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Approximating Matrix p-norms

Aditya Bhaskara ∗ Aravindan Vijayaraghavan †

Abstract

We consider the problem of computing the q 7→ p norm of a matrix A, which is defined for
p, q ≥ 1, as

‖A‖q 7→p = max
x 6=~0

‖Ax‖p
‖x‖q

.

This is in general a non-convex optimization problem, and is a natural generalization of
the well-studied question of computing singular values (this corresponds to p = q = 2). Dif-
ferent settings of parameters give rise to a variety of known interesting problems (such as the
Grothendieck problem when p = 1 and q = ∞). However, very little is understood about the
approximability of the problem for different values of p, q.

Our first result is an efficient algorithm for computing the q 7→ p norm of matrices with
non-negative entries, when q ≥ p ≥ 1. The algorithm we analyze is based on a natural fixed
point iteration, which can be seen as an analog of power iteration for computing eigenvalues.

We then present an application of our techniques to the problem of constructing a scheme
for oblivious routing in the ℓp norm. This makes constructive a recent existential result of
Englert and Räcke [ER09] on O(log n) competitive oblivious routing schemes (which they make
constructive only for p = 2).

On the other hand, when we do not have any restrictions on the entries (such as non-
negativity), we prove that the problem is NP-hard to approximate to any constant factor, for
2 < p ≤ q and p ≤ q < 2 (these are precisely the ranges of p, q with p ≤ q where constant
factor approximations are not known). In this range, our techniques also show that if NP /∈

DTIME(npolylog(n)), the problem cannot be approximated to a factor 2(logn)1−ε

, for any constant
ε > 0.
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1 Introduction

We study the problem of computing norms of matrices. The ℓq to ℓp norm of a matrix A ∈ R
m×n

is defined to be

‖A‖q 7→p = max
x∈Rn,x 6=~0

‖Ax‖p
‖x‖q

, where ‖x‖p = (|x1|
p + · · ·+ |xn|

p)1/p

Throughout, we think of p, q ≥ 1. If we think of the matrix as an operator from R
n with the ℓq

norm to the space R
m with ℓp norm, the norm ‖A‖q 7→p measures the ‘maximum stretch’ of a unit

vector.
Computing the q 7→ p-norm of a matrix is a natural optimization problem. For instance, it

can be seen as a natural generalization of the extensively studied problem of computing the largest
singular value of a matrix [HJ85]. This corresponds to the case p = q = 2. When p = 1 and q =∞,
it turns out to be the well-studied Grothendieck problem [Gro53, AN04], which is defined as

max
xi,yi∈{−1,1}

∑

i,j

aijxiyj.

Thus for different settings of the parameters, the problem seems to have very different flavors.
We study the question of approximating ‖A‖q 7→p for different ranges of the parameters p, q.

The case p = q is referred to as the matrix p-norm (denoted by ‖A‖p), and has been considered
in the scientific computing community. For instance, it is known to have connections with matrix
condition number estimates (see [Hig92] for other applications). Computing ‖A‖q 7→p has also been
studied because of its connections to robust optimization [Ste05]. Another special case which has
been studied [Boy74, Ste05] is one where the entries of the matrix A are restricted to be non-
negative. Such instances come up in graph theoretic problems, like in the ℓp oblivious routing
question of [ER09].

Note that computing the matrix q 7→ p norm is a problem of maximizing a convex function over
a convex domain. While a convex function can be minimized efficiently over convex domains using
gradient descent based algorithms, it is in general hard to maximize them. Thus it is interesting that
our algorithm can efficiently compute the norm for non-negative matrices for a range of parameters.

Known algorithms. Very little is known about approximating ‖A‖q 7→p in general. For comput-
ing p-norms (i.e., q = p), polynomial time algorithms for arbitrary A are known to exist only for
p = 1, 2, and∞. For the general problem, for p ≤ 2, q > 2, Nesterov[Nes98] shows that the problem
can be approximated to a constant factor (which can be shown to be < 2.3), using a semidefinite
programming relaxation. When the matrix has only non-negative entries, this relaxation can be
shown to be exact [Ste05].

For other ranges of p, q, the best known bounds are polynomial factor approximations, obtained
by ‘interpolating’. For instance, for computing ‖A‖p 7→p, computing the vectors that maximize
the norm for p = 1, 2,∞, and picking the best of them gives an O(n1/4) approximation for all p
(see [Hig92]). For the general problem of computing ‖A‖q 7→p, Steinberg [Ste05] gives an algorithm
with an improved guarantee of O(n25/128), by taking into account the approximation algorithms of
Nesterov for certain ranges.

These algorithms use Hölder’s inequality, and a fact which follows from the duality of ℓp spaces
(this sometimes allows one to ‘move’ from one range of parameters to another):

‖A‖q 7→p = ‖A
T ‖p′ 7→q′ ,

where AT is the transpose of the matrix A, and p′ and q′ are the ‘duals’ of p, q respectively (i.e.
1/p + 1/p′ = 1). See Appendix A.2 for a proof.
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The hardness front. The problem is known to be NP-hard in the range q ≥ p ≥ 1 [Ste05]. Very
recently in independent work, [HO09] show that it is NP-hard to compute the p-norm to arbitrary
relative precision when p 6∈ {1, 2,∞} (i.e., there cannot be a (1 + δ) approximation algorithm with
run time poly(n,m, 1/δ)).

1.1 Our Results

Non-negative matrices. We first consider the case of matrices A with non-negative entries.
Here we prove that if 1 ≤ p ≤ q, then ‖A‖q 7→p can be computed in polynomial time. More precisely
we give an algorithm which gives a (1 + δ) approximation in time polynomial in n,m, and (1/δ).

Thus in particular, we give the first poly time guarantee (to the best of our knowledge) for
computing the matrix p-norm for non-negative matrices. We give an analysis of a power iteration
type algorithm for computing p-norms proposed by Boyd [Boy74]. The algorithm performs a fixed
point computation, which turns out to mimic power iteration for eigenvalue computations.

Heuristic approaches to many optimization problems involve finding solutions via fixed point
computations. Our analysis proves polynomial convergence time for one such natural fixed point
algorithm. These techniques could potentially be useful in other similar settings. We believe that
this algorithm could be useful as an optimization tool for other problems with objectives that
involve p-norms (or as a natural extension of eigenvalue computations). We now mention one such
application, to oblivious routing in the ℓp norm.

Application to Oblivious Routing. In the oblivious routing problem, we are given a graph G,
and we need to output a ‘routing scheme’, namely a unit flow between every pair of vertices. Now
given a set of demands (for a multicommodity flow), we can route them according to this scheme
(by scaling the flows we output according to the demand in a natural way), and the total flow on
each edge is obtained. The aim is to compete (in terms of, for instance, max congestion) with the
best multicommodity flow ‘in hindsight’ (knowing the set of demands).

For max-congestion (maximum total flow on an edge – which is the ℓ∞ norm of the vector of
flows on edges), a beautiful result of [R0̈8] gives an O(log n) competitive routing scheme. Englert
and Räcke [ER09] recently showed that there exists an oblivious routing scheme which attains a
competitive ratio of O(log n) when the objective function is the ℓp-norm of the flow vector (|E|
dimensional vector). However, they can efficiently compute this oblivious routing scheme only for
p = 2.

From the analysis of our algorithm, we can prove that for matrices with strictly positive entries
there is a unique optimum. Using this and a related idea (Section 4), we can make the result
of [ER09] constructive. Here matrix p-norm computation is used as a ‘separation oracle’ in a
multiplicative weights style update, and this gives an O(log n)-competitive oblivious routing scheme
for all ℓp-norms (p ≥ 1).

Hardness of approximation. For general matrices (with negative entries allowed), we show the
inapproximability of almost polynomial factor for computing the q 7→ p norm of general matrices
when q ≥ p and both p, q are > 2. By duality, this implies the same hardness when both p, q are
< 2 and q ≥ p.1

More precisely, for these ranges, we prove that computing ‖A‖q 7→p upto any constant factor is
NP-hard. Under the stronger assumption that NP /∈ DTIME(2polylog(n)), we prove that the problem
is hard to approximate to a factor of Ω(2(log n)

1−ε
), for any constant ε > 0.

1When p ≤ 2 and q ≥ 2, Nesterov’s algorithm gives a constant factor approximation.
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Techniques. We first consider p 7→ p norm approximation, for which we show constant factor
hardness by a gadget reduction from the gap version of MaxCut. Then we show that the p 7→ p
norm multiplies upon tensoring, and thus we get the desired hardness amplification. While the
proof of the small constant hardness carries over to the q 7→ p norm case with q > p > 2, in general
these norms do not multiply under tensoring. We handle this by giving a way of starting with a
hard instance of p 7→ p norm computation (with additional structure, as will be important), and
convert it to one of q 7→ p norm computation.

We find the hardness results for computing the q 7→ p norm interesting because the bounds
are very similar to hardness of combinatorial problems like label cover, and it applies to a natural
numeric optimization problem.

The question of computing ‖A‖∞7→p has a simple alternate formulation (Definition 6.9): given
vectors a1,a2, . . . ,an, find a {±} combination of the vectors so as to maximize the length (in ℓp
norm) of the resultant. The previous hardness result also extends to this case.

Comparison with previous work. For clarity, let us now tabulate our algorithmic and hardness
results in Tables 1.1 and show how they compare with known results for different values of the
parameters p, q. Each row and column in the table gives three things: the best known algorithm
in general, the best known approximation algorithm when all entries of A are non-negative, and
the best known hardness for this range of p, q. An entry saying “NP-hard” means that only exact
polynomial time algorithms are ruled out.

Discussion and open questions. All our algorithms and hardness results apply to the case
p ≤ q, but we do not know either of these (even for non-negative matrices) for p > q (which is
rather surprising!). For algorithmic results (for positive matrices, say) the fact that we can optimize
‖Ax‖p/‖x‖q seems closely tied to the fact that the set {x : ‖x‖p/‖x‖q > τ} is convex for any
τ > 0 and p ≤ q. However, we are not aware of any formal connection. Besides, when p > q, even
for non-negative matrices there could be multiple optima (we prove uniqueness of optimum when
p ≤ q).

On the hardness front, the q < p case seems more related to questions like the Densest k-
subgraph problem (informally, when the matrix is positive and p < q, if there is a ‘dense enough’
submatrix, the optimum vector would have most of its support corresponding to this). Thus the
difficulties in proving hardness for the norm question may be related to proving hardness for densest
subgraph.

Hypercontractive norms (corresponding to q < p) have been well-studied [KKL88], and have
also found prior use in inapproximability results for problems like maxcut. Also, known integrality
gap instances for unique games [KV05] are graphs that are hypercontractive. We believe that
computability of hypercontractive norms of a matrix could reveal insights into the approximability
of problems like small set expansion [RS10] and the planted dense k-subgraph problem [BCC+10].

1.2 Related work.

A question that is very related to matrix norm computation is the Lp Grothendieck problem, which
has been studied earlier by [KNS08]. The problem is to compute

max
||x||p≤1

xtBx

The question of computing ‖A‖p 7→2 is a special case of the Lp Grothendieck problem (where B � 0).
[KNS08] give an optimal (assuming UGC) O(p) approximation algorithm. For B being p.s.d.,
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Table 1: Previous work

1 < q < 2 q = 2 q > 2

Best Approximation 1 < p < 2 poly(n) O(1) [Nes98] O(1)[Nes98]
Hardness p < q: NP-hard NP-hard NP-hard

Non-negative Exact [Ste05] Exact [Ste05]
matrices

Best Approximation p = 2 poly(n) Exact O(1) [Nes98]
Hardness NP-hard

Non-negative Exact Exact [Ste05]
matrices

Best Approximation p > 2 poly(n) poly(n) poly(n)
Hardness p < q: NP-hard

Non-negative
matrices

Table 2: Our results. We give better algorithms for non-negative matrices and obtain almost-
polynomial hardness results when q ≥ p.

1 < q < 2 q = 2 q > 2

Hardness 1 < p < 2 p ≤ q: 2(logn)
1−ǫ

-hard
Non-negative matrices p ≤ q: Exact Exact Exact

Hardness p = 2
Non-negative matrices Exact Exact

Hardness p > 2 p ≤ q: 2(logn)
1−ǫ

-hard
Non-negative matrices p ≤ q: Exact

constant factor approximation algorithms are known, due to [Nes98]. Computing ‖A‖∞7→2 reduces
to maximizing a quadratic form over ±1 domain for p.s.d matrices [CW04, Nes98].

Recently, [DVTV09] studies an optimization problem which has an ℓp norm objective – they
wish to find the best k-dimensional subspace approximation to a set of points, where one wishes
to minimize the ℓp distances to the subspace (there are other problems in approximation theory
which are of similar nature). When k = n− 1 this can be shown to reduce to the Lp Grothendieck
problem for the matrix A−1.

1.3 Paper Outline

We start by presenting the algorithm for positive matrices (Section 3.1), and prove poly time
convergence (Section 3.2). Some additional properties of the optimization problem are discussed
in Section 4 (such as unique maximum, concavity around optimum), which will be useful for
an oblivious routing application. This will be presented in Section 5. Finally in Section 6, we
study the inapproximability of the problem: we first show a constant factor hardness for ‖A‖p 7→p

(Section 6.1), and show how to amplify it (Section 6.2). Then we use this to show hardness for
‖A‖q 7→p in section 6.3.
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2 Notation and Simplifications

We write R+ for the set of non-negative reals. For a matrix A, we let Ai denote the ith row of A.
Also aij denotes the element in the ith row and jth column. Similarly for a vector x, we denote
the ith co-ordinate by xi. We say that a vector x is positive if the entries xi are all > 0. Finally,
for two vectors x,y, we write x ∝ y to mean that x is proportional to y, i.e., x = λy for some λ
(in all places we use it, λ will be > 0).

For our algorithmic results, it will be much more convenient to work with matrices where we
restrict the entries to be in [1/N, 1], for some parameter N (zero entries can cause minor problems).
If we are interested in a (1 + δ) approximation, we can first scale A such that the largest entry is
1, pick N ≈ (m + n)2/δ, where m,n are the dimensions of the matrix, and work with the matrix
A+ 1

N J (here J is them×nmatrix of ones). The justification for this can be found in Appendix A.3.
We will refer to such A as a positive matrix.

3 An Iterative Algorithm

In this section, we consider positive matrices A, and prove that if 1 < p ≤ q, we can efficiently
compute ‖A‖q 7→p. Suppose A is of dimensions n× n, and define f : Rn 7→ R by

f(x) =
‖Ax‖p
‖x‖q

=
(
∑

i |Aix|
p)1/p

(
∑

i |xi|
q)1/q

.

We present an algorithm due to Boyd [Boy74], and prove that it converges quickly to the
optimum vector. The idea is to consider ∇f , and rewrite the equation ∇f = 0 as a fixed point
equation (i.e., as Sx = x, for an appropriate operator S). The iterative algorithm then starts with
some vector x, and applies S repeatedly. Note that in the case p = 2, this mimics the familiar power
iteration (in this case S will turn out to be multiplication by the matrix A (up to normalization)).

3.1 Algorithm description

Let us start by looking at ∇f .

∂f

∂xi
=
‖x‖q‖Ax‖

1−p
p ·

∑

j aij |Ajx|
p−1 − ‖Ax‖p‖x‖

1−q
q · |xi|

q−1

‖x‖2q
(1)

At a critical point, ∂f
∂xi

= 0 for all i. Thus for all i,

|xi|
q−1 =

‖x‖qq
‖Ax‖pp

·
∑

j

aij|Ajx|
p−1 (2)

Define an operator S : Rn
+ → R

n
+, with the ith co-ordinate of Sx being (note that all terms

involved are positive)

(Sx)i =
(

∑

j

aij(Ajx)
p−1

)1/(q−1)

Thus, at a critical point, Sx ∝ x. Now consider the the following algorithm:
(Input. An n×nmatrix A with all entries in [ 1N , 1], error parameter δ.)

1: Initialize x = 1
‖1‖p

.

2: loop {T times (it will turn out T = (Nn) · polylog(N,n, 1/δ))}
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3: set x← Sx.
4: normalize x to make ‖x‖q = 1.
5: end loop

A fixed point of the iteration is a vector x such that Sx ∝ x. Thus every critical point of f is a
fixed point. It turns out that every positive fixed point is also a critical point. Further, there will
be a unique positive fixed point, which is also the unique maximum of f .

3.2 Analyzing the Algorithm

We will treat f(x) as defined over the domain R
n
+. Since the matrix A is positive, the maximum

must be attained in R
n
+. Since f is invariant under scaling x, we restrict our attention to points in

Snq = {x : x ∈ R
n
+, ‖x‖q = 1}. Thus the algorithm starts with a point in Snq , and in each iteration

moves to another point, until it converges.
First, we prove that the maximum of f over R

n
+ occurs at an interior point (i.e., none of the

co-ordinates are zero). Let x∗ denote a point at which maximum is attained, i.e., f(x∗) = ‖A‖q 7→p

(x∗ need not be unique). Since it is an interior point, ∇f = 0 at x∗, and so x∗ is a fixed point for
the iteration.

Lemma 3.1. Let x∗ ∈ Snq be a point at which f attains maximum. Then each co-ordinate of x∗ is

at least 1
(Nn)2

.

The proof of this can be found in Section 4. Next, we show that with each iteration, the value
of the function cannot decrease. This was proved by [Boy74] (we refer to their paper for the proof).

Lemma 3.2. ([Boy74]) For any vector x, we have

‖ASx‖p
‖Sx‖q

≥
‖Ax‖p
‖x‖q

The analysis of the algorithm proceeds by maintaining two potentials, defined by

m(x) = min
i

(Sx)i
xi

and M(x) = max
i

(Sx)i
xi

.

If x is a fixed point, then m(x) = M(x). Also, from Section 3.1, each is equal to
( ‖x‖qq
‖Ax‖pp

)1/(q−1)
.

As observed in [Boy74], these quantites can be used to ‘sandwich’ the norm – in particular,

Lemma 3.3. For any positive vector x with ‖x‖q = 1, we have

m(x)q−1 ≤ ‖A‖pq 7→p ≤M(x)q−1

The lemma is crucial – it relates the norm (which we wish to compute) to certain quantities we
can compute starting with any positive vector x. We now give a proof of this lemma. Our proof,
however, has the additional advantage that it immediately implies the following:

Lemma 3.4. The maximum of f on Snq is attained at a unique point x∗. Further, this x∗ is the
unique critical point of f on Snq (which also means it is the unique fixed point for the iteration).

Proof (of Lemma 3.3). Let x ∈ Snq be a positive vector. Let x∗ ∈ Snq be a vector which maximizes
f(x).

7



The first inequality is a simple averaging argument:

∑

i xi · (Sx)
q−1
i

∑

i xi · x
q−1
i

=

∑

i xi ·
∑

j aij(Ajx)
p−1

∑

i x
q
i

(3)

=

∑

j(Ajx)
p−1

∑

i aijxi
∑

i x
q
i

(4)

=

∑

j(Ajx)
p

∑

i x
q
i

=
‖Ax‖pp
‖x‖qq

≤ ‖A‖pq 7→p (5)

The last inequality uses ‖x‖q = 1. Thus there exists an index i such that (Sx)q−1
i /xq−1

i ≤ ‖Ax‖q 7→p.
The latter inequality is more tricky – it gives an upper bound on f(x∗), no matter which x ∈ Snq

we start with. To prove this, we start by observing that x∗ is a fixed point, and thus for all k,

m(x∗)q−1 = M(x∗)q−1 =
(Sx∗)q−1

k

(x∗)q−1
k

.

Call this quantity λ. Now, let θ > 0 be the smallest real number such that x− θx∗ has a zero
co-ordinate, i.e., xk = θx∗k, and xj ≥ θx∗j for j 6= k. Since ‖x‖q = ‖x∗‖q and x 6= x∗, θ is well-
defined, and xj > θx∗j (strictly) for some index j. Because of these, and since each aij is strictly

positive, we have Sx > S(θx∗) = θ(p−1)/(q−1)S(x∗) (clear from the definition of S).
Now, for the index k, we have

(Sx)q−1
k

xq−1
k

>
θp−1(Sx∗)q−1

k

(θx∗k)
q−1

= θ(p−q) · λ

Thus we have M(x)q−1 > λ (since q ≥ p, and 0 < θ < 1), which is what we wanted to prove.

Let us see how this implies Lemma 3.4.

Proof (of Lemma 3.4). Let x∗ ∈ Snq denote a vector which maximizes f over Snq (thus x∗ is one
fixed point of S). Suppose, if possible, that y is another fixed point. By the calculation in Eq.(5)
(and since y is a fixed point and x∗ maximizes f), we have

M(y)q−1 = m(y)q−1 =
‖Ay‖pp
‖y‖qq

= f(y)q ≤ f(x∗)p

Now since y 6= x∗, the argument above (of considering the smallest θ such that y − θx∗ has a zero
co-ordinate, and so on) will imply that M(y)q−1 > λ = f(x∗)p, which is a contradiction.

This proves that there is no other fixed point.

The next few lemmas say that as the algorithm proceeds, the value of m(x) increases, while
M(x) decreases. Further, it turns out we can quantify how much they change: if we start with an
x such that M(x)/m(x) is ‘large’, the ratio drops significantly in one iteration.

Lemma 3.5. Let x be a positive vector. Then m(x) ≤ m(Sx), and M(x) ≥M(Sx).

Proof. Suppose m(x) = λ. So for every i, we have (Sx)i ≥ λxi. Now fix some index i and consider
the quantity

(SSx)q−1
i =

∑

j

aij(AjSx)
q−1.

8



Since A is a positive matrix and (Sx)i ≥ λxi, we must have (AjSx) ≥ λ · (Ajx) for every j. Thus

(SSx)q−1
i ≥ λq−1

∑

j

aij(Ajx)
q−1 = λq−1(Sx)q−1

i .

This shows that m(Sx) ≥ λ. A similar argument shows that M(Sx) ≤M(x).

Lemma 3.6. Let x be a positive vector with ‖x‖q = 1, and suppose M(x) ≥ (1 + α)m(x). Then
m(Sx) ≥

(

1 + α
Nn

)

m(x).

Proof. Let m(x) = λ, and suppose k is an index such that (Sx)k ≥ (1 + α)λ · xk (such an index
exists because M(x) > (1+α)λ. In particular, (Sx) ≥ λx+αλ · ek, where ek is the standard basis
vector with the kth entry non-zero. Thus we can say that for every j,

Aj(Sx) ≥ λAjx+ αλAjek.

The second term will allow us to quantify the improvement in m(x). Note that Ajek = ajk ≥
1

NnAj1 (since Ajk is not too small). Now 1 ≥ x since x has q-norm 1, and thus we have

Aj(Sx) ≥
(

1 +
α

Nn

)

λ ·Ajx

Thus (SSx)q−1
i ≥

(

1 + α
Nn

)q−1
λq−1(Sx)q−1

i , implying that m(Sx) ≥
(

1 + α
Nn

)

λ.

This immediately implies that the value ‖A‖q 7→p can be computed quickly. In particular,

Theorem 3.7. For any δ > 0, after O(Nn·polylog(N,n, 1δ )) iterations, the algorithm of Section 3.1
finds a vector x such that f(x) ≥ (1− δ)f(x∗)

Proof. To start with, the ratio M(x)
m(x) is at most Nn (since we start with 1, and the entries of the

matrix lie in [1/N, 1]). Lemma 3.6 now implies that the ratio drops from (1 + α) to (1 + α
2 ) in

Nn iterations. Thus in T = (Nn)polylog(N,n, 1/δ) steps, the x we end up with has M(x)
m(x) at

most
(

1 + δ
(Nn)c

)

for any constant c. This then implies that f(x) ≥ f(x∗)
(

1 − δ
(Nn)c

)

, after T
iterations.

4 Proximity to the optimum

The argument above showed that the algorithm finds a point x such that f(x) is close to f(x∗).
We proved that for positive matrices, x∗ is unique, and thus it is natural to ask if the vector we
obtain is ‘close’ to x∗. This in fact turns out to be important in an application to oblivious routing
which we consider in Section 5.

We can prove that the x we obtain after T = (Nn)polylog(N,n, 1/δ) iterations is ‘close’ to x∗.
The rough outline of the proof is the following: we first show that f(x) is strictly concave ‘around’
the optimum 2. Then we show that the ‘level sets’ of f are ‘connected’ (precise definitions follow).
Then we use these to prove that if f(x) is close to f(x∗), then x− x∗ is ‘small’ (the choice of norm
does not matter much).

Some of these results are of independent interest, and shed light into why the q 7→ p problem
may be easier to solve when p ≤ q (even for non-negative matrices).

2Note that the function f is not concave everywhere (see Appendix A.1)
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Concavity around the optimum. We now show that the neighborhood of every critical point
(where ∇f vanishes) is strictly concave. This is another way of proving that every critical point is
a maximum (this was the way [ER09] prove this fact in the p = q case).

Taking partial derivatives of f(x) =
‖Ax‖p
‖x‖q

, we observe that

∂f

∂xi
= f(x)

(

∑

k(Akx)
p−1aki

‖Ax‖pp
−

xq−1
i

‖x‖qq

)

(6)

where Ak refers to the kth row of matrix A. Now, consider a critical point z, with ‖z‖q = 1
(w.l.o.g.). We can also always assume that w.l.o.g. the matrix A is such that ‖Az‖p = 1. Thus at
a critical point z, as in Eq.(2), we have that for all i:

∑

k

(Akz)
p−1aki = zq−1

i (7)

Computing the second derivative of f at z, and simplifying using ‖Az‖p = ‖z‖q = 1, we obtain

1

p
·

∂2f

∂xi∂xj

∣

∣

∣

∣

z

= (p− 1)
∑

k

(Akz)
p−2akiakj + (q − p)zq−1

i zq−1
j (8)

1

p
·
∂2f

∂x2i

∣

∣

∣

∣

z

= (p− 1)
∑

k

(Akz)
p−2a2ki + (q − p)z2q−2

i − (q − 1)zq−2
i (9)

We will now show that the Hessian Hf is negative semi-definite, which proves that f is strictly

concave at the critical point z. Let ε be any vector in R
n. Then we have (the (q − 1)zq−2

i in (9) is

split as (p− 1)zq−2
i + (q − p)zq−2

i , and
∑

i,j includes the case i = j)

εTHfε = p(p− 1)
(

∑

i,j

∑

k

(Akz)
p−2 · akiakj · εiεj −

∑

i

zq−2
i ε2i

)

+ p(q − p)
(

∑

i,j

(zizj)
q−1εiεj −

∑

i

zq−2
i ε2i

)

≡ T1 + T2 (say)

We consider T1 and T2 individually and prove that they are negative. First consider T2. Since
∑

i z
q
i = 1, we can consider zqi to be a probability distribution on integers 1, . . . , n. Cauchy-Schwartz

now implies that Ei[(εi/zi)
2] ≥

(

Ei[(εi/zi)]
)2
. This is equivalent to

∑

i

zqi ·
ε2i
z2i
≥

(

∑

i

zqi ·
εi
zi

)2
=

∑

i,j

zqi z
q
j ·

εiεj
zizj

(10)

Noting that q ≥ p, we can conclude that T2 ≤ 0. Now consider T1. Since z is a fixed point, it
satisfies Eq. (7), thus we can substitute for xq−1

i in the second term of T1. Expanding out (Akz)
once and simplifying, we get

T1

p(p− 1)
=

∑

i,j

∑

k

(Akz)
p−2akiakj

(

εiεj −
zj
zi
· ε2i

)

= −
∑

k

(Akz)
p−2

∑

i,j

akiakj · zizj ·
(εi
zi
−

εj
zj

)2

≤ 0

This proves that f is concave around any critical point z.
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Level sets of f . Let Snq , as earlier, denote the (closed, compact) set {x ∈ R
n
+ : ‖x‖q = 1}. Let

Nτ denote {x ∈ Snq : f(x) ≥ τ}, i.e., Nτ is an ‘upper level set’. (it is easy to see that since f is
continuous and A is positive, Nτ is closed).

Let S ⊆ Snq . We say that two points x and y are connected in S, if there exists a path (a
continuous curve) connecting x and y, entirely contained in S (and this is clearly an equivalence
relation). We say that a set S is connected if every x, y ∈ S are connected in S. Thus any subset
of Snq can be divided into connected components. With this notation, we show ([ER09] proves the
result when p = q).

Lemma 4.1. The set Nτ is connected for every τ > 0.

This follows easily from techniques we developed so far.

Proof. Suppose if possible, that Nτ has two disconnected components S1 and S2. Since there is
a unique global optimum x∗, we may suppose S1 does not contain x∗. Let y be the point in S1

which attains maximum (of f) over S1 (y is well defined since N is closed). Now if ∇f |y = ~0, we
get a contradiction since f has a unique critical point, namely x∗ (Lemma 3.4). If ∇f |y 6= ~0, it
has to be normal to the surface Snq (else it cannot be that y attains maximum in the connected
component S1). Let z be the direction of the (outward) normal to Snq at the point y. Clearly,
〈z, y〉 > 0 (intuitively this is clear; it is also easy to check).

We argued that ∇f |y must be parallel to z, and thus it has a non-zero component along y –
in particular if we scale y (equivalent to moving along y), the value of f changes, which is clearly
false! Thus Nτ has only one connected component.

Since we need it for what follows, let us now prove Lemma 3.1.

Proof of Lemma 3.1. Let x∗ be the optimum vector, and suppose ‖x∗‖q = 1. Consider the quantity

f(x∗)p =

∑

i(Aix
∗)p

(
∑

i(x
∗)q

)p/q
.

First, note that x∗i 6= 0 for any i. Suppose there is such an i. If we set xi = δ, each term in the
numerator above increases by at least p·δ

Np (because Aix
∗ is at least 1

N , and ( 1
N + δ

N )p > 1
Np (1+pδ)),

while the denominator increases from 1 to (1+ δq)p/q ≈ 1+ (p/q)δq for small enough δ. Thus since
q > 1, we can set δ small enough and increase the objective. This implies that x∗ is a positive
vector.

Note that Ajx
∗ ≥

~1
N · x

∗ ≥ 1
N (because the ‖x∗‖1 ≥ ‖x

∗‖q = 1). Thus for every i,

(Sx∗)q−1
i =

∑

j

aij(Ajx
∗)p−1 ≥

n

Np
.

Further, ‖A‖pp ≤ np+1, because each aij ≤ 1 and so Ajx ≤ nxmax (where xmax denotes the largest
co-ordinate of x). Now since Eqn.(2) holds for x∗, we have

np+1 ≥ ‖A‖pp =
(Sx∗)q−1

i

(x∗)q−1
i

≥
n

Np(x∗)q−1
i

.

This implies that x∗i >
1

(Nn)2
, proving the lemma (we needed to use q ≥ p > 1 to simplify).
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We now show that if x ∈ Snq is ‘far’ from x∗, then f(x) is bounded away from f(x∗). This,
along with the fact that Nτ is connected for all τ , implies that if f(x) is very close to f(x∗), then
‖x − x∗‖1 must be small. For ease of calculation, we give the formal proof only for p = q (this is
also the case which is used in the oblivious routing application). It should be clear that as long
as we have that the Hessian at x∗ is negative semidefinite, and third derivatives are bounded, the
proof goes through.

Lemma 4.2 (Stability). Suppose x ∈ Snq , with ‖x− x∗‖1 = δ ≤ 1
(Nn)12

. Then

f(x) ≤ f(x∗)
(

1−
δ2

(Nn)6

)

(11)

Proof. Let ε denote the ‘error vector’ ε = x − x∗. We will use the Taylor expansion of f around
x∗. Hf denotes the Hessian of f and gf is a term involving the third derivatives, which we will get
to later. Thus we have: (note that ∇f and Hf are evaluated at x∗)

f(x) = f(x∗) + ε · ∇f|x∗ +
1

2
εTHf |x∗ε+ gf (ε

′) (12)

At x∗, the ∇f term is 0. From the proof above that the Hessian is negative semidefinite, we have

εTHfε = −p(p− 1)
∑

s

(Asx
∗)p−2

(

∑

i,j

asiasjx
∗
ix

∗
j

( εi
x∗i
−

εj
x∗j

)2
)

(13)

We want to say that if ‖ε‖1 is large enough, this quantity is sufficiently negative. We should
crucially use the fact that ‖x∗‖p = ‖x∗ + ε‖p = 1 (since x is a unit vector in p-norm). This is the
same as

∑

i

|x∗i + εi|
p =

∑

i

|x∗i |
p.

Thus not all εi are of the same sign. Now since ‖ε‖1 > δ, at least one of the εi must have absolute
value at least δ/n, and some other εj must have the opposite sign, by the above observation. Now
consider the terms corresponding to these i, j in Eqn.(13). This gives

εTHfε ≤ −p(p− 1)
∑

s

(Asx
∗)p−2 · asiasj ·

x∗j
x∗i
·
δ2

n2
(14)

≤ −p(p− 1)
∑

s

(Asx
∗)p−2 (

∑

i asi)
2

(Nn)2
·

1

(Nn)2
·
δ2

n2
(15)

≤ −p(p− 1) ·
δ2

N4n6
· ‖Ax∗‖pp (16)

Note that we used the facts that entries aij lie in [ 1N , 1] and that x∗i ∈ [ 1
(Nn)2

, 1]. Thus it only

remains to bound the third order terms (gf , in Eqn.(12)). This contribution equals

gf (ε) =
1

3!

∑

i

ε3i
∂3f

∂x3i
+

1

2!

∑

i,j

ε2i εj
∂3f

∂x2i ∂xj
+

∑

i<j<k

εiεjεk
∂3f

∂xi∂xj∂xk
(17)

It can be shown by expanding out, and using the facts that msi ≤ N(Msx
∗) and 1

x∗
i
≤ (Nn)2, that

for i, j, k,
∂3f

∂xi∂xj∂xk
≤ 10p3(Nn)3‖Ax∗‖pp.
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Thus, the higher order terms can be bounded by

gf (ε) ≤ 10p3 · n6N3 · ‖Ax∗‖pp · δ
3

So, if δ < 1
10p3
· 1
(Nn)12

, the Hessian term dominates. Thus we have, as desired:

f(x) ≤ f(x∗)
(

1−
δ2

(Nn)6

)

This proves that the vector we obtain at the end of the T iterations (for T as specified) has an
ℓ1 distance at most 1

(Nn)c to x∗. Thus we have a polynomial time algorithm to compute x∗ to any
accuracy.

5 An Application - O(logn) Oblivious routing scheme for ℓp

We believe that our algorithm for computing the ‖A‖q 7→p (for non-negative matrices) could find
good use as an optimization tool. For instance, eigenvalue computation is used extensively, not just
for partitioning and clustering problems, but also as a subroutine for solving semi-definite programs
[GLS88]. We now give one application of our algorithm and the techniques we developed in section
4 to the case of oblivious routing in the ℓp norm.

Oblivious routing. As outlined in the Introduction, the aim in oblivious routing is, given a
graph G = (V,E), to specify how to route a unit flow between every pair of vertices in V . Now,
given a demand vector (demands between pairs of vertices), these unit flows are scaled linearly by
the demands, and routed (let us call this the oblivious flow). This oblivious flow is compared to
the best flow in hindsight i.e. knowing the demand vector, with respect to some objective (say
congestion), and we need to come up with a scheme which bounds this competitive ratio in the
worst case.

Gupta et al. [GHR06] consider the oblivious routing problem where the cost of a solution is
the ℓp norm of the ‘flow vector’ (the vector consisting of total flow on each edge). In the case
p =∞, this is the problem of minimizing congestion, for which the celebrated result of [R0̈8] gave
an O(log n) competitive scheme. For the ℓ1 version of the problem, the optimal solution (as is
easily seen) is to route along shortest paths for each demand pair. The ℓp version tries to trade-off
between these two extremes.

By a clever use of zero sum games, [ER09] reduced the problem of showing existence good
oblivious routing schemes for any p to the ℓ∞ case. This showed (by a non-constructive argument)
the existence of an O(log n) oblivious routing scheme for any p ≥ 1. They then make their result
constructive for p = 2 (the proof relies heavily on eigenvectors being orthogonal). Using our
algorithm for finding the ℓp-norm of a matrix and the stability of our maxima (Lemma 4.2), we
make the result constructive for all ℓp.

Zero-sum game framework of [ER09]: We first give a brief overview of the non-constructive
proof from [ER09]. The worst-case demands for any tree-based oblivious routing scheme can be
shown to be those with non-zero demands only on the edges of the graph. The competitive ratio of
any tree-based oblivious routing scheme can then be reduced to a matrix p-norm computation: if
M is a |E| × |E|-dimensional matrix which represents a tree-based oblivious routing scheme which
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specifies unit flows for each demand across an edge of the graph, the competitive ratio is given by
max‖u‖p≤1‖Mu‖p where u ∈ R

|E|.
To show the existence of an oblivious routing scheme with competitive ratio O(log n), [ER09]

define a continuous two player zero-sum game. The first player (row player) chooses from the set
of all tree-based oblivious routing matrices (of dimension |E| × |E|). The second player’s (column
player) strategy set is the set of vectors u ∈ R

|E| with positive entries, and ‖u‖p = 1, and the value
of the game is ‖Mu‖p. With a clever use of min-max duality in zero sum games and the oblivious
routing scheme of [R0̈8] for congestion (ℓ∞-norm) as a blackbox, [ER09] show the non-constructive
existence of an oblivious routing scheme M which gets a value of O(log n) for all demand vectors.

Finding such a (tree-based) oblivious routing scheme requires us to solve this zero-sum game ef-
ficiently. The constructive algorithm from [ER09] for ℓ2, however crucially uses the ortho-normality
of the eigenspace for ‖M‖2 computation, to solve the aforementioned zero-sum game. First we state
without proof a couple of lemmas from [ER09], which will also feature in our algorithm.

Lemma 5.1. Let OBL be a tree-based oblivious routing scheme given by a |E| ×
(n
2

)

dimensional

matrix (non-negative entries) and let its restriction to edges be OBL′ ∈ R
|E|×|E|. The competitive

ratio of the oblivious algorithm is at most ‖OBL′‖p.

Henceforth, we shall abuse notation and use OBL to refer to both the tree-based Oblivious
routing matrix and its restriction to edges interchangeably. Further,

Lemma 5.2. For any given vector u ∈ R
|E|, there exists an tree-based Oblivious routing scheme

(denoted by matrix OBL) such that

‖OBL · u‖p ≤ O(log n)‖u‖p

This lemma shows that for every vector u, there exists some routing scheme (which could
depend on the vector) that is O(log n) competitive. We will now show how to compute one tree-
based routing matrix OBL that works for all vectors i.e. ‖OBL‖p ≤ 1. From Lemma 5.2, we
know that for every unit vector u, there exists an tree-based oblivious routing matrix such that
‖M · u‖p ≤ O(log n). We use this to construct one tree-based oblivious routing matrix OBL that
works for every load vector u. Note that the set of tree-based oblivious routing schemes is convex.
Before, we show how to construct the oblivious routing scheme, we present a simple lemma which
captures the continuity of the p-norm function.

Lemma 5.3. Let f =
‖Ax‖pp
‖x‖pp

, where A is an n× n matrix with minimum entry 1
N and let y be an

n-dimensional vector with minimum entry 1
(Nn)2

. Let x be a vector in the δ-neighborhood of y i.e.

‖x− y‖1 = δ ≤ 1
(Nn)12 . Then,

f(x) ≤ f(y) + 1 (18)

Proof. The proof follows just from the continuity and differentiability of the p-norm function at
every point. Using the Taylor’s expansion of f , we see that

f(x) = f(y) + ε · ∇fy +
1

2
ε′THf |yε

′ (19)

where 0 ≤ ε′ ≤ ε. Choosing ε = δ = 1
(Nn)12

and using the lower bounds the matrix entries and the

co-ordinates of y as in Lemma 4.2, we see that the lemma follows.

We now sketch how to find a tree-based oblivious routing matrix when the aggregation function
is an ℓp norm.

14



Theorem 5.4. There exists a polynomial time algorithm that computes an oblivious routing scheme
with competitive ratio O(log n) when the aggregation function is the ℓp norm with p > 1 and the
load function on the edges is a norm.

Proof sketch. The algorithm and proof follow roughly along the lines of the constructive version
for p = 2 in [ER09]. As mentioned earlier, their proof uses inner products among the vectors (and
the computation of eigenvalues). However, we show that the procedure still works because of the
stability of our solution (Lemma 4.2.

Let Jε be an |E|× |E| matrix will all entries being ǫ. Let f(M) = ‖M +J 1

|E|
‖p. We want a tree-

based oblivious routing matrix OBL such that f(OBL) ≤ c log n for some large enough constant c.
We follow an iterative procedure to obtain this matrix OBL starting with an arbitrary tree-based
routing matrix M0. At stage i, we check if for the current matrix Mi , ‖Mi‖p ≤ c log n. If not, using
the iterative algorithm in Section 3, we obtain unit vector x∗(i) which maximizes ‖M(i)x‖p. Let M̃(i)

be the tree-based oblivious routing matrix from Lemma 5.2 such that ‖M̃(i)x
∗
(i)‖p ≤ c log n/2 − 2.

We now update
Mi+1 = (1− λ)Mi + λM̃i

Observe that this is also a tree-based oblivious routing matrix. We now show that ‖Mi+1‖p decreases
by an amount Ω( 1

poly(n)).

At step i, roughly speaking, for all vectors y that are far enough from x∗(i), ‖Miy‖p ≤ ‖Miy‖p−
1

poly(n) from Lemma 4.2 (stability). Choosing λ = Θ(n−c) for some large enough constant c > 0,

it easily follows that ‖Mi+1y‖p ≤ ‖Miy‖p −
1

poly(n) . On the other hand, consider y in the δ-

neighborhood of x∗(i). Using Lemma 5.3,

‖M̃iy‖p ≤
c log n

2

Hence,

‖Mi+1y‖p = (1− λ)‖Miy‖p + λ
c

2
log n

≤ ‖Miy‖p − λ×
c

2
log n (since ‖Miy‖p ≥ c log n )

≤ ‖Miy‖p −
1

poly(n)

Hence, it follows that the matrices Mi decrease in their p-norm by a small quantity Ω( 1
poly(n)) in

every step. It follows that this iterative algorithm finds the required tree-based oblivious routing
scheme in poly(n) steps.

6 Inapproximability results

We will now prove that it is NP-hard to approximate ‖A‖q 7→p-norm of a matrix to any fixed constant,
for any q ≥ p > 2. We then show how this proof carries over to the hardness of computing the
∞ 7→ p norm.

6.1 Inapproximability of ‖A‖p 7→p

Let us start with the question of approximating ‖A‖p 7→p. We first show the following:
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Proposition 6.1. For p ≥ 2 it is NP-hard to approximate that ‖A‖p to some (small) constant
factor η > 1.

Proof: We give a reduction from the gap version of the MaxCut problem. The following is
well-known (c.f. [H̊as01])

There exist constants 1/2 ≤ ρ < ρ′ < 1 such that given a regular graph G = (V,E) on
n vertices and degree d, it is hard to distinguish between:
Yes case: G has a cut containing at least ρ′(nd/2) edges, and
No case: No cut in G cuts more that ρ(nd/2) edges.

Suppose we are given a graph G = (V,E) which is regular and has degree d. The p-norm
instance we consider will be that of maximizing g(x0, . . . , xn) (xi ∈ R

n), defined by

g(x0, x1, . . . , xn) =

∑

i∼j |xi − xj |
p + Cd ·

(
∑

i |x0 + xi|
p + |x0 − xi|

p
)

n|x0|p +
∑

i |xi|
p

.

Here C will be chosen appropriately later. Note that if we divide by d, we can see g(x) as the ratio

g(x)

d
=

∑

i∼j

(

|xi − xj|
p + C(|x0 + xi|

p + |x0 − xi|
p + |x0 + xj|

p + |x0 − xj|
p)
)

∑

i∼j 2|x0|
p + |xi|p + |xj |p

. (20)

The idea is to do the analysis on an edge-by-edge basis. Consider the function

f(x, y) =
|x− y|p + C

(

|1 + x|p + |1− x|p + |1 + y|p + |1− y|p
)

2 + |x|p + |y|p
.

Definition. A tuple (x, y) is good if both |x| and |y| lie in the interval (1− ε, 1 + ε), and xy < 0.
A technical lemma concerning f is the following

Lemma 6.2. For any ε > 0, there is a large enough constant C such that

f(x, y) ≤

{

C · 2p−1 + (1+ε)2p

2+|x|p+|y|p , if (x, y) is good

C · 2p−1 otherwise
(21)

We now present the proof of Lemma 6.2. We first start with a simpler inequality - note that
this is where the condition p > 2 comes in.

Lemma 6.3. For all x ∈ R, we have

|1 + x|p + |1− x|p

1 + |x|p
≤ 2p−1.

Further, for any ε > 0, there exists a δ > 0 such that if |x| 6∈ [1− ε, 1 + ε], then

|1 + x|p + |1− x|p

1 + |x|p
≤ 2p−1 − δ.

Proof. We may assume x > 0. First consider x > 1. Write x = 1+2θ, and thus the first inequality
simplifies to

[

(1 + 2θ)p − (1 + θ)p
]

≥ (1 + θ)p − 1 + 2θp.
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Now consider

I =

∫ 1+θ

x=1

(

(x+ θ)p−1 − xp−1
)

dx.

For each x, the function being integrated is ≥ θp−1, since p > 2 and x > 0. Thus the integral is at
least θp. Now evaluating the integral independently and simplifying, we get

(1 + 2θ)p − 2(1 + θ)p + 1 ≥ p · θp,

which gives the inequality since p > 2. Further there is a slack of (p−2)θp. Now suppose 0 < x < 1.
Writing x = 1− 2θ and simplifying similarly, the inequality follows. Further, since we always have
a slack, the second inequality is also easy to see.

Proof (of Lemma 6.2). The proof is a straight-forward case analysis. Call x (resp. y) ‘bad’ if
|x| 6∈ [1− ε, 1 + ε]. Also, b(x) denotes a predicate which is 1 if x is bad and 0 otherwise.
Case 1. (x, y) is good. The upper bound in this case is clear (using Lemma 6.3).
Case 2. Neither of x, y are bad, but xy > 0. Using Lemma 6.3, we have f(x, y) ≤ C · 2p−1 + ε,
which is what we want.
Case 3. At least one of x, y are bad (i.e., one of b(x), b(y) is 1). In this case Lemma 6.3 gives

f(x, y) ≤
|x− y|p +C

(

(1 + |x|p)(2p−1 − δb(x)) + (1 + |y|p)(2p−1 − δb(y))
)

2 + |x|p + |y|p

= C · 2p−1 +
|x− y|p − C

(

δb(x)(1 + |x|p) + δb(y)(1 + |y|p)
)

2 + |x|p + |y|p

Since |x−y|p ≤ 2p−1(|x|p+|y|p), and one of b(x), b(y) > 0, we can choose C large enough (depending
on δ), so that f(x, y) ≤ C · 2p−1.

Soundness. Assuming the lemma, let us see why the analysis of the No case follows. Suppose
the graph has a Max-Cut value at most ρ, i.e., every cut has at most ρ · nd/2 edges. Now consider
the vector x which maximizes g(x0, x1, . . . , xn). It is easy to see that we may assume x0 6= 0, thus
we can scale the vector s.t. x0 = 1. Let S ⊆ V denote the set of ‘good’ vertices (i.e., vertices for
which |xi| ∈ (1− ε, 1 + ε)).

Lemma 6.4. The number of good edges is at most ρ · (|S|+n)d
4 .

Proof. Recall that good edges have both end-points in S, and further the corresponding x values
have opposite signs. Thus the lemma essentially says that there is no cut in S with ρ · (|S|+n)d

4
edges.

Suppose there is such a cut. By greedily placing the vertices of V \S on one of the sides of this
cut, we can extend it to a cut of the entire graph with at least

ρ ·
(|S|+ n)d

4
+

(n− |S|)d

4
=

ρnd

2
+

(1− ρ)(n − |S|)

4
>

ρnd

2

edges, which is a contradiction. This gives the bound.
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Let N denote the numerator of Eq.(20). We have

N =
∑

i∼j

f(xi, xj)(2 + |xi|
p + |xj |

p)

≤ C · 2p−1 ·
(

nd+ d
∑

i

|xi|
p
)

+
∑

i∼j, good

(1 + ε)2p

≤ Cd · 2p−1 ·
(

n+
∑

i

|xi|
p
)

+
ρd(n+ |S|)

4
· 2p(1 + ε).

Now observe that the denominator is n+
∑

i |xi|
p ≥ n+ |S|(1− ε)p, from the definition of S. Thus

we obtain an upper bound on g(x)

g(x) ≤ Cd · 2p−1 +
ρd

4
· 2p(1 + ε)(1− ε)−p.

Hardness factor. In the Yes case, there is clearly an assignment of ±1 to xi such that g(x) is

at least Cd · 2p−1 + ρ′d
4 · 2

p. Thus if ε is small enough (this will make us pick C which is large), the

gap between the optimum values in the Yes and No cases can be made
(

1+ Ω(1)
C

)

, where the Ω(1)
term is determined by the difference ρ′− ρ. This proves that the p-norm is hard to approximate to
some fixed constant factor.
Note. In the analysis, ε was chosen to be a small constant depending on p and the gap between ρ
and ρ′; C is a constant chosen large enough, depending on ε.

The Instance. We have argued about the hardness of computing the function g(x0, x1, . . . , xn)
to some constant factor. This can be formulated as an instance of p-norm in a natural way. We
describe this formally (though this is clear, the formal description will be useful when arguing
about certain properties of the tensored instance which we need for proving hardness of ‖A‖q 7→p

for p < q).
First we do a simple change of variable and let z = n1/px0. Now, we construct the 5|E|×(n+1)

matrix M . For each edge e = {i, j} in E(G), we have five rows in M . Let the column indices run
from 0 ≤ ℓ ≤ n.

Me1,ℓ =

{

1 if ℓ = i and − 1 if ℓ = j

0 otherwise

Me2,ℓ =

{

n−1/p if ℓ = 0 and − 1 if ℓ = i

0 otherwise

Me3,ℓ =

{

n−1/p if ℓ = 0 and 1 if ℓ = i

0 otherwise

We have two similar rows forMe4,ℓ andMe5,ℓ where we have corresponding values with j instead
of i. It is easy to see that this matrix actually takes the same value ‖M‖p as g. Further in the
Yes case, there is a vector x = (n1/p, x1, x2, . . . , xn) with xi = ±1, that attains the high value
(C.d.2p−1 + ρ′d.2p−2).
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6.2 Amplifying the gap by tensoring

We observe that the matrix p 7→ p-norm is multiplicative under tensoring. More precisely,

Lemma 6.5. Let M , N be square matrices with dimensions m×m and n×n respectively, and let
p ≥ 1. Then ‖M ⊗N‖p = ‖M‖p · ‖N‖p.

The tensor product M ⊗N is defined in the standard way – we think of it as an m×m matrix
of blocks, with the i, jth block being a copy of N scaled by mij. It is well-known that eigenvalues
(p = 2) mutliply under tensoring. We note that it is crucial that we consider ‖A‖p. Matrix norms
‖A‖q 7→p for p 6= q do not in general multiply upon tensoring.

Proof. Let λ(A) denote the p-norm of a matrix A. Let us first show the easy direction, that
λ(M ⊗ N) ≥ λ(M) · λ(N). Suppose x, y are the vectors which ‘realize’ the p-norm for M,N
respectively. Then

‖(M ⊗N)(x⊗ y)‖pp =
∑

i,j

|(Mi · x)(Nj · y)|
p

=
(

∑

i

(Mi · x)
p
)(

∑

j

(Nj · y)
p
)

= λ(M)p · λ(N)p

Also ‖x⊗ y‖p = ‖x‖p · ‖y‖p, thus the inequality follows.
Let us now show the other direction, i.e., λ(M⊗N) ≤ λ(M) ·λ(N). Let x, z be mn dimensional

vectors such z = (A ⊗ B)x. We will think of x, z as being divided into m blocks of size n each.
Further by x(i) (and z(i)), we denote the vector in R

n which is formed by the ith block of x (resp.
z).

For ease of notation, let us consider n×m matrix X with the ith column of X being vector x(i)

(and similarly define Z). At the expense of abusing notation, let Xt
j refer to the jth row of matrix

X. Also, let the element-wise p-norm of matrix M be defined as

|M |⊙p =
(

∑

i,j

mp
ij

)1/p

It is easy to observe that Zt = AXtBT . Further, ‖z‖p = |Z|⊙p.
We now expand out Z and rearrange the terms to separate out the operations of B and A, in

order to bound |Z|⊙p using the p-norms of A and B. Hence, we have

‖z‖pp = |AXtBt|p⊙p

=
m
∑

i=1

n
∑

j=1

(

(AiX1, AiX2, . . . , AiXn)B
t
j

)p

But from definition, ‖Mx‖pp =
∑

k(Bkx)
p ≤ λ(M)‖x‖pp.
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Hence, by applying the operator p-norm bound of B,

‖z‖pp ≤ λ(B)p
∑

i

‖(AiX1, AiX2, . . . , AiXn)‖
p
p

= λ(B)p
m
∑

i=1

n
∑

k=1

(AiXk)
p = λ(B)p

∑

k

∑

i

(AiXk)
p

≤ λ(B)pλ(A)p
∑

k

‖Xk‖
p
p

= λ(A)pλ(B)p|X|p⊙p

Since |X|⊙p = ‖x‖p = 1, we have ‖z‖p ≤ λ(A)λ(B).

Note. We note that the tensoring result is stated for square matrices, while the instances above
are rectangular. This is not a problem, because we can pad 0s to the matrix to make it square
without changing the value of the norm.

The tensored matrix and amplification Consider any constant γ > 0. We consider the
instance of the matrix M obtained in the proof of Proposition 6.1, and repeatedly tensor it with M
k = logη γ times to obtain M ′ = M⊗k. From Lemma 6.5, there exist τC and τS where τC/τS > γ

such that in the No case, for every vector y ∈ R
(n+1)k, ‖Ay‖p ≤ τS.

Further, in the Yes case, there is a vector y′ = (n1/p, x1, x2, . . . , xn)
⊗k where xi = ±1 (for

i = 1, 2, . . . n) such that ‖M ′y′‖p ≥ τC .
Note: Our techniques work even when we take the tensor product logc n for some constant c.

Thus we can conclude:

Theorem 6.6. For any γ > 0 and p ≥ 2, it is NP-hard to approximate the p-norm of a matrix
within a factor γ. Also, it is hard to approximate the matrix p-norm to a factor of Ω(2(logn)

1−ε
)

for any constant ε > 0, unless NP ⊆ DTIME(2polylog(n))).

Properties of the tensored instance: We now establish some structure about the tensored
instance, which we will use crucially for the hardness of q 7→ p norm. Let the entries in vector y′

be indexed by k-tuple I = (i1, i2, . . . , ik) where ik ∈ {0, 1, . . . , n). It is easy to see that

y′I = ±n
w(I)/p where w(I) number of 0s in tuple

Let us introduce variables xI = n−w(I)/pyI where w(I) = number of 0s in tuple I. It is easy to
observe that there is a matrix B such that

‖M ′y‖p
‖y‖p

=
‖Bx‖p

∑

I n
w(I)|xI |p

= g′(x)

Further, it can also be seen that in the Yes case, there is a ±1 assignment for xI which attains the
value g′(x) = τC .

6.3 Approximating ‖A‖q 7→p when p 6= q.

Let us now consider the question of approximating ‖A‖q 7→p. The idea is to use the hardness of
approximating ‖A‖p 7→p. We observed in the previous section that the technique of amplifying
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hardness for computing the q 7→ p-norm by tensoring a (small) constant factor hardness does not
work when q 6= p. However, we show that we can obtain such amplified label-cover like hardness
if the instance has some additional structure. In particular, we show the instances that we obtain
from the tensoring the hard instances of ‖A‖p can be transformed to give such hard instances for
‖A‖q 7→p.

We illustrate the main idea by first showing a (small) constant factor hardness: let us start
with the following maximization problem (which is very similar to Eqn.(20))

g(x0, x1, . . . , xn) =

(

∑

i∼j |xi − xj|
p +Cd ·

(
∑

i |x0 + xi|
p + |x0 − xi|

p
)

)1/p

(

n|x0|q +
∑

i |xi|
q
)1/q

. (22)

Notice that x0 is now ‘scaled differently’ than in Eq.(20). This is crucial. Now, in the Yes case,
we have

max
x

g(x) ≥

(

ρ′(nd/2) · 2p + Cnd · 2p
)1/p

(2n)1/q
.

Indeed, there exists a ±1 solution which has value at least the RHS. Let us write N for the
numerator of Eq.(22). Then

g(x) =
N

(

n|x0|p +
∑

i |xi|
p
)1/p

×

(

n|x0|
p +

∑

i |xi|
p
)1/p

(

n|x0|q +
∑

i |xi|
q
)1/q

.

Suppose we started with a No instance. The proof of the q = p case implies that the first term in
this product is at most (to a (1 + ε) factor)

(

ρ(nd/2) · 2p + Cnd · 2p
)1/p

(2n)1/p
.

Now, we note that the second term is at most (2n)1/p/(2n)1/q . This follows because for any
vector y ∈ R

n, we have ‖y‖p/‖y‖q ≤ n(1/p)−(1/q). We can use this with the 2n-dimensional vector
(x0, . . . , x0, x1, x2, . . . , xn) to see the desired claim.

From this it follows that in the No case, the optimum is at most (upto an (1 + ε) factor)

(

ρ(nd/2) · 2p + Cnd · 2p
)1/p

(2n)1/q
.

This proves that there exists an α > 1 s.t. it is NP-hard to approximate ‖A‖q 7→p to a factor better
than α.

A key property we used in the above argument is that in the Yes case, there exists a ±1 solution
for the xi (i ≥ 0) which has a large value. It turns out that this is the only property we need. More
precisely, suppose A is an n×n matrix, let αi be positive integers (we will actually use the fact that
they are integers, though it is not critical). Now consider the optimization problem maxy∈Rn g(y),
with

g(y) =
‖Ay‖p

(
∑

i αi|yi|p)1/p
(23)

In the previous section, we established the following claim from the proof of Theorem 6.6.

Claim 6.7. For any constant γ > 1, there exist thresholds τC and τS with τC/τS > γ, such that it
is NP-hard to distinguish between:
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Yes case. There exists a ±1 assignment to yi in (23) with value at least τC , and
No case. For all y ∈ R

n, g(y) ≤ τS.

Proof. Follows from the structure of Tensor product instance.

We can now show that Claim 6.7 implies the desired result.

Theorem 6.8. It is NP-hard to approximate ‖A‖q 7→p to any fixed constant γ for q ≥ p > 2.

Proof. As in previous proof (Eq.(22)), consider the optimization problem maxy∈Rn h(y), with

h(y) =
‖Ay‖p

(
∑

i αi|yi|q)1/q
(24)

By definition,

h(y) = g(y) ·
(
∑

i αi|yi|
p)1/p

(
∑

i αi|yi|q)1/q
. (25)

Completeness. Consider the value of h(y) for A,αi in the Yes case for Claim 6.7. Let y be a ±1
solution with g(y) ≥ τC . Because the yi are ±1, it follows that

h(y) ≥ τC ·
(

∑

i

αi

)(1/p)−(1/q)
.

Soundness. Now suppose we start with an A,αi in the No case for Claim 6.7.

First, note that the second term in Eq.(25) is at most
(
∑

i αi

)(1/p)−(1/q)
. To see this, we note

that αi are positive integers. Thus by considering the vector (y1, . . . , y1, y2, . . . , y2, . . . ), (where yi is
duplicated αi times), and using ‖u‖p/‖u‖q ≤ d(1/p)−(1/q) for u ∈ R

d, we get the desired inequality.
This gives that for all y ∈ R

n,

h(y) ≤ g(y) ·
(

∑

i

αi

)(1/p)−(1/q)
≤ τS ·

(

∑

i

αi

)(1/p)−(1/q)
.

This proves that we cannot approximate h(y) to a factor better than τC/τS , which can be
made an arbitrarily large constant by Claim 6.7. This finishes the proof, because the optimization
problem maxy∈Rn h(y) can be formulated as a q 7→ p norm computation for an appropriate matrix
as earlier.

Note that this hardness instance is not obtained by tensoring the q 7→ p norm hardness instance.
It is instead obtained by considering the ‖A‖p hardness instance and transforming it suitably.

6.4 Approximating ‖A‖∞7→p

The problem of computing the ∞ 7→ p norm of a matrix A turns out to have a very natural and
elegant statement in terms of column vectors of the matrix A. We first introduce the following
problem:

Definition 6.9 (Longest Vector Problem). Let v1,v2, . . . ,vn be vectors over R. The Longest
Vector problem asks for the

max
x∈{−1,1}n

‖
∑

i

xivi‖p
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Note that this problem differs from the well-studied Shortest Vector Problem [Kho04] for lat-
tices,which has received a lot of attention in the cryptography community over the last decade
[Reg06]. The shortest vector problem asks for minimizing the same objective in Definition 6.9
when xi ∈ Z.

We now observe that computing the ∞ 7→ p norm of the matrix is equivalent to finding the
length of the longest vector, where the vectors vi are the columns of A.

Observation 6.10. Computing the ‖A‖∞7→p norm of a matrix is equivalent to computing the length
of the Longest vector problem where the vectors are the column vectors of A.

Proof. First note that ‖Ax‖p = ‖
∑

i xiai‖p. The observation follows by noticing that this is
maximized when |xi| = 1 for all i.

The ∞ 7→ p norm of the matrix also seems like a natural extension of the Grothendieck
problem[AN04, KNS08]. When p = 1, we obtain the original Grothendieck problem, and the
p = 2 case is the ℓ2 Grothendieck problem and maximizes the quadratic form for p.s.d. matri-
ces. Further, as mentioned earlier there is a constant factor approximation for 1 ≤ p ≤ 2 using
[Nes98]. However, for the p > 2, we show that there is Ω(2(logn)

1−ǫ
) hardness for computing∞ 7→ p

norm assuming NP does not have quasipolynomial time algorithms using the same techniques from
Theorem 6.8.

Theorem 6.11. It is NP-hard to approximate ‖A‖∞7→p to any constant γ for p > 2 and hard to ap-

proximate within a factor of Ω(2(log n)
1−ε

) for any constant ε > 0, assuming NP /∈ DTIME(2polylog(n)).

The proof of Theorem 6.8 also works out for q = ∞ by noting that the second expression in

Eq. (25) is instead maxx
(
∑

i αi|xi|
p)1/p

||x||∞
which is also maximized when |xi| = 1 for all i.
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A Miscellany

A.1 Non-convex optimization

Note that computing the p 7→ p norm is in general not a convex optimization problem. i.e., the

function f defined by f(x) =
‖Ax‖p
‖x‖p

is not in general concave. For example, consider

A =

(

1 2
3 1

)

; x =

(

0.1
0.1

)

; y =

(

0.2
0.5

)

In this case, with p = 2.5, for instance, it is easy to check that f((x + y)/2) < (f(x) + f(y))/2.
Thus f is not concave. However, it could still be that f raised to a certain power is concave.

A.2 Duality

The following equality is useful in ‘moving’ from one range of parameters to another. We use the
fact that ‖u‖p = maxy : ‖y‖p′=1 y

Tx, where p′ is the ‘dual norm’, satisfying 1/p+1/p′ = 1. (similarly

q′ denotes the dual norm of q)

‖A‖q 7→p = max
‖x‖q=1

‖Ax‖p = max
‖x‖q=1
‖y‖p′=1

yTAx = max
‖x‖q=1
‖y‖p′=1

xTAT y = ‖AT ‖p′ 7→q′ (26)

A.3 Moving to a positive matrix

We now show that by adding a very small positive number to each entry of the matrix, the q 7→ p-
norm does not change much.

Lemma A.1. Let A be an n × n matrix where the maximum entry is scaled to 1. Let Jǫ be the
matrix with all entries being ǫ.

‖A+ Jε‖q 7→p ≤ ‖A‖q 7→p

(

1 + ǫn
1+ 1

p
− 1

q
)

Proof. We first note that ‖A‖q 7→p ≥ 1 (because the maximum entry is 1). It is also easy to see that

Jε is maximized by the vector with all equal entries. Hence ‖Jε‖q 7→p ≤ n
1+ 1

p
− 1

q ǫ. Hence, by using
the fact that ‖·‖q 7→p is a norm, the lemma follows.
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