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Abstract

Quadratic Programming (QP) is the well-studied problem of maximizing over {−1, 1} values
the quadratic form

∑
i6=j aijxixj . QP captures many known combinatorial optimization problems,

and assuming the unique games conjecture, semidefinite programming techniques give optimal
approximation algorithms. We extend this body of work by initiating the study of Quadratic
Programming problems where the variables take values in the domain {−1, 0, 1}. The specific
problems we study are

QP-Ratio : max
{−1,0,1}n

∑
i6=j aijxixj∑

x2

i

, and Normalized QP-Ratio : max
{−1,0,1}n

∑
i6=j aijxixj∑

dix2

i

.

where di =
∑

j

|aij |

These are natural relatives of several well studied problems (in fact Trevisan introduced the
latter problem as a stepping stone towards a spectral algorithm for Max Cut Gain). These
quadratic ratio problems are good testbeds for both algorithms and complexity because the tech-
niques used for quadratic problems for the {−1, 1} and {0, 1} domains do not seem to carry over
to the {−1, 0, 1} domain. We give approximation algorithms and evidence for the hardness of
approximating these problems.

We consider an SDP relaxation obtained by adding constraints to the natural eigenvalue (or
SDP) relaxation for this problem. Using this, we obtain an Õ(n1/3) algorithm for QP-ratio. We
also obtain an Õ(n1/4) approximation for bipartite graphs, and better algorithms for special cases.

As with other problems with ratio objectives (e.g. uniform sparsest cut), it seems difficult
to obtain inapproximability results based on P 6= NP. We give two results that indicate that
QP-Ratio is hard to approximate to within any constant factor: one is based on the assumption
that random instances of Max k-AND are hard to approximate, and the other makes a connection
to a ratio version of Unique Games.

There is an embarrassingly large gap between our upper bounds and lower bounds. In fact, we
give a natural distribution on instances of QP-Ratio for which an nε approximation (for small ε)
seems out of reach of current techniques. On the one hand, this distribution presents a concrete
barrier for algorithmic progress. On the other hand, it is a challenging question to develop lower
bound machinery to establish a hardness result of nε for this problem.
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1 Introduction

Semidefinite programming techniques have proved very useful for quadratic optimization problems
(i.e. problems with a quadratic objective) over {0, 1} variables or {±1} variables. Such problems
admit natural SDP relaxations and beginning with the seminal work of Goemans and Williamson
[GW95], sophisticated techniques have been developed for exploiting these SDP relaxations to obtain
approximation algorithms. For a large class of constraint satisfaction problems, a sequence of exciting
results[KKMO07, KO06, KV05] culminating in the work of Raghavendra[Rag08], shows that in fact,
such SDP based algorithms are optimal (assuming the Unique Games Conjecture).

In this paper, we initiate a study of quadratic programming problems with variables in {0,±1}.
In contrast to their well studied counterparts with variable values in {0, 1} or {±1}, to the best of
our knowledge, such problems have not been studied before. These problems admit natural SDP
relaxations similar to problems with variable values in {0, 1} or {±1}, yet we know very little about
how (well) these problems can be approximated. We focus on some basic problems in this class:

QP-Ratio : max
{−1,0,1}n

∑
i 6=j aijxixj∑

x2i
, and Normalized QP-Ratio : max

{−1,0,1}n

∑
i 6=j aijxixj∑

dix2i
. (1)

where di =
∑

j

|aij|

Note that the numerator is the well studied quadratic programming objective
∑

i<j ai,jxixj .
Ignoring the value of the denominator for a moment, the numerator can be maximized by setting
all variables to be ±1. However, the denominator term in the objective makes it worthwhile to set
variables to 0. An alternate phrasing of the ratio-quadratic programming problems is the following:
the goal is to select a subset of non-zero variables S and assign them values in {±1} so as to maximize
the ratio of the quadratic programming objective

∑
i<j∈S ai,jxixj to the (normalized) size of S.

This problem is a variant of well studied problems: Eliminating 0 as a possible value for variables
gives rise to the problem of maximizing the numerator over {±1} variables – a well studied problem
with an O(log n) approximation [NRT99, Meg01, CW04]. On the other hand, eliminating −1 as a
possible value for variables (when the ai,j are non-negative) results in a polynomial time solvable
problem. Another closely related problem to QP-Ratio is a budgeted variant where the goal is to
maximize the numerator (for the QP-Ratio objective) subject to the denominator being at most
k. This is harder than QP-Ratio in the sense that an α-approximation for the budgeted version
translates to an α-approximation for QP-Ratio (but not vice versa). The budgeted version is a
generalization of k-Densest Subgraph, a well known problem for which there is a huge gap between
current upper[BCC+10] and lower bounds[Kho04, Fei02]. In this paper, we chose to focus on the
“easier” class of ratio problems.

Though it is a natural variant of well studied problems, QP-Ratio seems to fall outside the realm
of our current understanding on both the algorithmic and inapproximability fronts. One of the goals
of our work is to enhance (and understand the limitations of) the SDP toolkit for approximation
algorithms by applying it to this natural problem. On the hardness side, the issues that come up are
akin to those arising in other problems with a ratio/expansion flavor, where conventional techniques
in inapproximability have been ineffective.

The Normalized QP-Ratio objective arose in recent work of Trevisan[Tre09] on computing Max
Cut Gain using eigenvalue techniques. The idea here is to use the eigenvector to come up with a
‘good’ partial assignment, and recurse. Crucial to this procedure is a quantity called the GainRatio
defined for a graph; this is a special case of Normalized QP-Ratio where aij = −1 for edges, and 0
otherwise.
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1.1 Our results

We first study mathematical programming relaxations for QP-Ratio. The main difficulty in obtaining
such relaxations is imposing the constraint that the variables take values {−1, 0, 1}. Capturing this
using convex constraints is the main challenge in obtaining good algorithms for the problem.

We consider a semidefinite programming (SDP) relaxation obtained by adding constraints to
the natural eigenvalue relaxation, and round it to obtain an Õ(n1/3) approximation algorithm. An
interesting special case is bipartite instances of QP-Ratio, where the support of aij is the adjacency
matrix of a bipartite graph (akin to bipartite instances of quadratic programming, also known as the
Grothendieck problem). For bipartite instances, we obtain an Õ(n1/4) approximation and an almost
matching SDP integrality gap of Ω(n1/4).

Our original motivation to study quadratic ratio problems was the GainRatio problem studied
in Trevisan [Tre09]. We give a sharp contrast between the strengths of different relaxations for
the problem and disprove Trevisan’s conjecture that the eigenvalue approach towards Max Cutgain
matches the bound achieved by an SDP-based approach[CW04]. See Section 3 for details.

Complementing our algorithmic result for QP-Ratio, we show hardness results for the problem.
We first show that there is no PTAS for the problem assuming P 6= NP . We also provide evidence
that it is hard to approximate to within any constant factor. We remark that current techniques
seem insufficient to prove such a result based on standard assumptions (such as P 6= NP ) – a similar
situation exists for other problems with a ratio objective such as sparsest cut.

In Section 4.2 we rule out constant factor approximation algorithms for QP-Ratio assuming that
random instances of k-AND are hard to distinguish from ‘well-satisfiable’ instances. This hypothesis
was used as a basis to prove optimal hardness for the so called 2-Catalog problem (see [Fei02])
and has proven fruitful in ruling out O(1)-approximations for the densest subgraph problem (see
[AAM+11]). It is known that even very strong SDP relaxations (in particular, Ω(n) rounds of the
Lasserre hierarchy) cannot refute this conjecture [Tul09].

We also show a reduction from Ratio UG (a ratio version of the well studied unique games
problem), to QP-Ratio. We think that ratio version of Unique Games is an interesting problem
worthy of study that could shed light on the complexity of other ratio optimization questions. The
technical challenge in our reduction is to develop the required fourier-analytic machinery to tackle
PCP-based reductions to ratio problems.

There is a big gap in the approximation guarantee of our algorithm and our inapproximability
results. We suspect that the problem is in fact hard to approximate to an nε factor for some ε > 0. In
Section 4.1, we decribe a natural distribution over instances which we believe are hard to approximate
up to polynomial factors. Our reduction from k-AND in fact generates hard instances of a similar
structure albeit ruling out only constant factor approximations.

2 Algorithms for QP-Ratio

We start with the most natural relaxation for QP-Ratio (1) :

max

∑
i,j Aijxixj∑

i x
2
i

subject to xi ∈ [−1, 1]

(instead of {0,±1}). The solution to this is precisely the largest eigenvector of A (scaled such that
entries are in [−1, 1]). However it is easy to construct instances for which this relaxation is bad: if A
were the adjacency matrix of a (n+ 1) vertex star (with v0 as the center of the star), the relaxation
can cheat by setting x0 =

1
2 and xi =

1√
2n

for i ∈ [n] to give a gap of Ω(
√
n) (the integer optimum is

at most 1).

3



We show that SDP relaxations give more power in expressing the constraints xi ∈ {0,±1}?
Consider the following relaxation:

max
∑

i,j

Aij · 〈wi,wj〉 subject to
∑

i

w2
i = 1, and

|〈wi,wj〉| ≤ w2
i for all i, j (2)

It is easy to see that this is indeed a relaxation: start with an integer solution {xi} with k non-zero
xi, and set vi = (xi/

√
k) · v0 for a fixed unit vector v0.

Without constraint (2), the SDP relaxation is equivalent to the eigenvalue relaxation given
above. Roughly speaking, equation (2) tries to impose the constraint that non-zero vectors are of
equal length. In the example of the (n + 1)-vertex star, this relaxation has value equal to the true
optimum. In fact, for any instance with Aij ≥ 0 for all i, j, this relaxation is exact [Cha00].

There are other natural relaxations one can write by viewing the {0,±1} requirement like a 3-
alphabet CSP. We consider one of these in section 2.5, and show an Ω(n1/2) integrality gap. It is
interesting to see if lift and project methods starting with this relaxation can be useful.

In the remainder of the section, we describe a simple Õ(n1/3) rounding algorithm, which shows
that the additional constraints (2) indeed help. We first describe an integrality gap of roughly n1/4,
as it highlights the issues that arise in rounding the SDP solution.

2.1 Integrality gap instance

Consider a complete bipartite graph on L,R, with |L| = n1/2, and |R| = n. The edge weights are set
to ±1 uniformly at random. Denote by B the n1/2 × n matrix of edge weights (rows indexed by L
and columns by R). A standard Chernoff bound argument shows

Lemma 2.1. With high probability over the choice of B, we have opt ≤ √
log n · n1/4.

Proof. Let S1 ⊆ L, S2 ⊆ R be of sizes a, b respectively. Consider a solution in which these are
the only variables assigned non-zero values (thus we fix some ±1 values to these variables). Let val
denote the value of the numerator. By the Chernoff bound, we have

P[val ≥ c
√
ab] ≤ e−c2/3,

for any c > 0. Now choosing c = 10
√

(a+ b) log n, and taking union bound over all choices for S1, S2

and the assignment (there are
(√n

a

)(n
b

)
2a+b choices overall), we get that w.p. at least 1 − 1/n3, no

assignment with this choice of a and b gives val bigger than
√

ab(a+ b) log n. The ratio in this case

is at most
√

log n · ab
a+b ≤ √

log n · n1/4. Now we can take union bound over all possible a and b, thus

proving that opt ≤ n1/4 w.p. at least 1− 1/n. �

Let us now exhibit an SDP solution with value n1/2. Let v1,v2, . . . ,v√
n be mutually orthogonal

vectors, with each v2
i = 1/2n1/2. We assign these vectors to vertices in L. Now to the jth vertex in

R, assign the vector wj defined by wj =
∑

i Bij
vi√
n
.

It is easy to check that w2
j =

∑
i
v
2
i
n = 1

2n . Further, note that for any i, j, we have (since all vi

are orthogonal) Bij〈vi,wj〉 = B2
ij ·

v
2
i√
n
= 1

2n . This gives
∑

i,j Bij〈vi,wj〉 = n3/2 · (1/2n) = n1/2/2.

From these calculations, we have ∀i, j, |vi ·wj | ≤ w2
j (thus satisfying (2); other inequalities of this

type are trivially satisfied). Further we saw that
∑

i v
2
i +

∑
j w

2
j = 1. This gives a feasible solution

of value Ω(n1/2). Hence the SDP has an Ω̃(n1/4) integrality gap.
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Connection to the star example. This gap instance can be seen as a collection of n1/2 stars
(vertices in L are the ‘centers’). In each ‘co-ordinate’ (corresponding to the orthogonal vi), the
assigment looks like a star. O(

√
n) different co-ordinates allow us to satisfy the constraints (2).

This gap instance is bipartite. In such instances it turns out that there is a better rounding
algorithm with a ratio Õ(n1/4) (Section 2.3). Thus to bridge the gap between the algorithm and the
integrality gap we need to better understand non-bipartite instances.

2.2 An O(n1/3) rounding algorithm

Consider an instance of QP-Ratio defined by A(n×n). Let wi be an optimal solution to the SDP, and
let the objective value be denoted sdp. We will sometimes be sloppy w.r.t. logarithmic factors in the
analysis.

Since the problem is the same up to scaling the Aij , let us assume that maxi,j |Aij | = 1. There
is a trivial solution which attains a value 1/2 (if i, j are indices with |Aij | = 1, set xi, xj to be ±1

appropriately, and the rest of the x’s to 0). Now, since we are aiming for an Õ(n1/3) approximation,
we can assume that sdp > n1/3.

As alluded to earlier (and as can be seen in the gap example), the difficulty is when most of the
contribution to sdp is from non-zero vectors with very different lengths. The idea of the algorithm
will be to move to a situation in which this does not happen. First, we show that if the vectors
indeed have roughly equal length, we can round well. Roughly speaking, the algorithm uses the
lengths ‖vi‖ to determine whether to pick i, and then uses the ideas of [CW04] (or the earlier works
of [NRT99, Meg01]) applied to the vectors vi

‖vi‖ .

Lemma 2.2. Given a vector solution {vi}, with v2
i ∈ [τ/∆, τ ] for some τ > 0 and ∆ > 1, we can

round it to obtain an integer solution with cost at least sdp/(
√
∆ log n).

Proof. Starting with vi, we produce vectors wi each of which is either 0 or a unit vector, such that

If

∑
i,j Aij〈vi,vj〉∑

i v
2
i

= sdp, then

∑
i,j Aij〈wi,wj〉∑

iw
2
i

≥ sdp√
∆
.

Stated this way, we are free to re-scale the vi, thus we may assume τ = 1. Now note that once we have
such wi, we can throw away the zero vectors and apply the rounding algorithm of [CW04] (with a loss
of an O(log n) approximation factor), to obtain a 0,±1 solution with value at least sdp/(

√
∆ log n).

So it suffices to show how to obtain the wi. Let us set (recall we assumed τ = 1)

wi =

{
vi/‖vi‖, with prob. ‖vi‖
0 otherwise

(this is done independently for each i). Note that the probability of picking i is proportional to the
length of vi (as opposed to the typically used square lengths, [CMM06] say). Since Aii = 0, we have

E
[∑

i,j Aij〈wi,wj〉
]

E
[∑

iw
2
i

] =

∑
i,j Aij〈vi,vj〉∑

i |vi|
≥

∑
i,j Aij〈vi,vj〉√
∆

∑
i v

2
i

=
sdp√
∆
. (3)

The above proof only shows the existence of vectors wi which satisfy the bound on the ratio. The
proof can be made constructive using the method of conditional expectations, where we set variables
one by one, i.e. we first decide whether to make w1 to be a unit vector along it or the 0 vector,
depending on which maintains the ratio to be ≥ θ = sdp√

∆
. Now, after fixing w1, we fix w2 similarly

etc., while always maintaining the invariant that the ratio ≥ θ.
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At step i, let us assume that w1, . . . ,wi−1 have already been set to either unit vectors or zero
vectors. Consider vi and let ṽi = vi/‖vi‖. wi = ṽi w.p. pi = ‖vi‖ and 0 w.p (1− pi).

In the numerator, B = E[
∑

j 6=i,k 6=i ajk〈wj , wk〉] is contribution from terms not involving i. Also
let ci =

∑
k 6=i aikwk and let c′i =

∑
j 6=i ajiwj. Then, from equation 3

θ ≤
E[

∑
j,k ajk〈wj,wk〉]
E[

∑
j |wj |2]

=
pi
(
〈ṽi, ci〉+ 〈c′i, ṽi〉+B

)
+ (1− pi)B

pi
(
1 +

∑
j 6=i‖wj‖2

)
+ (1− pi)

(∑
j 6=i‖wj‖2

)
)

Hence, by the simple fact that if c, d are positive and a+b
c+d > θ, then either a

c > θ or b
d > θ, we see

that either by setting wi = ṽi or wi = 0, we get value at least θ. �

Let us define the ‘value’ of a set of vectors {wi} to be val :=
∑

Aij〈wi,wj〉∑
i w

2
i

. The vi we start will

have val = sdp.

Claim 2.3. We can move to a set of vectors such that (a) val is at least sdp/2, (b) each non-zero
vector vi satisfies v2

i ≥ 1/n, (c) vectors satisfy (2), and (d)
∑

i v
2
i ≤ 2.

The proof is by showing that very small vectors can either be enlarged or thrown away .

Proof. Suppose 0 < v2
i < 1/n for some i. If Si =

∑
j Aijvi · vj ≤ 0, we can set vi = 0 and improve

the solution. Now if Si > 0, replace vi by
1√
n
· vi
‖vi‖ (this only increases the value of

∑
i,j Aij〈vi,vj〉),

and repeat this operation as long as there are vectors with v2
i < 1/n. Overall, we would only have

increased the value of
∑

i,j Aijvi · vj, and we still have
∑

i v
2
i ≤ 2. Further, it is easy to check that

|〈vi,vj〉| ≤ v2
i also holds in the new solution (though it might not hold in some intermediate step

above). �

The next lemma also gives an upper bound on the lengths – this is where the constraints (2) are
crucial.

Lemma 2.4. Suppose we have a solution of value Bnρ and
∑

i v
2
i ≤ 2. We can move to a solution

with value at least Bnρ/2, and v2
i < 16/nρ for all i.

Proof. Let v2
i > 16/nρ for some index i. Since |〈vi,vj〉| ≤ v2

j , we have that for each such i,

∑

j

Aij〈vi,vj〉 ≤ B
∑

j

v2
j ≤ 2B

Thus the contribution of such i to the sum
∑

i,j Aij〈vi,vj〉 can be bounded by m×4B, wherem is the

number of indices i with v2
i > 16/nρ. Since the sum of squares is ≤ 2, we must have m ≤ nρ/8, and

thus the contribution above is at most Bnρ/2. Thus the rest of the vectors have a contribution at least
sdp/2 (and they have sum of squared-lengths ≤ 2 since we picked only a subset of the vectors) �

Theorem 2.5. Suppose A is an n × n matrix with zero’s on the diagonal. Then there exists a
polynomial time Õ(n1/3) approximation algorithm for the QP-Ratio problem defined by A.

Proof. As before, let us rescale and assume max i, j|Aij | = 1. Now if ρ > 1/3, Lemmas 2.3 and 2.4
allow us to restrict to vectors satisfying 1/n ≤ v2

i ≤ 4/nρ, and using Lemma 2.2 gives the desired

Õ(n1/3) approximation; if ρ < 1/3, then the trivial solution of 1/2 is an Õ(n1/3) approximation. �
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2.3 The bipartite case

In this section, we prove the following theorem:

Theorem 2.6. When A is bipartite (i.e. the adjacency matrix of a weighted bipartite graph), there
is a (tight upto logarithmic factor) Õ(n1/4) approximation algorithm for QP-Ratio .

Bipartite instances of QP-Ratio can be seen as the ratio analog of the Grothendieck problem
[AN06]. The algorithm works by rounding the semidefinite program relaxation from section 2. As
before, let us assume maxi,j aij = 1 and consider a solution to the SDP (2). To simplify the notation,
let ui and vj denote the vectors on the two sides of the bipartition. Suppose the solution satisfies:

(1)
∑

(i,j)∈E
aij〈ui, vj〉 ≥ nα, (2)

∑

i

u2i =
∑

j

v2j = 1.

If the second condition does not hold, we scale up the vectors on the smaller side, losing at most
a factor 2. Further, we can assume from Lemma 2.3 that the squared lengths u2i , v

2
j are between 1

2n
and 1. Let us divide the vectors {ui} and {vj} into log n groups based on their squared length. There
must exist two levels (for the u and v’s respectively) whose contribution to the objective is at least
nα/ log2 n.1 Let L denote the set of indices corresponding to these ui, and R denote the same for vj .
Thus we have

∑
i∈L,j∈R aij〈ui, vj〉 ≥ nα/ log2 n. We may assume, by symmetry that |L| ≤ |R|. Now

since
∑

j v
2
j ≤ 1, we have that v2j ≤ 1/|R| for all j ∈ R. Also, let us denote by Aj the |L|-dimensional

vector consisting of the values aij , i ∈ L. Thus

nα

log2 n
≤

∑

i∈L,j∈R
aij〈ui, vj〉 ≤

∑

i∈L,j∈R
|aij | · v2j ≤ 1

|R|
∑

j∈R
‖Aj‖1. (4)

We will construct an assignment xi ∈ {+1,−1} for i ∈ L such that 1
|R| ·

∑
j∈R

∣∣∑
i∈L aijxi

∣∣ is
‘large’. This suffices, because we can set yj ∈ {+1,−1}, j ∈ R appropriately to obtain the value above
for the objective (this is where it is crucial that the instance is bipartite – there is no contribution
due to other yj ’s while setting one of them).

Lemma 2.7. There exists an assignment of {+1,−1} to the xi such that

∑

j∈R

∣∣∑

i∈L
aijxi

∣∣ ≥ 1

24

∑

j∈R
‖Aj‖2

Furthermore, such an assignment can be found in polynomial time.

Proof. The intuition is the following: suppose Xi, i ∈ L are i.i.d. {+1,−1} random variables. For
each j, we would expect (by random walk style argument) that E

[∣∣∑
i∈L aijXi

∣∣] ≈ ‖Aj‖2, and thus

by linearity of expectation, E
[∑

j∈R
∣∣∑

i∈L aijXi

∣∣
]
≈ ∑

j∈R‖Aj‖2. Thus the existence of such xi

follows. This can in fact be formalized:

E
[∣∣∑

i∈L
aijXi

∣∣] ≥ ‖Aj‖2/12 (5)

This equation is seen to be true from the following lemma

1Such a clean division into levels can only be done in the bipartite case – in general there could be negative
contribution from ‘within’ the level.
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Lemma 2.8. Let b1, . . . , bn ∈ R with
∑

i b
2
i = 1, and let X1, . . . ,Xn be i.i.d. {+1,−1} r.v.s. Then

E[|
∑

i

biXi|] ≥ 1/12.

Proof. Define the r.v. Z :=
∑

i biXi. Because the Xi are i.i.d. {+1,−1}, we have E[Z2] =
∑

i b
2
i = 1.

Further, E[Z4] =
∑

i b
4
i + 6

∑
i<j b

2
i b

2
j < 3(

∑
i b

2
i )

2 = 3. Thus by Paley-Zygmund inequality,

P[Z2 ≥ 1

4
] ≥ 9

16
· (E[Z2])2

E[Z4]
≥ 3

16
.

Thus |Z| ≥ 1/2 with probability at least 3/16 > 1/6, and hence E[|Z|] ≥ 1/12. �

We can also make the above constructive. Let r.v. S :=
∑

j∈R
∣∣∑

i∈L aijXi

∣∣. It is a non-negative
random variable, and for every choice of Xi, we have

S ≤
∑

j∈R

∑

i∈L
|aij | ≤ L1/2

∑

j∈R
‖Aj‖2 ≤ n1/2 E[S]

Let p denote P[S < E[S]
2 ]. Then from the above inequality, we have that (1− p) ≥ 1

2n1/2 . Thus if we
sample the Xi say n times (independently), we hit an assignment with a large value of S with high
probability. �

Proof of Theorem 2.6. By Lemma 2.7 and Eq (4), there exists an assignment to xi, and a correspond-
ing assignment of {+1,−1} to yj such that the value of the solution is at least

1

|R| ·
∑

j∈R
‖Aj‖2 ≥

1

|R| |L|1/2
∑

j∈R
‖Aj‖1 ≥

nα

|L|1/2 log2 n. [By Cauchy Schwarz]

Now if |L| ≤ n1/2, we are done because we obtain an approximation ratio of O(n1/4 log2 n). On the
other hand if |L| > n1/2 then we must have ‖ui‖22 ≤ 1/n1/2. Since we started with u2i and v2i being
at least 1/2n (Lemma 2.3) we have that all the squared lengths are within a factor O(n1/2) of each
other. Thus by Lemma 2.2 we obtain an approximation ratio of O(n1/4 log n). This completes the
proof. �

2.4 Algorithms for special cases

2.4.1 Poly-logarithmic approximations for positive semidefinite matrices

The MaxQP problem has a better approximation guarantee (of 2/π) when A is psd. Even for the
QP-Ratio problem, we can do better in this case than for general A. In fact, it is easy to obtain a
polylog(n) approximation.

This proceeds as follows: start with a solution to the eigenvalue relaxation (call the value ρ).
Since A is psd, the numerator can be seen as

∑
i(Bix)

2, where Bi are linear forms. Now divide the
xi into O(log n) levels depending on their absolute value (need to show that xi are not too small –
poly in 1/n, 1/|A|∞). We can now see each term Bixi a sum of O(log n) terms (grouping by level).
Call these terms C1

i , . . . , C
ℓ
i , where ℓ is the number of levels. The numerator is upper bounded by

ℓ(
∑

i

∑
j(C

j
i )

2), and thus there is some j such that
∑

i(C
j
i )

2 is at least 1/ log2 n times the numerator.
Now work with a solution y which sets yi = xi if xi is in the jth level and 0 otherwise. This is a
solution to the ratio question with value at least ρ/ℓ2. Further, each |yi| is either 0 or in [ρ, 2ρ], for
some ρ.
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From this we can move to a solution with |yi| either 0 or 2ρ as follows: focus on the numerator, and
consider some xi 6= 0 with |xi| < 2ρ (strictly). Fixing the other variables, the numerator is a convex
function of xi in the interval [−2ρ, 2ρ] (it is a quadratic function, with non-negative coefficient to the
x2i term, since A is psd). Thus there is a choice of xi = ±2ρ which only increases the numerator.
Perform this operation until there are no xi 6= 0 with |xi| < 2ρ. This process increases each |xi| by a
factor at most 2. Thus the new solution has a ratio at least half that of the original one. Combining
these two steps, we obtain an O(log2 n) approximation algorithm.

2.4.2 Better approximations when the optimum is large.

We can also obtain a much better approximation algorithm for QP-Ratio when the maximum value
of the instance is large, say εdmax, where dmax = maxi

∑
i |aij |. For QP-Ratio instances A with

OPT (A) ≥ εdmax, we can find a solution of value e−O(1/ε)dmax using techniques from section 3.
This is because when all the degrees di are roughly equal (say γdmax ≤ di ≤ dmax for some

constant γ > 0), then it is easy to check that an O(α) approximation to Normalized QP-Ratio (de-
fined in section 3) is an O(α/γ) approximation to the same instance of QP-Ratio. Further, when
OPT (QP-Ratio) ≥ εdmax, we can throw away vertices i of degree di <

ε
2dmax without losing in the

objective. Hence, for a QP-Ratio instance A when OPT (A) ≥ εdmax, we can find a solution to
QP-Ratio of value e−O(1/ε)dmax.

2.5 Other Relaxations for QP-Ratio

For problems in which variables can take more than two values (e.g. CSPs with alphabet size r > 2),
it is common to use a relaxation where for every vertex u (assume an underlying graph), we have

variables x
(1)
u , .., x

(r)
u , and constraints such as 〈x(i)u , x

(j)
u 〉 = 0 and

∑
i〈x

(i)
u , x

(i)
u 〉 = 1 (intended solution

being one with precisely one of these variables being 1 and the rest 0).
We can use such a relaxation for our problem as well: for every xi, we have three vectors ai, bi,

and ci, which are supposed to be 1 if xi = 0, 1, and −1 respectively (and 0 otherwise). In these terms,
the objective becomes

∑

i,j

Aij〈bi, bj〉 − 〈bi, cj〉 − 〈ci, bj〉+ 〈ci, cj〉 =
∑

i,j

Aij〈bi − ci, bj − cj〉.

The following constraints can be added

∑

i

b2i + c2i = 1 (6)

〈ai, bj〉, 〈bi, cj〉, 〈ai, cj〉 ≥ 0 for all i, j (7)

〈ai, aj〉, 〈bi, bj〉, 〈ci, cj〉 ≥ 0 for all i, j (8)

〈ai, bi〉 = 〈bi, ci〉 = 〈ai, ci〉 = 0 (9)

a2i + b2i + c2i = 1 for all i (10)

Let us now see why this relaxation does not perform better than the one in (2). Suppose we start with
a vector solution wi to the earlier program. Suppose these are vectors in R

d. We consider vectors
in R

n+d+1, which we define using standard direct sum notation (to be understood as concatenating
co-ordinates). Here ei is a vector in R

n with 1 in the ith position and 0 elsewhere. Let 0n denote the
0 vector in R

n.
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We set (the last term is just a one-dim vector)

bi = 0n ⊕ wi/2 ⊕ (|wi|/2)

ci = 0n ⊕−wi/2 ⊕ (|wi|/2)

ai =
√

1−w2
i · ei ⊕ 0d ⊕ (0)

It is easy to check that 〈ai, bj〉 = 〈ai, cj〉 = 0, and 〈bi, cj〉 = 1/4 · (−〈wi,wj〉+ |wi||wj|) ≥ 0 for all i, j
(and for i = j, 〈bi, ci〉 = 0). Also, b2i +c2i = w2

i = 1−a2i . Further, 〈bi, bj〉 = 1/4 ·(〈wi,wj〉+|wi||wj|) ≥
0. Last but not least, it can be seen that the objective value is

∑

i,j

Aij〈bi − ci, bj − cj〉 =
∑

i,j

Aij〈wi,wj〉,

as desired. Note that we never even used the inequalities (2), so it is only as strong as the eigenvalue
relaxation (and weaker than the sdp relaxation we consider).

Additional valid constraints of the form ai+bi+ci = v0 (where v0 is a designated fixed vector) can
be introduced – however it it can be easily seen that these do not add any power to the relaxation.

3 Normalized QP-Ratio

Given any symmetric matrix A, the normalized QP-Ratio problem aims to find the best {−1, 0, 1}
assignment which maximizes the following:

max
x∈{−1,0,1}n

∑
i 6=j 2aijxixj∑

i 6=j |aij|(x2i + x2j)
(11)

=
xtAx∑
i dix

2
i

where di =
∑

j

|aij| are “the degrees”

Note that when the degrees di are all equal (di = d ∀i), this is the same as QP-Ratio upto
a scaling. Though the two objectives have a very similar flavor, the normalized objective tends to
penalize picking vertices of high degree in the solution.

This problem was recently considered by Trevisan [Tre09] in the special case when A = −W (G)
where W (G) are the matrix of edge weights (0 if there is no edge) and called this quantity the
GainRatio of G. He gave an algorithm for Max Cut-Gain which uses GainRatio as a subroutine,
based purely on an eigenvalue relaxation (as opposed to the SDP-based algorithm of [CW04]). His
algorithm for GainRatio can also be adapted to give an algorithm for Normalized QP-Ratio with a
similar guarantee. We sketch it below.

3.1 Algorithm based on [Tre09]

Consider the natural relaxation

max
x∈[−1,1]n

xtAx∑
i dix

2
i

(12)

This is also the maximum eigenvalue of D−1/2AD1/2 where D is the diagonal matrix of degrees.
Trevisan [Tre09] gave a randomized rounding technique which uses just threshold cuts to give the
following guarantee.

10



Lemma 3.1. [Tre09] In the notation stated above, for every γ > 0, there exists c1, c2 > 0 with
c1c2 ≤ γe1/γ , such that given any x ∈ R

n s.t. x
tAx ≥ εxtDx, outputs a distribution over discrete

vectors {−1, 0, 1}n (using threshold cuts) with the properties:

1. |c1 EYiYj − xixj| ≤ γ(x2i + x2j)

2. E |Yi| ≤ c2x
2
i

Proposition 3.2. Given a Normalized QP-Ratio instance A with value at least ε finds a solution
y ∈ {−1, 0, 1}n of value e−O(1/ε).

Proof. For the eigenvalue relaxation equation 12, there is a feasible solution x such that x
tAx ≥

εxtDx where Dii =
∑

j |aij | and Dij = 0 for i 6= j. Now applying Lemma 3.1, we have

E[aijYiYj] ≥
1

c1

(
aijxixj − γ|aij |(x2i + x2j)

)

E[
∑

ij

aijYiYj] ≥
1

c1

(
x
tAx− 2γxtDx)

≥ (ε− 2γ)

c1
(xtDx)

Also, E[
∑

i di|Yi|] ≤ c2x
tDx. Hence, there exists some vector y ∈ {−1, 0, 1}n of value (ε− 2γ)/c1c2,

which shows what we need for sufficiently small γ < ε/2. As in previous section 2, this can also
be derandomized using the method of conditional expectations (in fact, since the distribution is just
over threshold cuts, it suffices to run over all n threshold cuts to find the vector y). �

3.2 Eigenvalue relaxation for Max Cut-Gain

As mentioned earlier Trevisan [Tre09] shows that if the eigenvalue is ε, the GainRatio is at least
e−O(1/ε). He also conjectures that there could a better dependence: that the GainRatio is at least
ε/ log(1/ε), whenever eigenval = ε. This would give an eigenvalue based algorithm which matches the
SDP-based algorithm of [CW04]. We show that this conjecture is false, and describe an instance for
which eigenval is ε, but the GainRatio is at most exp(−1/ε1/4). This shows that the eigenvalue based
approach is necessarily ‘exponentially’ weaker than an SDP-based one. Roughly speaking, SDPs are
stronger because they can enforce vectors to be all of equal length, while this cannot be done in an
eigenvalue relaxation. First, let us recall the eigenvalue relaxation for Max CutGain

Eig = max
xu∈[−1,1]

∑
{u,v}∈E(G)−wuvxuxv∑

{u,v}∈E(G) |wuv|(x2u + x2v)
.

Description of the instance. In what follows, let us fix ε to be a small constant, and write
M = 1/ε (thought of as an integer), and m = 2/ε.

The vertex set is V = V1 ∪ V2 ∪ · · · ∪ Vm, where |Vi| = M i. We place a clique with edge weight 1
on each set Vi. Between Vi and Vi+1, we place a complete bipartite graph with edge-weight (1/2+ ε).
We will call Vi the ith level. Thus the total weight of the edges in the ith level is roughly M2i/2, and
the weight of edges between levels i and (i+ 1) is (1/2 + ε)M2i+1.

Lemma 3.3. There exist xi ∈ [−1, 1] such that
∑

{u,v}∈E(G)−wuv·xuxv
∑

{u,v}∈E(G) |wuv|(x2
u+x2

v)
= Ω

(
ε2
)
.
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Proof. Consider a solution in which vertices u in level i have xu = (−1)iεi. We have

∑
{u,v}∈E(G) −wuv · xuxv∑

{u,v}∈E(G) x
2
u + x2v

=
−N2

0

∑m
i=1(M

2i/2)ε2i +N2
0

∑m−1
i=1 ε2i+1(12 + ε)M2i+1

N2
0

∑m
i=1(M

2i/2) · 2ε2i +N2
0

∑m−1
i=1 (12 + ε)M2m+1(ε2i + ε2i+2)

≥ −m
2 + (m− 1)(12 + ε)

3
εm

(noting Mε = 1)

= Ω(ε2) (setting m ≈ 2

ε
)

�

Let us now prove an upper bound on the GainRatio of G. Consider the optimal solution Y . Let
the fraction of vertices u in level i with non-zero Yu be λi. Of these, suppose (12 + ηi) fraction have
Yu = +1 and (12 −ηi) have Yu = −1. It is easy to see that we may assume ηi’s alternate in sign Thus,
for convenience, we will let ηi denote the negated values for the alternate levels and treat all ηi’s as
positive.

With these parameters, we see that

Numerator =

m∑

i=1

M2iλ2
i

[
− 1

2

(1
2
+ ηi

)2 − 1

2

(1
2
− ηi

)2
+

(1
2
+ ηi

)(1
2
− ηi

)]

+

m−1∑

i=1

(1
2
+ ε

)
M2i+1λiλi+1

[(1
2
+ ηi

)(1
2
+ ηi+1

)
+

(1
2
− ηi

)(1
2
− ηi+1

)

−
(1
2
+ ηi

)(1
2
− ηi+1

)
−

(1
2
− ηi

)(1
2
+ ηi+1

)]

= 2
( m∑

i=1

−M2iλ2
i η

2
i + (1 + 2ε)

m−1∑

i=1

M2i+1λiλi+1ηiηi+1

)

Hence the numerator is

Numerator = 2
( m∑

i=1

−M2iλ2
i η

2
i + (1 + 2ε)

m−1∑

i=1

M2i+1λiλi+1ηiηi+1

)
(13)

Note that the denominator is at least
∑

i λiM
2i (there is a contribution from every edge at least one

end-point of which has Y nonzero). We will in fact upper bound the quantity Numerator/2
∑

i λiηiM
i.

This clearly gives an upper bound on the ratio we are interested in (as the ηi are smaller than 1/2).
Let us write γi = λiηi. We are now ready to prove the theorem which implies the desired gap. A
simple inequality useful in the proof is the following (it follows from the well-known fact that the
largest eigenvalue of the length n path is cos( π

n+1) ≈ 1− 1
n2 ):

∀n > 1 and xi ∈ R, x21 + x22 + . . . x2n ≥
(
1 +

1

n2

)
(x1x2 + x2x3 + . . . xn−1xn) (14)

Theorem 3.4. Let γi ≥ 0 be real numbers in [0, 1], and let ε,M,m be as before. Then

−∑m
i=1 γ

2
i M

2i + (1 + 2ε)
∑m−1

i=1 γiγi+1M
2i+1

∑m
i=1 γiM

2i
<

1

M
√
m/4

(15)
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Proof. Consider the numbers γiM
i and let r be the index where it is maximized. Denote this

maximum value by D.

Claim. Suppose 1 ≤ j ≤ m and j 6∈ [r − m1/2

2 , r + m1/2

2 ] and γjM
j ≥ D

M
√

m/4 . Then (15) holds.

Suppose first that j > r + m1/2

2 . The numerator numerator of (15) is at most D2 × 3m while the

denominator is at least γjM
2j > D

M
√

m/4 × M j > D
M

√
m/4 × M r+ 1

2

√
m > D2 × M

√
m/4. (the last

inequality is because D < M r, since γr < 1). This implies that the ratio is at most 1
M

√
m/4 , and hence

(15) holds.

Next, suppose j < r−m1/2

2 . This means, since γj < 1, that γr < M−√
m/4. Thus the numerator of

(15) is bounded from above by D×3m as above, while the denominator is at least γrM
2r = D2/γr >

D2M
√
m/4. Thus the ratio is at most 1

M
√

m/4 , proving the claim.

Thus for all indices j 6∈ [r− 1
2

√
m, r+ 1

2

√
m] (let us call this interval I), we have γjM

j < D
M

√
m/4 .

We thus split the numerator of (15) as
(
−

∑

i∈I
γ2i M

2i + (1 + 2ε) ·
∑

i,(i+1)∈I
γiγi+1M

2i+1
)
+ remaining terms

Note that the part in the parenthesis is ≤ 0 by suitable application of Eq. (14), while the remaining

terms are each smaller than D2

M
√

m/2 . Thus the numerator is < m D2

M
√

m/2 . Note that the denominator

(of (15)) is at least D2. These two together complete the proof of the theorem. �

Moving to an unweighted instance Now we will show that by choosing N0 large enough (recall
that we chose Vi of size N0M

i), we can bound how far cuts are from expectation. Let us start with
a simple lemma.

Lemma 3.5. Suppose A and B are two sets of vertices with m and n vertices resp. Suppose each
edge is added independently at random w.p. (12 + ε). Then

P
[
|# Edges− (

1

2
+ ε)mn| > t

√
mn

]
< e−t2/2

Proof. Follows from Chernoff bounds (concentration of binomial r.v.s) �

Next, we look at an arbitrary partitioning of vertices with λi and εi values as defined previously
(λi of the Y ’s nonzero, and (12 + εi) of them of some sign).

Let us denote ni = N0λiM
i. Between levels i and i+1, the probability that the number of edges

differs from expectation by (nini+1)
1/3 is at most (by the lemma above) e−(nini+1)2/3 . By choosing N0

big enough (say M10m) we can make this quantity smaller than e−12m (since each ni is at least M
9m).

Thus the probability that the sum of the ‘errors’ over the m levels is larger than Err =
∑

(nini+1)
1/3

is at most me−12m.
The total number of vertices in the subgraph (with Y nonzero) is at most N0M

m. Thus the
number of cuts is 2N0Mm

< e11m. Thus there exists a graph where none of the cuts have sum of the
‘errors’ as above bigger than Err.

Now it just remains to bound
∑

(nini+1)1/3∑
λiN2

0M
2i . Here again the fact that N0 is big comes to the rescue

(there is only a N
2/3
0 in the numerator) and hence we are done.

4 Hardness of Approximating QP-Ratio

Given that our algorithmic techniques give only an n1/3 approximation in general, and the natural
relaxations do not seem to help, it is natural to ask how hard we expect the problem to be. Our
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results in this direction are as follows: we show that the problem is APX-hard (i.e., there is no PTAS
unless P = NP ). Next, we show that there cannot be a constant factor approximation assuming
that Max k-AND is hard to approximate ‘on average’ (related assumptions are explored in [Fei02]).
Our reduction therefore gives a (fairly) natural hard distribution for the QP-Ratio problem.

4.1 Candidate Hard Instances

As can be seen from the above, there is an embarrassingly large gap between our upper bounds and
lower bounds. We attempt to justify this by describing a natural distribution on instances we do not
know how to approximate to a factor better than nδ (for some fixed δ > 0).

Let G denote a bipartite random graph with vertex sets VL of size n and VR of size n2/3, left
degree nδ for some small δ (say 1/10) [i.e., each edge between VL and VR is picked i.i.d. with prob.
n−(9/10)]. Next, we pick a random (planted) subset PL of VL of size n2/3 and random assignments
ρL : PL 7→ {+1,−1} and ρR : VR 7→ {+1,−1}. For an edge between i ∈ PL and j ∈ VR, the weight
aij := ρL(i)ρR(j). For all other edges we assign aij = ±1 independently at random.

The optimum value of such a planted instance is roughly nδ, because the assignment of ρL, ρR
(and assigning 0 to VL \ PL) gives a solution of value nδ. However, for δ < 1/6, we do not know how
to find such a planted assignment: simple counting and spectral approaches do not seem to help.

Making progress on such instances appears to be crucial to improving the algorithm or the hard-
ness results. We remark that the instances produced by the reduction from Random k-AND are
in fact similar in essence. We also note the similarity to other problems which are beyond current
techniques, such as the Planted Clique and Planted Densest Subgraph problems [BCC+10].

4.2 Reduction from Random k-AND

We start out by quoting the assumption we use.

Conjecture 4.1 (Hypothesis 3 in [Fei02]). For some constant c > 0, for every k, there is a ∆0, such
that for every ∆ > ∆0, there is no polynomial time algorithm that, on most k-AND formulas with
n-variables and m = ∆n clauses, outputs ‘typical’, but never outputs ‘typical’ on instances with

m/2c
√
k satisfiable clauses.

The reduction to QP-Ratio is then as follows: Given a k-AND instance on n variables X =
{x1, x2, . . . xn} consisting ofm clauses C = {C1, C2, . . . Cm}, and a parameter 0 < α < 1, let A = {aij}
denote the m× n matrix such that aij is 1/m if variable xj appears as is in clause Ci, aij is −1/m if
it appears negated and 0 otherwise.

Let f : X → {−1, 0, 1} and g : C → {−1, 0, 1} denote functions which are supposed to correspond
to assignments. Let µf =

∑
i∈[n] |f(xi)|/n and µg =

∑
j∈m |g(Cj)|/m. Let

ϑ(f, g) =

∑
ij aijf(xi)g(Cj)

αµf + µg
. (16)

Observe that if we treat f(), g() as variables, we obtain an instance of QP-Ratio [as described,
the denominator is weighted; we need to replicate the variable set X α∆ times (each copy has same
set of neighbors in C) in order to reduce to an unweighted instance – see Appendix C for details].

We pick α = 2−c
√
k and ∆ a large enough constant so that Conjecture 4.1 and Lemmas 4.3 and 4.4

hold. The completeness follows from the natural assignment .

Lemma 4.2 (Completeness). If the k-AND instance is such that an α fraction of the clauses can be
satisfied, then there exists function f , g such that θ is at least k/2.
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Proof. Consider an assignment that satisfies an α fraction of the constraints. Let f be such that
f(xi) = 1 if xi is true and −1 otherwise. Let g be the indicator of (the α fraction of the) constraints
that are satisfied by the assignment. Since each such constraint contributes k to the sum in the
numerator, the numerator is at least αk while the denominator 2α. �

Soundness: We will show that for a typical random k-AND instance (i.e., with high probability),
the matrix A is such that the maximum value ϑ(f, g) can take is at most o(k).

Let the maximum value of ϑ obtained be ϑmax. We first note that there exists a solution f, g of
value ϑmax/2 such that the equality αµf = µg holds2 – so we only need consider such assignments.

Now, the soundness argument is two-fold: if only a few of the vertices (X) are picked (µf < α
400 )

then the expansion of small sets guarantees that the value is small (even if each picked edge contributes
1). On the other hand, if many vertices (and hence clauses) are picked, then we claim that for every

assignment to the variables (every f), only a small fraction (2−ω(
√
k)) of the clauses contribute more

than k7/8 to the numerator.
The following lemma handles the first case when µf < α/400 .

Lemma 4.3. Let k be an integer, 0 < δ < 1, and ∆ be large enough. If we choose a bipartite graph
with vertex sets X,C of sizes n,∆n respectively and degree k (on the C-side) uniformly at random,
then w.h.p., for every T ⊂ X,S ⊂ C with |T | ≤ nα/400 and |S| ≤ α|T |, we have |E(S, T )| ≤

√
k|S|.

Proof. Let µ := |T |/|X| (at most α/400 by choice), and m = ∆n. Fix a subset S of C of size
αµm and a subset T of X of size µn. The expected number of edges between S and T in G is
E[E(S, T )] = kµ · |S|. Thus, by Chernoff-type bounds (we use only the upper tail, and we have
negative correlation here),

P[E(S, T ) ≥
√
k|S|] ≤ exp

(
− (

√
k|S|)2

kµ · |S|
)
≤ exp (−αm/10)

The number of such sets S, T is at most 2n ×∑α2m/400
i=1

(m
i

)
≤ 2n2H(α2/400)m ≤ 2n+αm/20. Union

bounding and setting m/n > 20/α gives the result. �

Now, we need to bound ϑ(f, g) for solutions such that αµf = µg ≥ α2/400. We use the following
lemma about random instances of k-AND .

Lemma 4.4. For large enough k and ∆, a random k-AND instance with ∆n clauses on n variables

is such that: for any assignment, at most a 2
−k3/4

100 fraction of the clauses have more than k/2 + k7/8

variables ‘satisfied’ [i.e. the variable takes the value dictated by the AND clause] w.h.p.

Proof. Fix an assignment to the variables X. For a single random clause C, the expected number
of variables in the clause that are satisfied by the assignment is k/2. Thus, the probability that the
assignment satisfies more than k/2(1 + δ) of the clauses is at most exp(−δ2k/20). Further, each
k-AND clause is chosen independently at random. Hence, by setting δ = k−1/8 and taking a union
bound over all the 2n assignments gives the result (we again use the fact that m ≫ n/α). �

Lemma 4.4 shows that for every {±1}n assignment to the variables x, at most 2−ω(
√
k) fraction

of the clauses contribute more than 2k7/8 to the numerator of ϑ(f, g). We can now finish the proof
of the soundness part above.

2For instance, if αµf > µg , we can always pick more constraints such that the numerator does not decrease (by
setting g(Cj) = ±1 in a greedy way so as to not decrease the numerator) till µg′ = αµf , while losing a factor 2. Similarly
for αµf < µg , we pick more variables.
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Proof of Soundness. Lemma 4.3 shows that when µf < α/400, ϑ(f, g) = O(
√
k). For solutions such

that µf > α/400, i.e., µg ≥ α2/400 = 2−2
√
k/400, by Lemma 4.4 at most 2−ω(

√
k) (≪ µg/k) fraction

of the constraints contribute more than k7/8 to the numerator. Even if the contribution is k [the
maximum possible] for this small fraction, the value ϑ(f, g) ≤ O(k7/8). �

This shows a gap of k vs k7/8 assuming Hypothesis 4.1. Since we can pick k to be arbitrarily
large, we can conclude that QP-Ratio is hard to approximate to any constant factor.

4.3 Reductions from Ratio versions of CSPs

This section is inspired by the proof of [ABH+05], who show that Quadratic Programming (QP) is
hard to approximate by giving a reduction from Label Cover to QP-Ratio.

Here we ask: is there a reduction from a ratio version of Label Cover to QP-Ratio? For this
to be useful we must also ask: is the (appropriately defined) ratio version of Label Cover hard to
approximate? The answer to the latter question is yes [see section A.3 for details and proof that
Ratio-LabelCover is hard to approximate to any constant factor]. Unfortunately, we do not know
how to reduce from Ratio-LabelCover. However, we present a reduction starting from a ratio version
of Unique Games. We do not know if Ratio UG is hard to approximate for the parameters we need.
While it seems related to Unique Games with Small-set Expansion [RS10], a key point to note is that
we do not need ‘near perfect’ completeness, as in typical UG reductions.

We hope the Fourier analytic tools we use to analyze the ratio objective could find use in other
PCP-based reductions to ratio problems. Let us now define a ratio version of Unique Games, and a
useful intermediate QP-Ratio problem.

Definition 4.5 (Ratio UG ). Consider a unique label cover instance U
(
G(V,E), [R], {πe|e ∈ E}

)
.

The value of a partial labeling L : V → [R] ∪ {⊥} (where label ⊥ represents it is unassigned) is

val(L) =
|{(u, v) ∈ E|πu,v(L(u)) = L(v)}|

|{v ∈ V |L(v) 6= ⊥}|

The (s, c)-Ratio UG problem is defined as follows: given c > s > 0 (to be thought of as constants),
and an instance U on a regular graph G, distinguish between the two cases:

– YES: There is a partial labeling L : V → [R] ∪ {⊥}, such that val(L) ≥ c.

– NO: For every partial labeling L : V → [R] ∪ {⊥}, val(L) < s.

The main result of this section is a reduction from (s, c)-Ratio UG to QP-ratio. We first introduce
the following intermediate problem:

Definition 4.6. QP-Intermediate: Given A(n×n) with Aii ≤ 0 , maximize xTAx∑
i |xi| s.t. xi ∈ [−1, 1].

Note that A is allowed to have diagonal entries (albeit only negative ones) , and that the variables
are allowed to take values in the interval [−1, 1] .

Lemma 4.7. Let A define an instance of QP-Intermediate with optimum value opt1. There exists an

instance B of QP-Ratio on (n ·m) variables, with m ≤ max{2‖A‖1
ε , 2n}+ 1, and the property that its

optimum value opt2 satisfies opt1 − ε ≤ opt2 ≤ opt1 + ε. [Here ‖A‖1 =
∑

i,j |aij |.]

Proof. The idea is to view each variable as an average of a large number (in this case, m) of new
variables: thus a fractional value for xi is ‘simulated’ by setting some of the new variables to ±1 and
the others zero. See Appendix A.2 for details. �
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Thus from the point of view of approximability, it suffices to consider QP-Intermediate. We now
give a reduction from Ratio UG to QP-Intermediate.

Input: An instance Υ = (V,E,Π) of Ratio UG , with alphabet [R].
Output: A QP-Intermediate instance Q with number of variables N = |V | · 2R.
Parameters: η := 106n724R

Construction:

– For every vertex u ∈ V , we have 2R variables, indexed by x ∈ {−1, 1}R. We will denote these
by fu(x), and view fu as a function on the hypercube {−1, 1}R.

– Fourier coefficients (denoted f̂u(S) = Ex[χS(x)fu(x)]) are linear forms in the variables fu(x).

– For (u, v) ∈ E, define Tuv =
∑

i f̂u({i})f̂v({πuv(i)}).

– For u ∈ V , define L(u) =
∑

S:|S|6=1 f̂u(S)
2.

– The instance of QP-Intermediate we consider is

Q := max
E(u,v)∈E Tuv − ηEu L(u)

Eu |fu|1
,

where |fu|1 denotes Ex[|fu(x)|].

Lemma 4.8. (Completeness) If the value of Υ is ≥ α, then the reduction gives an instance of
QP-Intermediate with optimum value ≥ α.

Proof. Consider an assignment to Υ of value α and for each u set fu to be the corresponding dictator
(or fu = 0 if u is assigned ⊥). This gives a ratio at least α (the L(u) terms contribute zero for each
u). �

Lemma 4.9. (Soundness) Suppose the QP-Intermediate instance obtained from a reduction (starting
with Υ) has value τ , then there exists a solution to Υ of value ≥ τ2/C, for an absolute constant C.

Proof. Consider an optimal solution to the instance Q of QP-Intermediate, and suppose it has a value
τ > 0. Since the UG instance is regular, we have

val(Q) =

∑
uEv∈Γ(u) Tuv − η

∑
u L(u)∑

u‖fu‖1
. (17)

First, we move to a solution such that the value is at least τ/2, and for every u, |fu|1 is either
zero, or is “not too small”. The choice of η will then enable us to conclude that each fu is ‘almost
linear’ (there are no higher level Fourier coefficients).

Lemma 4.10. There exists a solution to Q of value at least τ/2 with the property that for every u,
either fu = 0 or ‖fu‖1 > τ

n22R
.

Proof. Let us start with the optimum solution to the instance. First, note that
∑

u‖fu‖1 ≥ 1/2R,
because if not, |fu(x)| < 1 for every u and x ∈ {−1, 1}R. Thus if we scale all the fu’s by a factor
z > 1, the numerator increases by a z2 factor, while the denominator only by z; this contradicts the
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optimality of the initial solution. Since the ratio is at least τ , we have that the numerator of (17)
(denoted num) is at least τ/2R.

Now since |f̂u(S)| ≤ ‖fu‖1 for any S, we have that for all u, v, Tuv ≤ R · ‖fu‖1‖fv‖1. Thus
Ev∈Γ(u) Tuv ≤ R · ‖fu‖1. Thus the contribution of u s.t. ‖fu‖1 < τ/(n22R) to num is at most
n ×R · τ

n22R
< τ

2R+1 < num/2. Now setting all such fu = 0 will only decrease the denominator, and
thus the ratio remains at least τ/2. [We have ignored the L(u) term because it is negative and only
improves when we set fu = 0.] �

For a boolean function f , we define the ‘linear’ and the ‘non-linear’ parts to be

f=1 :=
∑

i

f̂(i)χ({i}) and f 6=1 := f − f=1 =
∑

|S|6=1

f̂(S)χ(S).

Our choice of η will be such that:

1. For all u with fu 6= 0, ‖f 6=1
u ‖22 ≤ ‖fu‖21/106. Using Lemma 4.10 (and the näıve bound τ ≥ 1/n),

this will hold if η > 106n724R. [A simple fact used here is that
∑

uE[Tuv] ≤ nR.]

2. For each u, ‖f 6=1
u ‖22 < 1

22R
. This will hold if η > n22R and will allow us to use Lemma A.1.

Also, since by Cauchy-Schwarz inequality, |fu|22 ≥ δ2u, we can conclude that ‘most’ of the Fourier
weight of fu is on the linear part for every u. We now show that the Cauchy-Schwarz inequality
above must be tight up to a constant (again, for every u). The following is the key lemma in the
reduction: it says that if a boolean function f is ‘nearly linear’, then it must also be spread out
[which is formalized by saying ‖f‖2 ≈ ‖f‖1]. This helps us deal with the main issue in a reduction
with a ratio objective – showing we cannot have a large numerator along with a very small value of
‖f‖1 (the denominator). Morally, this is similar to a statement that a boolean function with a small
support cannot have all its Fourier mass on the linear Fourier coefficients.

Lemma 4.11. Let f : {−1, 1}R 7→ [−1, 1] satisfy ‖f‖1 = δ. Let f=1 and f 6=1 be defined as above.
Then if ‖f‖22 > (104 + 1)δ2, we have ‖f 6=1‖22 ≥ δ2.

Proof. Suppose that ‖f‖22 > (104 + 1)δ2, and for the sake of contradiction, that ‖f 6=1‖22 < δ2. Thus
since ‖f‖22 = ‖f=1‖22 + ‖f 6=1‖22, we have ‖f=1‖2 > (100δ)2.

If we write αi = f̂({i}), then f=1(x) =
∑

i αixi, for every x ∈ {−1, 1}R. From the above, we have∑
i α

2
i > (100δ)2 . Now if |αi| > 4δ for some i, we have ‖f=1‖1 > (1/2) · 4δ, because the value of f=1

at one of x, x⊕ ei is at least 4δ for every x. Thus in this case we have ‖f=1‖1 > 2δ.
Now suppose |αi| < 4δ for all i, and so we can use Lemma A.2 to conclude that Px(f

=1(x) >
100δ/10) ≥ 1/4, which in turn implies that |f=1|1 > (100δ/10) ·Px(f

=1(x) > 100δ/10) > 2δ.
Thus in either case we have ‖f=1‖1 > 2δ. This gives ‖f − f=1‖1 > ‖f=1‖1 −‖f‖1 > δ, and hence

‖f − f=1‖22 > δ2 (Cauchy-Schwarz), which implies ‖f 6=1‖22 > δ2, which is what we wanted. �

Now, let us denote δu = |fu|1. Since Υ is a unique game, we have for every edge (u, v) (by
Cauchy-Schwarz),

Tu,v =
∑

i

f̂u({i})f̂v({πuv(i)}) ≤
√∑

i

f̂u({i})2
√∑

j

f̂u({j})2 ≤ |fu|2|fv|2 (18)

Now we can use Lemma 4.11 to conclude that in fact, Tu,v ≤ 104δuδv. Now consider the following
process: while there exists a u such that δu > 0 and Ev∈Γ(u) δv < τ

4·104 , set fu = 0. We claim that
this process only increases the objective value. Suppose u is such a vertex. From the bound on Tuv
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above and the assumption on u, we have Ev∈Γ(u) Tuv < δu · τ/4. If we set fu = 0, we remove at most
twice this quantity from the numerator, because the UG instance is regular [again, the L(u) term
only acts in our favor]. Since the denominator reduces by δu, the ratio only improves (it is ≥ τ/2 to
start with).

Thus the process above should terminate, and we must have a non-empty graph at the end. Let
S be the set of vertices remaining. Now since the UG instance is regular, we have that

∑
u δu =∑

uEv∈Γ(u) δv. The latter sum, by the above is at least |S| · τ/(4 · 104). Thus since the ratio is at

least τ/2, the numerator num ≥ |S| · τ2

8·104 .
Now let us consider the following natural randomized rounding: for vertex u ∈ S, assign label i

with probability |f̂u({i})|/(
∑

i |f̂u({i})|). Now observing that
∑

i |f̂u({i})| < 2 for all u (Lemma A.1),
we can obtain a solution to ratio-UG of value at least num/|S|, which by the above is at least τ2/C
for a constant C.

This completes the proof of Lemma 4.9. �
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A Hardness of QP-Ratio

A.1 Boolean analysis

Lemma A.1. [ABH+05] Let fu : {−1, 1}R → [−1, 1] be a solution to Q of value τ > 0. Then

∀u ∈ V

R∑

i=1

|f̂u({i})| ≤ 2.

Proof. Assume for sake of contradiction that
∑

i f̂u({i}) > 2.

Since f=1
u is a linear function with co-efficients {f̂u({i})}, there exists some y ∈ {−1, 1}R such that

f=1
u (y) =

∑
i |f̂i({i})| > 2. For this y, we have f 6=1(y) = f(y)− f=1(y) < −1.

Hence |f 6=1|22 > 2−R, which gives a negative value for the objective, for our choice of η. �

The following is the well-known Berry-Esséen theorem (which gives a quantitative version of
central limit theorem). The version below is from [O’D].

Lemma A.2. Let α1, . . . , αR be real numbers satisfying
∑

i α
2
i = 1, and α2

i ≤ τ for all i ∈ [R]. Let
Xi be i.i.d. Bernoulli (±1) random variables. Then for all θ > 0, we have

∣∣P[
∑

i

αiXi > θ]−N(θ)
∣∣ ≤ τ,

where N(θ) denotes the probability that g > θ, for g drawn from the univariate Gaussian N (0, 1).

A.2 Reducing QP-Intermediate to QP-Ratio

In this section we will prove Lemma 4.7. Let us start with a simple observation

Lemma A.3. Let A be an n × n matrix (it could have arbitrary diagonal entries). Suppose {xi},
1 ≤ i ≤ n is the optimum solution to

max
xi∈[−1,1]

xTAx∑
i |xi|

.

Now let δ < min{ ε
2‖A‖1 ,

1
2n} (where ‖A‖1 =

∑
i,j |aij |). Then perturbing each xi additively by δ

(arbitrarily) changes the value of the ratio by an additive factor of at most ε.

Proof. First note that
∑

i |xi| ≥ 1, because otherwise we can scale all the xi by a factor z > 1 and
obtain a feasible solution with a strictly better value [because the numerator scales by z2 and the
denominator only by z]. Thus changing each xi by δ < 1/2n will keep the denominator between 1/2
and 3/2. Now consider the numerator: it is easy to see that a term aijxixj changes by at most δ|aij |,
and thus the numerator changes by at most δ‖A‖1. Thus the ratio changes by an additive factor at
most 2δ‖A‖1 < ε, by the choice of δ. �

Proof of Lemma 4.7. Start with an instance of QP-Intermediate given by A(n×n), and suppose the
optimum value is opt1. Let m be an integer which will be chosen later [think of it as sufficiently large].

Consider the quadratic form B on n ·m variables, defined by writing xi =
1
m · (y(1)i +y

(2)
i + · · ·+y

(m)
i ),
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and expanding out xTAx. Let C be a form on (the same) n ·m variables obtained from B by omitting
the square (diagonal) terms. Now consider the QP-Ratio instance given by C. That is,

maximize
yTCy

1
m

∑
i,j |y

(j)
i |

, subject to y
(j)
i ∈ {−1, 0, 1}. (19)

Let us write aii = −αi (by assumption αi ≥ 0). The we observe that

yTCy
1
m

∑
i,j |y

(j)
i |

=
yTBy

1
m

∑
i,j |y

(j)
i |

+

∑
i
αi
m2 ·

(∑
j |y

(j)
i |

)

1
m

∑
i,j |y

(j)
i |

(20)

By the assumption on αi, we have

yTBy
1
m

∑
i,j |y

(j)
i |

≤ yTCy
1
m

∑
i,j |y

(j)
i |

≤ yTBy
1
m

∑
i,j |y

(j)
i |

+
∑

i

αi

m
(21)

We prove the two inequalities separately. First let us start with an optimum solution {xi} to QP-

Intermediate (from A) with value opt1. As above, define δ = min{ ε
2‖A‖1 ,

1
2n}. Let us round the values

xi to the nearest integer multiple of δ [for simplicity we will assume also that 1/δ is an integer]. By
Lemma A.3, this will change the objective value by at most ε. We will choose m to be an integer

multiple of 1/δ, thus if we set y
(j)
i = sign(xi) for j = 1, 2, . . . ,mxi and 0 for the rest, we obtain a

value at least opt1 − ε for the QP-Ratio problem defined by C [using the first half of (21)]. Thus
opt2 ≥ opt1 − ε.

Now consider a solution to the QP-Ratio problem defined by C, and set xi =
1
m · (y(1)i + . . . y

(m)
i ).

For this assignment, we have

xTAx∑
i |xi|

=
yTBy

∑
i

1
m (

∑
j |y

(j)
i |)

≥ yTBy

1
m

∑
i,j |y

(j)
i |

≥ yTCy

1
m

∑
i,j |y

(j)
i |

− ε,

because we will choose m ≥ ‖A‖1
ε . This implies that opt1 ≥ opt2 − ε.

Thus we need to choose m to be the smallest integer larger than max{2‖A‖1
ε , 2n} for all the bounds

to hold. This gives the claimed bound on the size of the instance. �

A.3 Towards NP-hardness – LabelCover with SSE

The PCP theorem, [AS98, ALM+98] combined with the parallel repetition theorem [Raz98] yields
the following theorem.

Theorem A.4 (Label Cover hardness). There exists a constant γ > 0 so that any 3-SAT instance w
and any R > 0, one can construct a Label Cover instance L, with |w|O(logR) vertices, and label set of
size R, so that: if w is satisfiable, val(L) = 1 and otherwise val(L) = τ < R−γ. Further, L can be
constructed in time polynomial in its size.

Definition A.5 ((µ, η)-Expanding Label Cover ). An instance of the Label Cover problem is said to
be (µ, η)-expanding if for every µ′ < µ, and functions f : A → [0, 1] and g : B → [0, 1] such that
Ea∈A[f(a)] = Eb∈B[g(b)] = µ′,

E(a,b)∈E [f(a) g(b)] ≤ µ′η.

Theorem A.6. For every δ > 0 and η > δ1/3, one can convert a Label Cover instance L into an
instance (δ, η) Expanding Label Cover L′ (with the same completeness vs soundness). Further, the
size of L′ is at most |L|1/δ and has a label set of size at most R/δ.
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Proof. We use one of product instances used in [HK04] (which gives Mixing but not Smoothness -
Appendix A.2). They can argue about the expansion of only sets that are sufficiently large (constant
fraction), while we need to work with all set sizes < δn.

Given an instance of Label Cover represented as Υ = (A∪B, E,Π, [R]), let Υk = (Ak∪B, Ek,Π, [R]),
where (1/η)3 < k < 1/δ. Let g : B → [0, 1] be any function defined on the right hand side. For each
a ∈ A, let Xa denote the average value of g over the neighborhood of a. Since Υ is right-regular, we
have Ea∈A[Xa] = Eb∈B g(b).

For a vertex a = (a1, a2, . . . ak) ∈ Ak, define Ya to be the average value of g over the neighborhood
of a (counting multiple edges multiple times).

E
a∈Ak

[Y 2
a ] = E

a1,a2,...,ak∈A

[(∑
iXai

k

)2
]

=
1

k
E

a∈A
[X2

ai ] +
k2 − k

k2
E

a,a′∈A
[XaXa′ ]

≤ 1

k
δ + δ2 ≤ 2δ

k
(for δ < 1/k)

Thus, by a second moment bound, the fraction of vertices in Ak with Ya greater than η is at most
2δ/kη2. Thus, for any f : Ak → [0, 1], such that E[f ] = δ,

E
(a,b)∈E

[f(a)g(b)] ≤ 2δ

kη2
+ η

(
δ − 2δ

kη2

)

≤ 3δη since (1/η)3 < k

�

Ratio Label Cover. Consider the ratio version of Label Cover – the goal is to find a partial
assignment to a Label Cover instance, which maximizes the fraction of edges satisfied, divided by the
fraction of vertices which have been assigned labels (an edge (u, v) is satisfied iff both the end points
are assigned labels which satisfy the constaint πu,v).

It follows by a fairly simple argument that Theorem A.6 shows that Ratio Label Cover is NP-hard
to approximate within any constant factor. We sketch an argument that shows NP-hardness of 1 vs
γ for any constant γ > 0. We start with Label Cover instance Υ with completeness 1 and soundess
τ < γ4/3 (and appropriate label size). Our Ratio Label Cover instance is essentially obtained by
applying Theorem A.6 : the instance has soundness τ and is (γ1/3, γ) expanding. The completeness
of this instance is easily seen to be 1.

To argue the soundess, it first suffices to only consider solutions f, g which have equal measure
(similar to the argument in section 4.2 – the instance first has its right side duplicated so that right
and left sizes are equal, and then upto a factor 2 loss, we only pick equal number of vertices on
both sides). The expansion of sets of measure < δ have value at most γ due to the expansion of
the instance. Suppose there is a solution of measure ≥ δ which has ratio label cover value γ, then
we obtain a solution to the Label Cover instance Υ of value at least γ · δ = γ4/3 > τ , which is a
contradiction.

B APX-hardness of QP-Ratio

We proved that QP-Ratio is hard to approximate to an O(1) factor assuming the small-set expansion
conjecture. Here we prove a weaker hardness result – that there is no PTAS – assuming just P 6= NP.
We do not go into the full details, but the idea is the following.
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We reduce Max-Cut to an instance of QP-Ratio. The following is well-known (we can also start
with other QP problems instead of Max-Cut)

There exist constants 1/2 < ρ′ < ρ such that: given a graph G = (V,E) which is regular
with degree d, it is NP-hard to distinguish between
Yes. MaxCut(G) ≥ ρ · nd/2, and
No. MaxCut(G) ≤ ρ′ · nd/2.

Given an instance G = (V,E) of Max-Cut, we construct an instance of QP-Ratio which has V
along with some other vertices, and such that in an OPT solution to this QP-Ratio instance, all
vertices of V would be picked (and thus we can argue about how the best solution looks).

First, let us consider a simple instance: let abcde be a 5-cycle, with a cost of +1 for edges
ab, bc, cd, de and −1 for the edge ae. Now consider a QP-Ratio instance defined on this graph (with
±1 weights). It is easy to check that the best ratio is obtained when precisely four of the vertices are
given non-zero values, and then we can get a numerator cost of 3, thus the optimal ratio is 3/4.

Now consider n cycles, aibicidiei, with weights as before, but scaled up by d. Let A denote the
vertex set {ai} (similarly B,C, ..). Place a clique on the set of vertices A, with each edge having a
cost 10d/n. Similarly, place a clique of the same weight on E. Now let us place a copy of the graph
G on the set of vertices C.

It turns out (it is actually easy to work out) that there is an optimal solution with the following
structure: (a) all ai are set to 1, (b) all ei are set to −1 (this gives good values for the cliques, and
good value for the aibi edge), (c) ci are set to ±1 depending on the structure of G, (d) If ci were set
to +1, bi = +1, and di = 0; else bi = 0 and di = −1 (Note that this is precisely where the 5-cycle
with one negative sign helps!)

Let x1, ..., xn ∈ {−1, 1} be the optimal assignment to the Max-Cut problem. Then as above, we
would set ci = xi. Let the cost of the MaxCut solution be θ · nd/2. Then we set 4n of the 5n variables
to ±1, and the numerator is (up to lower order terms):

2 · (10d/n)n2/2 + θ · nd/2 + 3nd = (∆ + θ)nd,

where ∆ is an absolute constant.
We skip the proof that there is an optimal solution with the above structure. Thus we have that

it is hard to distinguish between a case with ratio (∆ + ρ′)d/4, and (∆ + ρ)d/4, which gives a small
constant factor hardness.

C Reduction from a weighted to an Unweighted version

Lemma C.1. Let A be an n×m matrix, and let w ≥ 1 be an integer. Let opt1 denote the optimum
value of the problem

max
x∈{−1,0,1}n,y∈{−1,0,1}m

xTAy

w‖x‖1 + ‖y‖1
.

Let B be a wn×m matrix formed by placing w copies of A one below the other. [In terms of bipartite
graphs, this just amounts to making w copies of the left set of vertices.] Let opt2 denote the optimum
value of the problem

max
z∈{−1,0,1}wn,y∈{−1,0,1}m

zTBy

‖z‖1 + ‖y‖1
.

Then opt1 = opt2.
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Proof. It is clear that opt2 ≥ opt1: simply take a solution of value opt1 for the first problem and
form z by taking w copies of x. To see the other direction, let us view z as being formed of ‘chunks’
z1, . . . , zw of size n each. Consider a solution to the second problem of value opt2. Then

opt2 =
zT1 Ay + zT2 Ay + . . . zTwAy

‖z1‖1 + . . . ‖zw‖1 + |y| ,

which implies that if we set x = zi which gives the largest value of zTi Ay/‖zi‖1, we obtain a value at
least opt2 to the first problem.

This completes the proof. �
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