorem A.3. If κ(U)(‖ME‖2 + ‖F‖2) < sep(D)/2, then

‖ûi − ui‖2 ≤ 3
σmax(E)λmax(D) + σmax(F )

σmin(U)sep(D)

Now we are ready to analyze the stability of Decompose: Let T =
∑n

i=1 ui ⊗ vi ⊗ wi be an
n× n× p tensor that satisfies Condition 2.2. In our settings of interest we are not given T exactly
but rather a good approximation to it, and here let us model this noise as an additive error E that
is itself an n× n× p tensor.

Claim A.4. With high probability, sep(DaD
−1
b ), sep(DbD

−1
a ) ≥ δ√

p .

We will make crucial use of the following matrix identity:

(A+ Z)−1 = A−1 −A−1Z(I +A−1Z)−1A−1

Let Na = Ta + Ea and Nb = Tb + Eb. Then using the above identity we have:

Na(Nb)
−1 = Ta(Tb)

−1(I + F ) +G

where F = −Eb(I + (Tb)
−1Eb)

−1(Tb)
−1 and G = Ea(Tb)

−1

Claim A.5. σmax(F ) ≤ σmax(Eb)
σmin(Tb)−σmax(Eb)

and σmax(G) ≤ σmax(Ea)
σmin(Tb)

Proof: Using Weyl’s Inequality we have

σmax(F ) ≤ σmax(Eb)

1− σmax(Eb)
σmin(Tb)

× 1

σmin(Tb)
=

σmax(Eb)

σmin(Tb)− σmax(Eb)

as desired. The second bound is obvious. �

We can now use Theorem A.3 to bound the error in recovering the factors U and V by setting
e.g. M = Ta(Tb)

−1. Additionally, the following claim establishes that the linear system used to
solve for W is well-conditioned and hence we can also bound the error in recovering W .

Claim A.6. κ(U ⊙ V ) ≤ min(σmax(U),σmax(V ))
max(σmin(U),σmin(V )) ≤ min(κ(U), κ(V ))

These bounds establish what we qualitatively asserted: Decompose is stable provided that the ma-
trices U and V are well-conditioned and the eigenvalues of the matrices that we need to diagonalize
are separated.
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B K-rank of the Khatri-Rao product.

B.1 Leave-One-Out Distance

Recall: we defined the leave-one-out distance in Section 3. Here we establish that is indeed equiva-
lent to the smallest singular value, up to polynomial factors. In our main proof, this quantity will
be much easer to work with since it allows us to translate questions about a set of vectors being
well-conditioned to reasoning about projection of each vector onto the orthogonal complement of
the others.

Proof of Lemma 3.5: Using the variational characterization for singular values: σmin(A) =
minu,‖u‖2=1 ‖Au‖2. Then let i = argmax|ui|. Clearly |ui| ≥ 1/

√
m since ‖u‖2 = 1. Then ‖Ai +∑

j 6=iAj
uj

ui
‖2 = σmin(A)

ui
. Hence

ℓ(A) ≤ dist(Ai, span{Aj}j 6=i) ≤
σmin(A)

ui
≤ σmin(A)

√
m

Conversely, let i = argminidist(Ai, span{Aj}j 6=i). Then there are coefficients (with ui = 1) such
that

‖Aiui +
∑

j 6=i

Ajuj‖2 = ℓ(A).

Clearly ‖u‖2 ≥ 1 since ui = 1. And we conclude that

ℓ(A) = ‖Aiui +
∑

j 6=i

Ajuj‖2 ≥
‖Aiui +

∑
j 6=iAjuj‖2

‖u‖2
≥ σmin(A).

�

B.2 Proof of Proposition 3.12

We now give the complete details of the proof of Proposition 3.12, that shows how the Kruskal
rank multiplies in the smoothed setting for two-wise products. The proof follows by just combining
Lemma 3.16 and Lemma 3.15.

Let U be the span of the top δn2 singular values of M . Thus U is a δn2 dimensional subspace
of Rn2

. Using Lemma 3.16 with:

r =
n1/2

2
, m = n, δ′ =

δ

n1/2
,

we obtain n × n matrices M1,M2, . . . ,Mr having the (θ, δ′)-orthogonality property. Note that in

this setting, δ′m = n1/2

2 .
Thus by applying Lemma 3.15, we have that the matrix Q(x̃), defined as before, satisfies

Pr
x

[
σr/2 (Q(x̃)) ≥ ρθ

n4

]
≥ 1− exp(−r). (12)

Now let us consider ∑

s

(ỹTMsx̃)
2 = ‖ỹTQ(x̃)‖2.

Since Q(x̃) has many non-negligible singular values (Eq.(12)), we have (by Fact 3.26 for details)
that an ρ-perturbed vector has a non-negligible norm when multiplied by Q. More precisely,
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Pr[‖ỹTQ(x̃)‖ ≥ ρθ/n4] ≥ 1−exp(−r/2). Thus for one of the termsMs, we have |Ms(x̃⊗ỹ)| ≥ ρθ/n5

with probability ≥ 1− exp(−r/2).
Now this almost completes the proof, but recall that our aim is to argue about M(x̃⊗ ỹ), where

M is the given matrix. vec(Ms) is a vector in the span of the top δn2 (right) singular vectors of M ,
and σδn2 ≥ τ , thus we can write Ms as a combination of the rows of M , with each weight in the
combination being ≤ n/τ (Lemma B.1). This implies that for at least one row M (j) of the matrix
M , we must have

‖M (j)(x̃⊗ ỹ‖ ≥ θρτ

n6
=

ρτ

nO(1)
.

(Otherwise we have a contradiction). This completes the proof.

Before we give the complete proofs of the two main lemmas regarding ordered (θ, δ) orthogonal
systems (Lemma 3.16 and Lemma 3.15), we start with a simple lemma about top singular vectors
of matrices, which is very useful to obtain linear combinations of small length.

Lemma B.1 (Expressing top singular vectors as small combinations of columns). Suppose we have
a m×n matrix M with σt(M) ≥ η, and let v1, v2, . . . vt ∈ R

m be the top t left-singular vectors of M .
Then these top t singular vector can be expressed using small linear combinations of the columns
{M(i)}i∈[n] i.e.

∀k ∈ [t], ∃ {αk,i}i∈[n] such that vk =
∑

i∈[n]
αk,iM(i)

and
∑

i

α2
k,i ≤ 1/η2

Proof: Let ℓ correspond to the number of non-zero singular values of M . Using the SVD, there
exists matrices V ∈ R

m×ℓ, U ∈ R
n×ℓ with orthonormal columns (both unitary matrices), and

a diagonal matrix Σ ∈ R
ℓ×ℓ such that M = V ΣUT . Since the n × ℓ matrix V = M(UΣ−1),

the t columns of V corresponding to the top t singular values (σt(M) ≥ η) correspond to linear
combinations which are small i.e. ∀k ∈ [t], ‖αk‖ ≤ 1/η. �

B.3 Constructing the (θ, δ)-Orthogonal System (Proof of Lemma 3.16)

Let V be a subspace of Rn·m, with its co-ordinates indexed by [n] × [m]. Further,remember that
the vectors in R

n·m are also treated as matrices of size n×m.
We now give the complete proof of lemma 3.18 that shows that the average robust dimension

of column projections is large if the dimension of V is large .

Proof of Lemma 3.18: Let d = dim(V). Let B be a p1p2×d matrix composed of a orthonormal
basis (of d vectors) for V i.e. the jth column of B is the jth basis vector (j ∈ [d]) of V. Clearly
σd(B) = 1.
For i ∈ [p2], let Bi be the p1 × d matrix obtained by projecting the columns of B on just
the rows given by [p1] × i. Hence, B is obtained by just concatenating the columns as BT =[
B1

T ‖B2
T ‖ . . . ‖Bp

T
]
. Finally, let di = max t such that σt(Bi) ≥ 1√

p2
.

We will first show that
∑

i di ≥ d. Then we will show that dimτ
i (V) ≥ di to complete our proof.

Suppose for contradiction that
∑

i∈[p2] di < d. Let Si be the (d − d1)-dimensional subspace of Rd

spanned by the last (d− d1) right singular vectors of Bi. Hence,

for unit vectors α ∈ Si ⊆ R
d, ‖Biα‖ <

1√
p2

.
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Since, d −∑
i∈[p2] di > 0, there exists at least one unit vector α ∈ ⋂

i S⊥i . Picking this unit vector

α ∈ R
d, we have ‖Bα‖22 =

∑
i∈[p2]‖Biα‖22 < p2 · ( 1√

p2
)2 < 1. This contradicts σd(B) ≥ 1

To establish the second part, consider some Bi (i ∈ [p2]). We pick di orthonormal vectors ∈ R
p1

corresponding to the top di left-singular vectors of Bi. By using Lemma B.1, we know that each
of these j ∈ [di] vectors can be expressed as a small combination ~αj of the columns of Bi s.t.
‖ ~αj‖ ≤

√
p2. Further, if we associate with each of these j ∈ [di] vectors, the vector wj ∈ R

(p1p2)

given by the same combination ~αj of the columns of B, we see that ‖wj‖ ≤
√
p2 since the columns

of the matrix B are orthonormal. �

B.4 Implications of Ordered (θ, δ)-Orthogonality: Details of Proof of Lemma 3.15

Here we show some auxiliary lemmas that are used in the Proof of Lemma B.4.

Claim B.2. Suppose v1, v2, . . . , vm are a set of vectors in ℜn of length ≤ 1, having the θ-orthogonal
property. Then we have

(a) For g ∼ N (0, 1)n, we have
∑

i〈vi, g〉2 ≥ θ2/2 with probability ≥ 1− exp(−Ω(m)),

(b) For g ∼ N (0, 1)m, we have ‖∑i givi‖2 ≥ θ2/2 with probability ≥ 1− exp(−Ω(m)).

Furthermore, part (a) holds even if g is drawn from u+g′, for any fixed vector u and g′ ∼ N (0, 1)n.

Proof: First note that we must have m ≤ n, because otherwise {v1, v2, . . . , vm} cannot have the
θ-orthogonal property for θ > 0. For any j ∈ [m], we claim that

Pr[(〈vj , g〉2 < θ2/2) | v1, v2, . . . , vj−1] < 1/2. (13)

To see this, write vj = v′j+v⊥j , where v
⊥
j is orthogonal to the span of {v1, v2, . . . , vj−1}. Since j ∈ I,

we have ‖v⊥j ‖ ≥ θ. Now given the vectors v1, v2, . . . , vj−1, the value 〈v′j , g〉 is fixed, but 〈v⊥j , g〉 is
distributed as a Gaussian with variance θ2 (since g is a Gaussian of unit variance in each direction).

Thus from a standard anti-concentration property for the one-dimensional Gaussian, 〈vj , g〉
cannot have a mass > 1/2 in any θ2 length interval, in particular, it cannot lie in [−θ2/2, θ2/2] with
probability > 1/2. This proves Eq. (13). Now since this is true for any conditioning v1, v2, . . . , vj−1

and for all j, it follows (see Lemma B.3 for a formal justification) that

Pr[〈vj , g〉2 < θ2/2 for all j] <
1

2m
< exp(−m/2).

This completes the proof of the claim, part (a). Note that even if we had g replaced by u+g through-
out, the anti-concentration property still holds (we have a shifted one-dimensional Gaussian), thus
the proof goes through verbatim.

Let us now prove part (b). First note that if we denote by M the n×m matrix whose columns
are the vi, then part (a) deals with the distribution of gTMMT g, where g ∼ N (0, 1)n. Part (b) deals
with the distribution of gTMTMg, where g ∼ N (0, 1)m. But since the eigenvalues of MMT and
MTM are precisely the same, due to the rotational invariance of Gaussians, these two quantities
are distributed exactly the same way. This completes the proof. �

Lemma B.3. Suppose we have random variables X1,X2, . . . ,Xr and an event f(·) which is defined
to occur if its argument lies in a certain interval (e.g. f(X) occurs iff 0 < X < 1). Further, suppose
we have Pr[f(X1)] ≤ p, and Pr[f(Xi)|X1,X2, . . . ,Xi−1] ≤ p for all X1,X2, . . . ,Xi−1. Then

Pr[f(X1) ∧ f(X2) ∧ · · · ∧ f(Xr)] ≤ pr.
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C Applications to Mixture Models

C.1 Sampling Error Estimates for Multi-view Models

In this section, we show error estimates for ℓ-order tensors obtained by looking at the ℓth moment
of the multi-view model.

Lemma C.1 (Error estimates for Multiview mixture model). For every ℓ ∈ N, suppose we have
a multi-view model, with parameters {wr}r∈[R] and {M (j)}j∈[ℓ], the n dimensional sample vectors

x(j) have ‖x(j)‖∞ ≤ 1. Then, for every ε > 0, there exists N = O(ε−2
√
ℓ log n) such that

if N samples {x(1)(j)}j∈[ℓ], {x(2)(j)}j∈[ℓ], . . . , {x(N)(j)}j∈[ℓ] are generated, then with high probability

‖Ex(1) ⊗ x(2) ⊗ . . . x(ℓ) − 1

N


∑

t∈[N ]

x(t)(1) ⊗ x(t)(2) ⊗ x(t)(ℓ)


‖∞ < ε (14)

Proof: We first bound the ‖ · ‖∞ norm of the difference of tensors i.e. we show that

∀{i1, i2, . . . , iℓ} ∈ [n]ℓ,

∣∣∣∣∣∣
E

∏

j∈[ℓ]
x
(j)
ij
− 1

N


∑

t∈[N ]

∏

j∈[ℓ]
x(t)

(j)
ij



∣∣∣∣∣∣
< ε/nℓ/2.

Consider a fixed entry (i1, i2, . . . , iℓ) of the tensor.
Each sample t ∈ [N ] corresponds to an independent random variable with a bound of 1. Hence,

we have a sum of N bounded random variables. By Bernstein bounds, probability for (14) to not

occur exp

(
−(εn−ℓ/2)

2
N2

2N

)
= exp

(
−ε2N/

(
2nℓ

))
. We have nℓ events to union bound over. Hence

N = O(ε−2nℓ
√
ℓ log n) suffices. Note that similar bounds hold when the x(j) ∈ R

n are generated
from a multivariate gaussian. �

C.2 Error Analysis for Multi-view Models

Lemma C.2. Suppose ‖u⊗ v − u′ ⊗ v′‖F < δ, and Lmin ≤ ‖u‖, ‖v‖, ‖u′‖, ‖v′‖ ≤ Lmax,

with δ <
min{L2

min,1}
(2max{Lmax,1}) . If u = α1u

′+β1ũ⊥ and v = α2v
′+β2ṽ⊥, where ũ⊥ and ṽ⊥ are unit vectors

orthogonal to u′, v′ respectively, then we have

|1− α1α2| < δ/L2
min and β1 <

√
δ, β2 <

√
δ.

Proof: We are given that u = α1u
′ + β1ũ⊥ and v = α2v

′ + β2ṽ⊥. Now, since the tensored vectors
are close

‖u⊗ v − u′ ⊗ v′‖2F < δ2

‖(1 − α1α2)u
′ ⊗ v′ + β1α2ũ⊥ ⊗ v′ + β2α1u

′ ⊗ ṽ⊥ + β1β2ũ⊥ ⊗ ṽ⊥‖2F < δ2

L4
min(1− α1α2)

2 + β2
1α

2
2L

2
min + β2

2α
2
1L

2
min + β2

1β
2
2 < δ2 (15)

This implies that |1− α1α2| < δ/L2
min as required.

Now, let us assume β1 >
√
δ. This at once implies that β2 <

√
δ. Also

L2
min ≤ ‖v‖2 = α2

2‖v′‖2 + β2
2

L2
min − δ ≤ α2

2L
2
max

Hence, α2 ≥
Lmin

2Lmax
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Now, using (15), we see that β1 <
√
δ. �

C.3 Sampling Error Estimates for Gaussians

Lemma C.3 (Error estimates for Gaussians). Suppose x is generated from a mixture of R-gaussians
with means {µr}r∈[R] and covariance Σi that is diagonal , with the means satisfying ‖µr‖ ≤ B. Let
σ = maxi σmax(Σi)
For every ε > 0, ℓ ∈ N, there exists N = Ω(poly(1ε )), σ

2, n,R) such that if x(1), x(2), . . . , x(N) ∈ Rn

were the N samples, then

∀{i1, i2, . . . , iℓ} ∈ [n]ℓ,

∣∣∣∣∣∣
E

∏

j∈[ℓ]
xij −

1

N


∑

t∈[N ]

∏

j∈[ℓ]
x
(t)
ij



∣∣∣∣∣∣
< ε. (16)

In other words,

‖E x⊗ℓ − 1

N

( ∑

t∈[N ]

(x(t))⊗ℓ
)
‖∞ < ε

Proof: Fix an element (i1, i2, . . . , iℓ) of the ℓ-order tensor. Each point t ∈ [N ] corresponds

to an i.i.d random variable Zt = x
(t)
i1
x
(t)
i2

. . . x
(t)
ℓ . We are interested in the deviation of the sum

S = 1
N

∑
t∈[N ] Z

t. Each of the i.i.d rvs has value Z = xi1xi2 . . . xℓ. Since the gaussians are axis-

aligned and each mean is bounded by B, |Z| < (B + tσ)ℓ with probability O
(
exp(−t2/2)

)
. Hence,

by using standard sub-gaussian tail inequalities, we get

Pr |S −E z| > ε < exp

(
− ε2N

(M + σℓ log n)ℓ

)

Hence, to union bound over all nℓ events N = O
(
ε−2(ℓ log nM)ℓ

)
suffices. �

C.4 Recovering Weights in Gaussian Mixtures

We now show how we can approximate upto a small error the weight wi of a gaussian components

in a mixture of gaussians, when we have good approximations to wiµ
⊗ℓ
i and wiµ

⊗(ℓ−1)
i .

Lemma C.4 (Recovering Weights). For every δ′ > 0, w > 0, Lmin > 0, ℓ ∈ N, ∃δ = Ω
(
δ1w1/(ℓ−1)

ℓ2Lmin

)

such that, if µ ∈ R
n be a vector with length ‖µ‖ ≥ Lmin, and suppose

‖v − w1/ℓµ‖ < δ and ‖u− w1/(ℓ−1)µ‖ < δ.

Then, ∣∣∣∣∣

( |〈u, v〉|
‖u‖

)ℓ(ℓ−1)

− w

∣∣∣∣∣ < δ′ (17)

Proof: From (C.4) and triangle inequality, we see that

‖w−1/ℓv − w−1/(ℓ−1)u‖ ≤ δ(w−1/(ℓ) + w−1/(ℓ−1)) = δ1.
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Let α1 = w−1/(ℓ−1) and α2 = w−1/ℓ. Suppose v = βu+εũ⊥ where ũ⊥ is a unit vector perpendicular
to u. Hence β = 〈v, u〉/‖u‖.

‖α1v − α2u‖2 = ‖(βα1 − α2)u+ α1εũ⊥‖ < δ21

(βα1 − α2)
2‖u‖2 + α2

1ε
2 ≤ δ21∣∣∣∣β −

α2

α1

∣∣∣∣ <
δ1

Lmin

Now, substituting the values for α1, α2, we see that

∣∣∣β − w
1

(ℓ−1)
− 1

ℓ

∣∣∣ < δ1
Lmin

.

∣∣∣β − w1/(ℓ(ℓ−1))
∣∣∣ < δ

w1/(ℓ−1)Lmin
∣∣∣βℓ(ℓ−1) − w

∣∣∣ ≤ δ′ when δ ≪ δ′w1/(ℓ−1)

ℓ2Lmin

�
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