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Abstract
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at
each step, the online policy can probe and find out which of a small number (k) of choices has better
reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds
have exponentially better dependence on the time horizon compared to the classic regret bounds.
In particular, we show that probing with k = 2 suffices to achieve time-independent regret bounds
for online linear and convex optimization. The same number of probes improve the regret bound
of stochastic MAB with independent arms from O(

√
nT ) to O(n2 log T ), where n is the number of

arms and T is the horizon length. For stochastic MAB, we also consider a stronger model where a
probe reveals the reward values of the probed arms, and show that in this case, k = 3 probes suffice
to achieve parameter-independent constant regret, O(n2). Such regret bounds cannot be achieved
even with full feedback after the play, showcasing the power of limited “advice” via probing before
making the play. We also present extensions to the setting where the hints can be imperfect, and to
the case of stochastic MAB where the rewards of the arms can be correlated.
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1 Introduction

In this paper, we consider two problems that form the cornerstone of sequential analysis and
decision theory, a field first developed by Wald [53] in the 1940’s. The first is the online
linear/convex optimization problem that was initially studied in the context of repeated
games by Hannan [25] and Blackwell [13] in the 1950’s. In this problem, there is a possibly
infinite space of potential actions in a high-dimensional space. At each step, a decision maker
needs to choose one action, that is sometimes called an “arm”. Subsequently, nature presents
an adversarially chosen linear (or convex) loss function, and the decision maker incurs the
evaluation of this loss function at the chosen action. Subsequently, the decision maker is told
the loss function at that time step. The goal is to compete with an omniscient policy that
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3:2 Online Learning and Bandits with Queried Hints

knows all the loss functions in advance, but is restricted to choosing one fixed action for all
time steps. The difference between the loss of the policy and that of the omniscient policy
is termed regret. Over the decades, several policies have been developed [28, 36, 57] that
achieve regret O(

√
T ), where T is the horizon length, and the O(·) hides problem-dependent

parameters. Such a dependence on T is also optimal [26]. A well-known specialization is
the experts problem where the actions or arms form a discrete set, and each arm incurs an
arbitrary loss at each time step that is unrelated to the losses of the other arms [36, 16].

The second problem is the stochastic multi-armed bandit (MAB) problem that was first
formulated by Robbins [45] around 1950, though the widely used Thompson Sampling policy
for this problem dates back to the 1930’s [52]. In this problem, a decision maker is faced
with n independent arms that yield i.i.d. rewards from unknown underlying distributions.
As before, the goal is to design a policy or allocation rule to sequentially play these arms
to maximize reward. In a sense, this can be viewed as a stochastic version of the experts
problem; however, the key difference is that the decision maker only learns the reward of the
chosen arm at the end of the time step, and not the rewards of all the arms. The regret is
measured against an omniscient policy that knew the reward distributions of the arms (but
not the reward values), and chooses the single arm with maximum expected reward at all
time steps. In seminal work, Lai and Robbins [32] showed an optimal allocation policy along
with tight lower bounds on the regret incurred by any policy, assuming a parametric form
on the distributions. This result was subsequently generalized by Auer, Cesa-Bianchi, and
Fisher [5], who derived similar upper bounds without assuming a parametric form on the
distributions.

Both the online convex optimization and the stochastic MAB problem have found
numerous applications in areas ranging from clinical trial design to ad-word allocations to
recommendation systems, and continue to be extensively studied in the fields of statistics
and machine learning. For more on the history and variants of this problem, we refer the
reader to several excellent books [15, 48, 34, 26].

1.1 Probe Model and Motivation
In this paper, we study the following twist on these problems. Suppose before playing, we
are allowed to query or probe an oracle with k options, and the oracle responds with the best
of these at that step – either telling the algorithm the identity of this option and nothing
more, or telling the algorithm the rewards/losses of all the options. We subsequently play
the option suggested by the oracle. How should these probes be chosen, and can we obtain
much better regret?

Our motivation for such a probe model comes from the recent literature on designing
algorithms that can leverage machine learning (ML) based predictions. This paradigm has
been used to obtain improved guarantees for many classic online algorithmic problems [44,
38, 33, 43, 22] (see also the survery [39]). In these settings, the online algorithm is assumed
to have access to an auxiliary ML model that predicts properties of the arriving inputs. The
goal is to derive improved bounds assuming the predictions are correct, whilst doing nearly
as well as worst-case algorithms when the predictions are incorrect. Of particular relevance
is recent work on “parsimonious hints”, where the ML model provides as little information
to the online algorithm as possible. For instance, recent work has considered online linear
optimization, where the hint is a direction with a strictly positive dot product with the cost
vector [17, 10]. In such a model, for optimization over a sphere, the regret bound improves
from Ω(

√
T ) to O(ln T ), even with hints at O(

√
T ) time steps. Similarly, recent work [27]

has considered randomized caching with parsimonious hints about next request time of a few
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cached pages.
The probe model can now be viewed as a parsimonious ML hint, where the algorithm

queries the predictor with a few options, asking it either for the identity of the best option
among these, or for the losses/rewards of all these options. As an example, consider modeling
the problem of shortest path routing using stochastic bandits (where each of m paths has
its length drawn from a distribution at each step). In this case, a routing engine can query
for the length of a few paths, by possibly querying users who have chosen this path, before
routing other users.

1.2 Results and Conceptual Contribution
In this paper, we study the following question:

Can we obtain improved regret bounds for online learning and MAB problems against
the classic best arm in hindsight benchmark, if the algorithm is allowed the power of
using ML advice via a few probes before making its decision to play?

We answer this question in the affirmative: We show that just k = 2 probes (or k = 3, 4
for stronger results) suffice to drastically improve the known regret guarantees. Indeed, our
main results (in Sections 3 and 5) show a constant regret bound independent of the time
horizon, assuming the hints are correct!

Before proceeding further, it is instructive to compare our results with [17]. They consider
online linear optimization where the domain is the sphere (or more generally, strictly convex)
and show that if the hint is a direction with positive “correlation” with the cost vector, the
regret improves to O(ln T ). They also show that such an improvement cannot be obtained
if the decision space is more general, say the ℓ∞ ball, where the regret remains Ω(

√
T ). In

contrast, we show that if the algorithm is allowed to choose a direction and ask the predictor
if the cost along that direction is increasing or not, then the regret improves to constant;
further this result holds for linear optimization over any domain (not just strictly convex),
and convex optimization over any convex space.

In the literature on algorithms with ML-based predictions, one key requirement is for
the algorithms to not be “thrown off” by incorrect predictions. This aspect is referred to
as robustness [39], and the goal is to recover worst-case guarantees (ones possible without
any hints) even if the hints are adversarial. In the context of linear optimization, this was
studied in [9]. They extend the result of [17] again assuming the optimization is over a
sphere; however, their result also has a dependence of O(ln T ) on the horizon length. As
our second contribution, with B imperfect hints, our probe model improves this to obtain
regret O(

√
B + 1) (with no dependence on the horizon T ), again holding for any underlying

space over which the linear optimization is performed, as well as for convex optimization
over any convex space. We finally note that there was no extension known for [17] to the
MAB problem, and one of our contributions is to develop stochastic bandit algorithms with
improved regret bounds under parsimonious hints.

At a conceptual level, our work shows that querying or probing options via comparisons
is far more powerful than more ‘passive’ models for hints. We believe that such query based
hint models may find other applications beyond online learning. At an even higher level, our
work is reminiscent of the power of two choices in online load balancing [7], where choosing
the lesser loaded of two random bins leads to an exponential improvement in the expected
maximum load. This paradigm has found numerous applications, such as hashing, congestion
control, and distributed memory management. Our paper is in a similar vein – we show that
allowing a few queries or hints suffices to give an exponential improvement in regret.

ITCS 2023



3:4 Online Learning and Bandits with Queried Hints

1.3 Overview and Technical Highlight
We present our model and summary of results in Section 2, where we also place the regret
bounds we obtain in context. Our main probing model is the BestProbe model, where
the online policy probes a set of arms or options ahead of the play, and is told the best of
these options (without revealing the actual losses/rewards of these options). For the MAB
problem, we also consider the AllProbe model where the policy also observes the rewards
of all arms it probes. We present algorithms and regret bounds for online linear/convex
optimization in the BestProbe model in Section 3. Our results extend to the case where
the hints can be imperfect, and we present this in Section 3.3. We present analogous results
for the MAB problem in Section 4. We consider the MAB problem in the AllProbe model
in Sections 5 and 6.

At a technical level, our results require development of new probabilistic tools to lower
bound (resp. upper bound) the maximum (resp. minimum) of independent random vari-
ables(See Lemmas 5, 7, 9 and 10.) We term these as “reverse prophet inequalities”, since
they are in some sense the reverse of well-known prophet inequality results [30, 46] that
upper bound the expected maximum of a set of independent random variables by a sum of
quantities related to individual distributions. These technical lemmas are crucial to both our
algorithms as well as our improved regret analyses. Much like prophet inequalities, these
lemmas are of independent interest as stand-alone probability tools.

1.4 Other Related Work

Stochastic Probing. The question of adaptively or non-adaptively probing independent
distributions has been widely studied, with applications to database query optimization [21,
42, 18, 37], wireless communication [24], and traffic routing [12]. Much like our model, a
probe reveals the true underlying value drawn from the distribution; however, this line of
work largely focuses on algorithm design as opposed to learning. It is shown in [21] that
the problem of computing the best set of k distributions to probe in order to maximize the
expected value of the maximum of the probed set is NP-Hard when k is not a constant. A
related problem is the Pandora’s problem [55, 24, 8], where there is no bound on the number
of probes, but we seek to maximize the largest value found minus the total probing cost
spent in discovering the value. A general adaptive greedy algorithm for such problems, which
probes the next distribution conditioned on the values seen so far, was presented in [23].
Our work is different in that we assume k is a small constant (so that NP-Hardness is
not an issue); instead, we seek to understand the power of such probes in repeated bandit
interactions.

Bandits with Probes. In the cascading bandits model [31, 49], a recommendation system
(such as search engine or streaming service) needs to choose k items (or arms) to show to a
user and obtains feedback on what item the user clicks on. Similarly, in the bandits with
pre-observation model [58], the arms are wireless channels of unknown quality, and a user
needs to sequentially probe the channels until a good channel is found. This is a bandit
version of the Pandora’s problem. Finally, motivated by job scheduling applications, the
online budgeted submodular coverage problem [51] considers the more general problem where
the reward obtained by the player is an unknown submodular function of the probed arms.
Such problems have also been recently considered in the experts setting [41] where the policy
gets feedback about all arms after the play, but is allowed to make a bounded number of
probes before the play. One commonality in all the above works is that they consider policy
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regret: The benchmark is an omniscient solution that not only knows the rewards/losses
of the arms, but is also allowed as many probes per step as the online policy. In contrast,
motivated by machine learning hints, we consider probing as providing the online policy
more power compared to an omniscient benchmark and our goal is to study the resulting
improvement in regret bounds.

Dueling Bandits. Our problem is also related to dueling bandits [56], where the only
information available on playing a pair of arms is the result of a noisy comparison. Assuming
the noisy comparison model is Condorcet consistent (e.g., the Bradley-Terry model), the
goal is to minimize the error incurred in not playing the best arm. Though our problem
is superficially similar in that we allow plays of multiple arms, in our case, we observe the
reward of at least one of the played arms. Further, it is easily possible to incur zero (or even
negative) regret in our problem by playing two sub-optimal arms. This makes our problem
technically very different. Nevertheless, it is an interesting question whether techniques from
dueling bandits can be used to improve some of our results.

Predictable Sequences. In the field of online algorithms in general, recent research has
focused on incorporating machine learning predictions to obtain more optimistic bounds if
the predictions are correct, but preserve the robustness of the classic online model in case the
predictions turn out to be inaccurate. Of particular relevance is recent work [44, 54, 50] on
bandits and experts with “predictable sequences”, where improved regret bounds are shown
when the algorithm is given a prediction that is close on average to the true reward at each
step. Our work is similar in spirit if we view the probe as a perfect prediction; however, in
our case, the probes are both interactive and parsimonious, meaning that the policy itself
has to decide on the predictions to obtain each step, and further, these are few in number.

Bandits with Limited Advice. A related model to predictable sequences is the experts
model, where in each step, each of m experts makes a prediction about the best arm at
that step. In the limited advice setting [47, 29], the policy can choose only k ≪ m of the
experts in each round and obtain their predicted best arm; subsequently, the policy plays
one of the arms and obtains its reward. The goal of the policy is to compete with reward
of following the best expert in hindsight. However, the predictions of these experts can be
arbitrary, and unrelated to which arm was actually the best arm. Therefore, even if a policy
obtains the predictions of all experts, it cannot avoid Ω(

√
nT ) regret, making this problem

fundamentally different from our setting.

2 Model and Results

In the online linear optimization problem, we are given a a finite set W ⊆ Rd of options
(or arms). Assume that for all w ∈ W, we have w ∈ [−1, 1]d. At each step t, the algorithm
chooses action wt and is subsequently presented a cost vector ℓt ∈ [−1, 1]d, for which it incurs
loss ⟨ℓt, wt⟩ ∈ [−d, d]. Note that the choice of action wt only depends on the cost vectors
ℓq for q < t. We assume cost vectors ℓt are generated by an oblivious adversary that does
not know the internal randomness used by the algorithm in choosing wt. We further assume
that any linear function can be efficiently minimized over the set W . We describe the related
experts and online convex optimization settings in the full paper [11].

There is a horizon of T steps; we assume T is known, but this assumption can be removed
using standard techniques. We measure regret with respect to the hindsight optimum as:

Regret =
T∑

t=1
⟨ℓt, wt⟩ − min

w∈W

T∑
t=1

⟨ℓt, w⟩.

ITCS 2023



3:6 Online Learning and Bandits with Queried Hints

We denote OPT = minw∈W
∑T

t=1⟨ℓt, w⟩.
In the stochastic MAB problem, there are n bandit arms. Arm i yields i.i.d. rewards

Xi drawn from an independent distribution Di ∈ [0, 1]. Let µi = E[Xi]. The policy can
play one arm it at each step t, this choice can depend on the observed rewards till time
t − 1. Unlike online linear optimization, in the MAB problem, at the end of time step t, the
policy only learns the reward ritt ∼ Dit of the arm it that it plays at time t. The hindsight
optimum plays the arm with highest expected reward each step so that OPT = T maxi E[Xi].
We consider pseudo-regret, which is simply OPT − E[

∑T
t=1 ritt]. In Section 6, we extend this

to the case where there is a joint (correlated) reward distribution over arms and the rewards
are drawn i.i.d. across time from this joint distribution.

Probe Model. There are two models of probing and feedback that we consider. These
models are parameterized by a number k ≤ n, which captures the number of probes allowed.
The first model applies to both online learning and stochastic MAB, while the second applies
only to MAB.

Probes with Best Arm Feedback (BestProbe ). Any policy probes a set St of at most k

arms or options at any time step t, and learns which arm in St will incur the lowest loss
or maximum reward at step t (but not the reward/loss values). The policy plays the arm
i ∈ St with largest reward (resp. minimum loss). For instance, in the MAB problem, if
the reward of arm i at time t at step t is rit ∼ Di, the policy’s reward is R̂t = maxi∈St

rit.
Probes with All Feedback (AllProbe ). For the stochastic MAB problem, we also con-

sider a model that gives the online policy more information. In this model, the policy is
actually told the rewards rit ∼ Di for each arm i ∈ St, and it subsequently plays the arm
with largest reward, incurring reward R̂t = maxi∈St

rit at that step.

When k = 1, these models reduce to the classic versions of online linear optimization and
stochastic MAB. Note that our regret measure is a departure from work on policy regret:
In our case, OPT remains the same whether k = 1 or k > 1. In that sense, we seek to
understand the power of increasing k on the regret of the online policy. As mentioned before,
the motivation comes from viewing the k > 1 setting as ML hints received by the online
policy.

2.1 Our Results
Our main results are as follows:

In Section 3, for the online linear optimization problem in the BestProbe model, we
show a regret bound of O

(
d2 ln d

)
, independent of T with k = 2 probes. Using similar

techniques, in the full paper [11], we improve to O(ln n) for the experts model with
n experts, and we also present a horizon-independent regret bound for online convex
optimization.
In Section 3.3, we extend the model to the setting where B of the hints could be imperfect.
We show an algorithm with regret bound O

(
d2 ln d

√
B + 1

)
. The dependence on B is

trivially optimal, as can be seen by considering B = T . Similar results can be obtained
for online convex optimization.
In Section 4, for the stochastic MAB problem in the BestProbe model, using k = 2
probes, we obtain a parameter independent regret bound of O(n2 log T ).
In Section 5, for the stochastic MAB problem in the AllProbe model, we show a regret
bound of O(n2), independent of T , with only k = 3 probes.
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In Section 6, we consider the stochastic MAB problem in AllProbe model when the
rewards of arms can be correlated at each time step (whilst still being independent across
time). Here, we show a Õ(n8/3T 1/3) regret bound using k = 4 probes.

Our regret bounds in Sections 4 and 5 for the MAB problem are parameter independent,
meaning that there is no dependence of the regret bound on the means and variances of the
individual arms. All of our bounds except those in Section 6 are an exponential improvement
in T over bounds without probes, since there is a lower bound of Ω(

√
nT ) [6] for the stochastic

MAB problem, and a lower bound of Ω(
√

T ln n) [16] for the experts problem with k = 1
probes.

We also remark that the difference between the last two results is a subtle one. Typically
in the stochastic MAB problem, the rewards of the arms are assumed to be independent,
but most known results carry over to the case where the rewards can be dependent (as long
as the samples are independent across time). Informally, this is because the algorithm only
receives a feedback about one arm at each step. This is not the case when k > 1, and leads
to the main open problem of understanding if we can improve upon the Θ(

√
T ) regret for

adversarial bandits in the AllProbe or BestProbe models.

3 Online Linear Optimization in the BestProbe Model

We now consider online linear optimization in the BestProbe model. Recall that in standard
online linear optimization, the algorithm needs to play an option (or arm) w ∈ W each step,
and learns the linear loss function ℓt at the end of each step t. We show that with an oracle
that can return the better of k = 2 options at each step t, we can achieve regret that is
independent of T .

For simplicity, we will assume W is a convex polytope in Rd, though our result easily
extends to the case where W is any finite set of options over which linear functions can be
efficiently optimized. In more generality, our results hold as long as there are a finite set
of options S ⊆ W, such that for w ∈ S, the set Cw = {v⃗ ∈ Rd|w = argmins∈W⟨s, v⃗⟩} has
positive volume, and further, ∪w∈SCw = Rd.

Our results also extend to the more general case of online convex optimization with
arbitrary convex domains. For conceptual simplicity, we present only the linear case here
and defer the general case to the full paper [11]. In the special case of online learning with
experts (where the domain W is the n-dimensional unit simplex), we present an improved
regret bound that only depends logarithmically on the number of experts, whilst still being
independent of T . The logarithmic dependence on the number of experts is analogous to the
standard regret bounds for the experts problem, and the details are presented in the full
paper [11].

Finally, all of these algorithms can be extended to the case when hints/probes can be
incorrect at a small number of steps. Once again, we describe the algorithm only for online
linear optimization, in Section 3.3.

3.1 Algorithm: Differentially Private Regularization
Let us first recap the algorithmic framework of randomized regularization [28] for the setting
without probes. Let Lt−1 =

∑t−1
q=1 ℓq denote the sum of the cost vectors till time t. The

algorithm chooses a d-dimensional random cost vector x of sufficiently large variance upfront
and at step t, chooses the regularized optimum action,

wt = argminw∈W⟨Lt−1 + x, w⟩.

ITCS 2023



3:8 Online Learning and Bandits with Queried Hints

The analysis proceeds in two parts. First it is shown that if Lt were hypothetically used
instead of Lt−1 in the above step, the only regret would be due to adding noise x, and this
is independent of the time horizon T . Next, it is shown that since x has large variance, using
Lt−1 instead of Lt produces almost the same distribution of the regularized optimum wt.
These steps trade-off, since the larger the variance of noise, the worse the first step and
better the second. The optimal trade-off yields a O(

√
T ) bound.

In the probing model, our algorithm LwC will simply sample two random vectors x, y

and compute the regularized optimal solutions as above. The algorithm will find out which of
these solutions has smaller loss at time t, and then choose this solution as its action wt. Our
key lemma (Lemma 5) shows that if the noise vector is chosen so as to satisfy a differential
privacy property, then the error in the first step above (comparing with Lt) goes away! In
other words, the better of two samples produced using the regularized distribution obtained
using Lt−1 will be as good as a sample obtained using Lt.

We note that the use of differentially private noise was first considered in [2], who
observed that viewing randomized regularization as differential privacy of the loss across
time leads to simpler analysis and somewhat stronger regret bounds. We show an algorithmic
application of this approach for probing. Indeed, though classical regularization does not
require differentially private noise (indeed, it does not even require randomization [57]), this
seems critical to achieving our bounds.

Algorithm. We now formally describe the algorithm. Recall that the distribution Laplace(β)
has density function f(x) = 1

2β exp(−|x|/β) for x ∈ R. For η ≤ 0.4 being a constant, the
algorithm performs these steps at time t.

Choose xj ∼ Laplace(d/η) for each j ∈ {1, . . . , d}; set at = argminw∈W⟨Lt−1 + x, w⟩.
Choose yj ∼ Laplace(d/η) for each j ∈ {1, 2, . . . , d}; set bt = argminw∈W⟨Lt−1 + y, w⟩.
Let At = ⟨at, ℓt⟩ and Bt = ⟨bt, ℓt⟩. Probe to learn wt = argminat,bt{At, Bt}.
Play wt as the action at time t, incurring actual loss min(At, Bt).

We will show the following theorem:

▶ Theorem 1. The constant η ∈ (0, 0.4], the regret of the LwC algorithm is O
(
d2 ln d

)
.

3.2 Analysis
As in the classic analysis of regularization [28], define a hypothetical “Be the Regular-
ized Leader” (BtRL ) algorithm: Choose xj ∼ Laplace(d/η) independently for each
j ∈ {1, 2, . . . , d}. At step t, use ct = argminw∈W⟨Lt−1 + ℓt + x, w⟩ as the action taken at
step t. Note that BtRL is not realizable. Let D = maxw,w′∈W |w − w′|1. The next lemma
restates the classic “be the leader” result from [28].

▶ Lemma 2 ([28]). For any η ≥ 0, the regret of the BtRL algorithm is at most D ·
E[maxd

j=1 |xj |].

For the specific setting of xj ∼ Laplace(d/η), we have E[maxd
j=1 |xj |] = O

(
d
η ln d

)
assuming η is a constant. Further, we have D = 2d, so that we obtain:

▶ Corollary 3. For constant η > 0, the regret of the BtRL algorithm is O
(

d2 ln d
η

)
In the rest of the analysis, we focus on a particular step t, and omit the superscript t.

Let D1 denote the distribution of the regularized optimum at (resp. bt) using Lt−1 in the
LwC algorithm, and D2 denote the distribution of the regularized optimum ct using Lt in
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the BtRL algorithm. The following lemma is a consequence of the well-known Laplace
mechanism in differential privacy [19], and we present a proof for completeness.

▶ Lemma 4 (η-Differential Privacy). For all w ∈ W, we have: exp(−η) ≤ Pr[D1=w]
Pr[D2=w] ≤ exp(η).

Proof. Consider x, y ∼ Laplace(d/η). Let Xi and Yi denote the random variables Lt−1
i + xi

and Lt−1
i + ℓt

i + yi respectively. For any fixed value v, for any dimension i, their density
functions are related as:

fXi(v)
fYi

(v) ≤ exp(ℓt
iη/d) ≤ exp(η/d),

since ℓt
i ≤ 1. Let X denote the d-dimensional random variable whose ith dimension is Xi,

and similarly define Y . Using the above, if x⃗, y⃗ have components drawn independently from
Laplace(d/η), then for any v⃗ ∈ Rd, the density functions of X and Y are related as

fX(v⃗)
fY (v⃗) ≤

d∏
i=1

exp(ℓt
iη/d) ≤ exp(η).

A similar argument shows fY (v⃗)
fX (v⃗) ≤ exp(η). Since W is a convex polytope in Rd, the optimum

solution for any v⃗ is achieved at a vertex w ∈ W. Further, w.l.o.g., the set of v⃗ whose
optimum corresponds to w ∈ W define a convex cone in Rd with positive volume. The lemma
follows by integrating the density functions fX , fY over this cone.1 ◀

We will now overload notation and use D1 (resp. D2) to refer to the distribution of the
losses ⟨ℓt, w⟩ for w chosen according to D1 (resp. D2). Note that these new distributions are
discrete with support size equal to the number of w ∈ W that are optimum for some v⃗ ∈ Rd,
and also satisfy the previous lemma.

The crux of the analysis is the following lemma, which shows that the expected min of the
two losses of the regularized optima using Lt−1 is at most that of the regularized optimum
using Lt, that is, the per-step loss of LwC is at most that of the BtRL algorithm. We can
view this as a “reverse prophet inequality” that upper bounds the expected minimum instead
of lower bounding it.

▶ Lemma 5 (Reverse Prophet Inequality for Private Noise). Let A, B be losses drawn indepen-
dently from D1 and let C be a loss drawn from D2, where D1, D2 are of bounded support and
satisfy η-differential privacy (Lemma 4) for η ∈ (0, 0.4]. Then E[min(A, B)] ≤ E[C].

Proof. By shifting the distributions if necessary, we may assume that the support of D1 and
D2 is the set of non-negative real numbers. Let G(x) = Pr[D1 ≥ x] and Ĝ(x) = Pr[D2 ≥ x].
Similarly, let F (x) = Pr[D1 ≤ x] and F̂ (x) = Pr[D2 ≤ x]. Let q = argminx{x|G(x) ≤
exp(−η)}. Therefore,

E[C] =
∫ q

x=0
(1 − F̂ (x))dx +

∫ ∞

x=q

Ĝ(x)dx = q −
∫ q

x=0
F̂ (x)dx +

∫ ∞

x=q

Ĝ(x)dx,

E[min(A, B)] = q −
∫ q

x=0
F (x)(2 − F (x))dx +

∫ ∞

x=q

(G(x))2dx.

1 Note that the proof also extends to the case where W is any finite set of outcomes, since w.l.o.g., there is
a subset S ⊆ W of outcomes such that the set of v⃗ for which w ∈ S is the optimal outcome is continuous
and convex (and hence has positive volume), and the union over S of these sets of v⃗ spans Rd.
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3:10 Online Learning and Bandits with Queried Hints

Note that for x ≥ q, G(x) ≤ exp(−η). Since Ĝ(x) ≥ exp(−η)G(x), this implies (G(x))2 ≤
Ĝ(x). Further, for x ∈ [0, q], we have F (x) ≤ 1 − exp(−η), and further, F̂ (x) ≤ exp(η)F (x).
Therefore

F (x)(2 − F (x)) ≥ exp(−η)(1 + exp(−η))F̂ (x) ≥ F̂ (x)

for η ∈ (0, 0.4]. Putting this together, we infer E[C] ≥ E[min(A, B)], completing the
proof. ◀

We note that the proof of the above lemma crucially needs the two-sided bound in
Lemma 4. In contrast, the classical regret results for random regularization, for instance,
in [28], only require the total variation distance between D1 and D2 be at most η. However,
this weaker condition is insufficient for proving the lemma, as can be seen by the following
example: D1 is a deterministic value d, while D2 is d with probability 1 − η and 0 otherwise.
Then, E[min(A, B)] = E[A] = d, while E[C] = d(1 − η). This leads to a regret of ηdT over
T steps against the BtRL algorithm.

Proof of Theorem 1. The proof is now immediate. Lemma 5 implies that at step t, the
expected loss of LwC is at most that of the BtRL algorithm. Using linearity of expectation
over time steps and combining with the regret bound for BtRL from Corollary 3, we have
proved Theorem 1.

3.3 Handling Imperfect Hints
We now consider the setting where at most B of the T hints (comparisons) yield incorrect
answers. We show an algorithm that yields regret O(d2 ln d

√
B + 1). At one extreme, when

B = T , this recreates the O(
√

T ) regret guarantee for classical online linear optimization,
while at the other extreme, when B = 0, this recovers Theorem 1. It is also easy to show
that such a dependence on B is optimal for any T . To see this, simply construct an instance
where the loss function at steps where the hints are correct is identically zero, so that the
hints are vacuous. The only relevant steps are the ones where the hints are incorrect, so that
any algorithm’s regret is lower-bounded by the regret of classical online linear optimization
over B steps.

Algorithm. In the sequel, we assume B is known; the case for unknown B follows by the
standard doubling trick where we maintain a guess for B and restart the algorithm once B

doubles. This can be done since we are in the full information regime and we get to know
if a query answer was incorrect; we omit the details. Our algorithm is nearly identical to
LwC for B = 0, and proceeds as follows. We will set η = 1

5
√

B+1 in this algorithm. We
also have a parameter p = 5η. The main difference in the algorithm is the following: After
LwC probes to learn wt = argminat,bt{At, Bt}, the new algorithm plays wt as the action
with probability p and plays at with probability 1 − p. In other words, the algorithm now
uses the hint (action wt) with probability 1 − p, else it ignores the hint at that step and
mimics classical follow the regularized leader (action at). Note that at the end of every step,
the algorithm learns if the hint was correct. This allows the algorithm to keep track of the
number of mis-predictions and is critical to using the doubling trick for unknown B.

Analysis. We will show the following theorem. We note that the generalization to the
experts and online convex optimization settings (as described in the full paper [11]), to yield
regret with a O(

√
B + 1) dependence on B, follows the same outline and is hence omitted.

▶ Theorem 6. The regret of the modified LwC algorithm with B incorrect hints is O(d2 ln d
√

B + 1).
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Our analysis hinges on the following generalization of the reverse prophet inequality
(Lemma 5) to mimic the behavior of the algorithm.

▶ Lemma 7 ((General Reverse Prophet Inequality.)). Let p > 0 be a given parameter, and let
D1, D2 be bounded support probability distributions (over losses) that satisfy η-differential
privacy (Lemma 4) for some η < p/4. Let C be a random sample from D2, and let Z be a
random variable obtained as follows: two samples A, B are drawn from D1. With probability
(1 − p), Z is set to be A. With probability p, Z = min(A, B). Then we have E[Z] ≤ E[C].

Proof. Define G(x) and Ĝ(x) as in Lemma 5. Once again, suppose that the support of the
distributions is the set of non-negative reals. By definition, we have

E[C] =
∫ ∞

0
Ĝ(x)dx and E[Z] =

∫ ∞

0

(
(1 − p)G(x) + pG(x)2) dx.

By the differential privacy property and the choice of η, we have that G(x), Ĝ(x) are within
a factor of (1 ± p

2 ) of one another for every x. Now consider two cases.
First, suppose G(x) ≤ 1/2. In this case, (1 − p)G(x) + pG(x)2 ≤ (1 − p

2 )G(x) ≤ Ĝ(x).
Next, suppose G(x) > 1/2. Now, writing F (x) = (1 − G(x)) for convenience, we have

(1 − p)G(x) + pG(x)2 = (1 − F (x))(1 − pF (x))
= 1 − F (x) − pF (x) + pF (x)2

< 1 − F (x) − p

2F (x) = 1 − (1 + p

2)F (x).

In the last inequality, we used F (x) < 1/2. By the privacy property, the final expression
is ≤ 1 − F̂ (x) = Ĝ(x). Plugging this into the above integral completes the proof of the
lemma. ◀

We now prove Theorem 6 by bounding the regret against the BtRL algorithm.

Proof of Theorem 6. Consider the BtRL algorithm with the same value of η = 1
5

√
B+1 . By

Corollary 3, this has regret O(d2 ln d
√

B + 1). We now bound the regret of our algorithm
against the BtRL algorithm. Towards this end, set S1 denote the set of time steps where
the hints are correct. By Lemma 7, the loss of our algorithm at these steps is at most that
of the BtRL algorithm.

Let S2 denote the set of steps where the hints are incorrect. At each of these steps, with
probability p the algorithm plays wt, and incurs loss O(d2). There are B · p = O(

√
B + 1)

such steps in expectation, yielding total loss (and regret) at most O(d2√
B + 1) against the

BtRL algorithm. For the remaining steps, the algorithm plays action at. Since Laplace
noise is η-differentially private (Lemma 4), the probability that at ̸= ct is at most η,
where ct is the action taken by the BtRL algorithm. In the case where at ̸= ct, the
algorithm incurs regret O(d2). Therefore the total regret against BtRL due to these steps
is O(Bηd2) = O(d2√

B + 1). Combining with the regret of O(d2 ln d
√

B + 1) of the BtRL
algorithm, this shows our algorithm also has regret O(d2 ln d

√
B + 1) against the best fixed

action in hindsight. This completes the proof. ◀

4 Stochastic MAB in the BestProbe Model with k = 2 Probes

Recall that in the stochastic MAB problem in the BestProbe model, the policy can probe
k arms and learn the identity of the arm with the maximum reward. At the end of the play,
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3:12 Online Learning and Bandits with Queried Hints

it only learns the reward of the arm that was played that step, and not the rewards of the
other arms that were probed that step. We will show a parameter independent regret bound
of O(n2 log T ) for a horizon of T steps using only k = 2 probes. As mentioned before, this is
an exponential improvement over the Ω(

√
nT ) regret necessary with k = 1 probes.

4.1 The Meta UCB-V Algorithm
The key algorithmic idea is the following: If we use an optimistic estimate of the sample
mean (similar to UCB [45]), probe the top two arms based on this estimate and choose the
arm with the higher reward, we obtain a guaranteed advantage (in expectation) over simply
choosing the top arm based on the estimate. Our key technical lemmas, Lemma 9 and 10
show that if the gap between the means of the arms played and the mean of the optimal arm
is small, the expected regret is actually ≤ 0. This is key to achieving our improved regret
bounds.

Formally, define a new classical bandit instance (with no probes) as follows. For every pair
of arms (i, j), we have a meta-arm (i, j). Therefore, the new instance as

(
n
2
)

meta-arms. If Xi

and Xj denote the random variables corresponding to the rewards of arms i and j respectively,
the reward of meta-arm (i, j) is max(Xi, Xj). Playing the meta-arm (i, j) corresponds to
probing the pair of arms i and j and obtaining/observing the value Xij = max(Xi, Xj).

Our algorithm runs the UCB-V policy [4] on the new bandit instance. We call this
algorithm Meta UCB-V. For completeness, this algorithm works as follows: At step t, suppose
(i, j) has been played st

ij times. Let mt
ij and V t

ij denote the sample mean and sample variance
over the st

ij plays:

mijt =
∑sijt

q=1 Xijq

sijt
Vijt =

∑sijt

q=1(Xijq − mijt)2

sijt
. (1)

Define the quantity UCBt
ij as: UCBt

ij = mt
ij +

√
2.4V t

ij
log t

st
ij

+ 3.6 log t
st

ij
. At time step t, the

meta-arm (i, j) with the highest value of UCBt
ij is played.

We will show the following parameter-independent regret bound as our main result; recall
that we are considering pseudo-regret throughout this paper.

▶ Theorem 8. The Meta UCB-V algorithm has regret O(n2 log T ) with k = 2 probes.

Recall that µi = E[Xi], µ∗ = maxi E[Xi], and the benchmark is OPT = Tµ∗. We now
define analogous quantities for the meta-arms. Recall that Xij = max(Xi, Xj) is the random
variable corresponding to the reward of meta-arm (i, j). Let µij = E[Xij ] and σ2

ij = Var[Xij ].
Let M∗ = max(i,j) µij and ∆ij = M∗ − µij .

For the Meta UCB-V policy, let Tij denote the expected number of times meta-arm (i, j)
is played. Let Rij = Tij∆ij denote the expected regret against M∗ due to playing meta-arm
(i, j). The main result of Audibert et al. [4] is the following.2

Rij ≤ 10
(

σ2
ij

∆ij
+ 1
)

ln T. (2)

2 We note that the result in [4] assumes the arms are independent, while our meta-arms are correlated.
However, the expected regret bounds in [4] hold as is when the arms are correlated, provided the samples
from the arms are i.i.d. across time. This suffices for our purposes.



A. Bhaskara, S. Gollapudi, S. Im, K. Kollias, and K. Munagala 3:13

4.2 Reverse Prophet Inequalities
Our main technical lemmas lower bound the expected maximum of a pair of random variables
in terms of the mean and variance of the individual variables. These lemmas effectively show
that if the gap between the means of the arms played and the mean of the optimal arm is
small, the expected regret is actually ≤ 0. As mentioned before, these can be viewed as the
reverse of standard prophet inequalities [30, 46] that upper bound the expected maximum.
These lemmas forms the crux of our analysis both in this section and in Section 5, and may
be of independent interest in related settings.

▶ Lemma 9. Let X and Y be independent random variables supported on [0, 1] whose means
satisfy µY ≥ µX , and let Z = max(X, Y ). Then E[Z] ≥ µX + σ2

X/2.

Proof. We can write E[Z] =
∫ 1

t=0 E[Z|X = t]fX(t)dt, where fX is the pdf of X. We split
the integral into two sums, t ∈ [0, µX ] and t ∈ [µX , 1]. For the first integral, we use Z ≥ Y ,
and thus ∫ µX

t=0
E[Z|X = t]fX(t)dt ≥

∫ µX

t=0
E[Y ]fX(t)dt ≥

∫ µX

t=0
µXfX(t)dt.

Here, the first inequality uses the independence of X and Y and the second inequality uses
µY ≥ µX . For the second integral, we use Z ≥ X, and obtain∫ 1

t=µX

E[Z|X = t]fX(t)dt ≥
∫ 1

t=µX

tfX(t)dt.

Thus, writing the t as µX + (t − µX), we get that the sum of the two integrals is bounded
as

E[Z] ≥ µX + E[(X − µX)+], (3)

where (X − µX)+ is the random variable max(0, X − µX).
Likewise, define (X − µX)− = max(0, µX − X). By the definition of the expectation, we

have E[(X − µX)+] = E[(X − µX)−]. On the other hand, because our random variables are
bounded on [0, 1], we have E[(X − µX)+] ≥ E[(X − µX)2

+] and likewise for E[(X − µX)−].
Therefore,

E[(X − µX)+] + E[(X − µX)−] ≥ E[(X − µX)2] = σ2
X . (4)

Thus both the terms are at least σ2
X/2, implying the lemma. ◀

We next extend Lemma 9 to pairs of arms. Note that this does not follow from Lemma 9
by simply replacing “arms" with “pairs of arms", since different pairs of arms are no longer
independent.

▶ Lemma 10. Let pair (i, j) be such that µij < µ∗. Then M∗ − µij ≥ σ2
ij

4 .

Proof. For notational convenience, let q = argmaxsµs. By assumption, we have E[Xq] =
µ∗ > µij .

Since M∗ = max(q,r) µqr, we have M∗ ≥ max(µiq, µjq). Therefore,

M∗ − µij ≥ max(µiq, µjq) − µij . (5)
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3:14 Online Learning and Bandits with Queried Hints

We now use the same argument as the proof of Eq (3). Set Z = max(Xi, Xq) and X = Xi,
but split the integral at t = µ∗ instead of t = E[Xi]. This yields

µiq = E[Z] ≥
∫ µ∗

t=0
µ∗fXi

(t)dt +
∫ 1

t=µ∗
((t − µ∗) + µ∗)fXi

(t)dt = µ∗ + E[(Xi − µ∗)+],

A similar inequality holds for µjq. Combining with Eq (5), we have

M∗ − µij ≥ max {E[(Xi − µ∗)+], E[(Xj − µ∗)+]} + (µ∗ − µij).

Since µ∗ ≥ µij by assumption, the above implies

M∗ − µij ≥ max {E[(Xi − µij)+], E[(Xj − µij)+]}

≥1
2 (E[(Xi − µij)+] + E[(Xj − µij)+]) ≥ 1

2E[(Xij − µij)+]

To see the last inequality, simply observe that for any value a ≥ 0, we have Pr[Xij ≥
µij + a] ≤ Pr[Xi ≥ µij + a] + Pr[Xj ≥ µij + a]. Finally, using Eq (4) with X = Xij , we
obtain

M∗ − µij ≥ 1
2E[(Xij − µij)+] ≥ 1

4σ2
ij .

This completes the proof. ◀

4.3 Proof of Theorem 8
We split the set of meta-arms into two types. The first type is arms (i, j) for which µij ≥ µ∗.
Since µ∗ − µij ≤ 0, the expected regret (against the benchmark µ∗) of playing (i, j) is
non-positive.

We therefore focus on arms (i, j) with µij < µ∗. By Lemma 10, we have ∆ij = M∗ −µij ≥
σ2

ij

4 . Combining with Eq (2), we have Rij ≤ 10(4 + 1) ln T = 50 ln T . However, we have
∆ij ≥ µ∗ − µij , so that the regret of (i, j) against µ∗ is at most that against M∗. Putting all
this together, we have:

Regret =
∑

(i,j):µij<µ∗

Tij(µ∗ − µij) ≤
∑

(i,j):µij<µ∗

Tij(M∗ − µij)

=
∑

(i,j):µij<µ∗

Tij∆ij =
∑

(i,j):µij<µ∗

Rij ≤
∑

(i,j):µij<µ∗

50 ln T = O(n2 ln T )

This completes the proof of Theorem 8.

5 Stochastic MAB in the AllProbe Model

We will now switch to the AllProbe model for the stochastic MAB problem, where a policy
can probe k arms, and receive as feedback the rewards of all these arms at the current time
step. In this model, we will show a regret bound of O(n2) when we are allowed k = 3 probes
per step.

In addition to using Lemma 9 from the previous section, the main observation is that
with k = 3 probes allowed, we can have one probe dedicated to exploring the arms in a
round-robin fashion. Thus AllProbe allows us to overcome the explore/exploit trade-off
and obtain better concentration bounds, albeit with the loss of an additional n factor in the
regret. The overall algorithm is reminiscent of the UCB-V algorithm of Audibert et al. [4] from
Section 4, but differs in how we construct the optimistic estimate, as well as the analysis.
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Simultaneous Explore-Exploit Algorithm. Our algorithm uses one probe per step to
play the n arms in a round robin fashion. We call this the exploration probe and it enables the
algorithm to maintain the sample mean and sample variance for each arm. Therefore, at time
t ≥ 1, any arm i is observed sit ≥ ⌊ t

n ⌋ steps by the exploration probe. Let Xi1, Xi2, . . . , Xisit

denote these observations. Analogous to Eq. (1), let mit, Vit denote the sample mean and
variance of arm i after sit observations. Choose ϵ = 0.1; any other small constant will work
equally well. Let

UCBit = mit + ϵVit. (6)

The remaining two probes at time step t are used to probe the two arms with the largest
values of UCBit. We call these the exploitation probes. This completes the description of the
algorithm.

Note that in our analysis, we will assume the policy finally plays one of the two exploitation-
probed arms and not the exploration-probed arm. We use the exploration probe only to
update the estimates of mit and Vit, and the results of these probes could be obtained at
the end of that time step. This is sufficient to get constant regret. We show the following
theorem below.

▶ Theorem 11. The regret of the simultaneous explore-exploit algorithm is O(n2) for the
AllProbe model with k = 3 probes.

We remark that the bound has a slightly worse dependence on n, the number of arms,
than the standard UCB bounds [15]. Improving the bound to O(n) is an interesting open
direction. Further, it is easy to show examples where playing the top two arms with highest
UCB1 scores [5], or running Thompson Sampling twice [3], has regret that is polynomial in
T . However, we conjecture that the policy that simply plays the top two arms according to
mit also has constant regret, and we leave showing this as an interesting open question.

5.1 Some Tail Bounds

Before presenting the proof of Theorem 11, we present some well-known tail bounds for the
sample mean and variance.

We will use tail bounds that follow from Audibert et al. [4, 20]. Fix a time t and some
arm i whose distribution Di has mean µi and variance σ2

i . Note that we assume Di ∈ [0, 1].
Consider the sit exploration probes and the resulting estimates mit and Vit of the sample
mean and variance respectively:

mit =
∑sit

q=1 Xiq

sit
Vit =

∑sit

q=1(Xiq − mit)2

sit
. (7)

▶ Theorem 12 (Implicit in Audibert et al.[4]). For any time t ≥ 1, we have the following tail
bounds on mit and Vit after sit probes of arm i.

1. For q ≥ 1
18 , we have: Pr

[
|mit − µi| > qσ2

i

]
≤ 3e−

qσ2
i

sit
23 .

2. For q ≥ 1
18 , we have: Pr

[
Vit > (1 + q)σ2

i

]
≤ 3e−

qσ2
i

sit
23 .

3. Pr[Vit < 0.65σ2
i ] ≤ 3e−0.01σ2

i sit .

We present a proof sketch of this theorem in the full paper [11].
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5.2 Proof of Theorem 11
Let t0 = 4n; we will ignore the first t0 steps in the analysis, and they contribute O(n) to the
regret since the rewards are bounded in [0, 1]. This implies sit ≥ t

2n for t ≥ t0.
Let q = argmaxiµi. Let µ∗ = µq and σ2

∗ = σ2
q . At any time step t, suppose a pair of

arms (i, j) with µi ≥ µj is played by the exploitation probes. Let ∆j = µ∗ − µj . Suppose
E[max(Xi, Xj)] = µij ≥ µ∗, then the expected regret is zero, otherwise, the expected regret
is at most ∆j . We charge this regret to arm j. We will now compute the probability with
which a regret of ∆j is charged to arm j in time step t. Below, we will omit t from the
subscript when the connotation is obvious.

Let ∆j = ℓσ2
j = ρσ2

∗. We split the analysis into three cases. Note that the key hurdle with
obtaining constant regret is that the tail bounds in Theorem 12 that decay exponentially
with time at rate depending on variance only hold when the deviation from the mean is at
least a constant times the variance of the arm. We therefore split our analysis based on
whether ∆j is at least a constant times σ2

j or not. In the latter case, we use Lemma 9 to
argue that the regret is already non-positive. In the former case, we obtain exponentially
decaying regret in time, which is sufficient to obtain overall constant regret.

In the following, for notational brevity we may drop t from mjt, Vjt and sjt.

Case 1. ℓ ≤ 1
2 . In this case, setting X = Xj and Y = Xi in Lemma 9, we have

µij ≥ µj + σ2
j /2 ≥ µj + ∆j ≥ µ∗.

Therefore, playing (i, j) incurs non-positive regret.

Case 2. ℓ ≥ 1
2 and ρ ≥ 1

2 . Let w = µj + ∆j

2 . Recall the definition of UCBit from Eq (6),
and define the good event as UCBj ≤ w and UCBq ≥ w. In this case, if j is probed, then q = i,
so that there is no regret. We upper bound the probability of the good event not happening
by a union of bad events.

The first bad event is that Vj > 0.65σ2
j , where Vj is as defined in Eq (7). By Theorem 12,

there exists constant c1 > 0 such that

Pr[Vj > 0.65σ2
j ] ≤ 3e−c1ℓσ2

j sj = 3e−c1∆jsj .

Assuming this event do not happen, the second bad event is UCBj > w, which is equivalent
to mj > µj + ℓ

2 σ2
j − ϵVj , where mj is as defined in Eq (7). Since Vj ≤ 0.65σ2

j , it suffices to
bound the probability of the event

mj − µj > (ℓ/2 − 0.65ϵ)σ2
j > 0.3ℓσ2

j ,

where we have used ϵ = 0.1. By Theorem 12, there is a constant c2 > 0 so that

Pr[UCBj > w|Vj ≤ ℓσ2
j ] ≤ 3e−c2ℓσ2

j sj = 3e−c2∆jsj .

Analogously, the third bad event is that UCBq < w = µj + ∆j

2 = µ∗ − ∆j

2 . This implies
mq < µ∗ − ρ

2 σ2
∗. Repeating the same argument as the second bad event, we obtain

Pr[UCBq < w] ≤ 3e−c2ρσ2
∗sq = 3e−c2∆jsq .

Denote the regret charged to arm j at step t as Rjt. Let c3 = min(c1,c2)
2 . Note next that

sjt, sqt ≥ t
2n . We now take the union bound over the three bad events above, and note that

the regret charged to arm j conditioned on the bad event is at most ∆j . This implies:

E[Rjt] ≤ 9∆je−c3∆j
t
n .
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Case 3. ℓ ≥ 1
2 and ρ < 1

2 . We define the good event has having UCBj ≤ µ∗, and UCBq ≥ µ∗.
In this case, if arm j is played, then arm q is also played so that the regret is zero. As before,
we upper bound the probability of the good event not happening by a union of bad events.

As in Case (2), UCBj > µ∗ is captured by two bad events Vj > ℓσ2
j and UCBj > µ∗ given

Vj ≤ ℓσ2
j . It is easy to check that the probability of these events are upper bounded by those

derived for Case (2), so that:

Pr[UCBj > µ∗] ≤ 6e−c3ℓσ2
j sj = 6e−c3∆jsj .

To capture UCBq < µ∗, we consider two other bad events Vq < 0.65σ2
∗ and UCBq < µ∗

given Vq ≥ 0.65σ2
∗. Using Theorem 12 and the fact that ∆j <

σ2
∗

2 , we have:

Pr[Vq < 0.65σ2
∗] ≤ 3e−0.01σ2

∗sq ≤ 3e−c4∆jsq

for some constant c4 > 0. Assume therefore that Vq ≥ 0.65σ2
∗. The last bad event is

UCBq < µ∗, which is equivalent to µ∗ − mq > ϵVq, which implies µ∗ − mq > 0.065σ2
∗, since

ϵ = 0.1. Using Theorem 12 and the fact that ∆j <
σ2

∗
2 , there is a constant c5 > 0 such that

Pr[UCBq < µ∗|Vq ≥ 0.65σ2
∗] ≤ 3e− 0.065

23 σ2
∗sq ≤ 3e−c5∆jsq .

As before, we take the union of all these bad events and set c6 = 1
2 min(c3, c4, c5) to

obtain:
E[Rjt] ≤ 12∆je−c6∆j

t
n .

Given the tail bounds derived in each of the three cases, by linearity of expectation over
all time steps t and sub-optimal arms j to which the regret can be charged, we have:

E[Regret] ≤ O(n) +
∑
j ̸=q

T∑
t=t0

12∆je−c6∆j
t
n = O(n2),

where use a regret of t0 = O(n) for the first t0 steps, and use linearity of expectation beyond
that. This completes the proof of Theorem 11.

6 Handling Correlation Between Arms in the AllProbe Model

We now consider the AllProbe model when the rewards on the arms can be correlated. In
other words, the reward vector r⃗t at any time t is drawn from a joint distribution over [0, 1]n.
These draws are i.i.d. across time steps. Note that the analysis for the independent case
presented above crucially needs Lemma 9, which does not hold when arms can be correlated.
We now show a different algorithm and analysis (in the AllProbe model) that uses k = 4
probes and achieves a regret bound of Õ(T 1/3) · poly(n). Again note that such a dependence
on T cannot be achieved in the standard bandit model with k = 1 probes.

6.1 Correlation-Exploitation Algorithm
As before the idea is to explore and exploit simultaneously, but the algorithm now plays pairs
of arms, and thus can keep track of the gain offered by playing two arms simultaneously.
More formally, the algorithm uses k = 4 probes in every step, and consists of two exploit
and two explore probes.
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Explore Probes. The explore probes pull every pair (i, j) of arms in a round-robin fashion.
Using these probes, the algorithm maintains estimates of the mean reward µi, and additionally,
estimates of quantities

Gji := E[(Xj − Xi)+]. (8)

Let us call the estimates µ̂i and Ĝji respectively. The latter estimates the gain that arm j

offers over arm i when played together. These estimates turn out to be crucial in handling
correlations in the rewards. Note that since the µ̂i uses the same samples used to estimate
Ĝji, these estimates can be dependent.

Exploit Probes. For every arm i, define its “partner” as argmaxjĜji. The partner can
change with time, and is a random variable that depends on the rewards obtained so far. At
every time t, for the exploit probes, the algorithm pulls the arm i that has the highest value
of µ̂i – we call this the primary arm at time t – and its partner.

6.2 Analysis
We next turn to the analysis of the algorithm described above. Recall that ∆i = µq − µi,
where q is the arm with highest expected reward. We will show the following theorem.
Though the improvement is not as impressive as for the independent reward case, we note
that such a dependence on T cannot be obtained with k = 1 probes.

▶ Theorem 13. The regret of the correlation-exploitation algorithm is bounded by

Regret ≤ O

n3 ·
∑
i ̸=q

√
log(1/∆i)

∆i

 ,

which implies a parameter independent regret bound of Õ(n8/3T 1/3).

The rest of this section is devoted to proving the above theorem. Towards the end, we
will show that the analysis is tight and the dependence on 1/

√
∆ cannot be improved for

this algorithm.
Our proof uses standard Chernoff bounds (see, e.g., [14, 40]). For completeness, we state

the version we use.

▶ Theorem 14. Let X1, X2, . . . , Xn be independent random variables with support [0, 1]. Let
pi = E[Xi], and let µ =

∑
i pi. Then we have the following:

1. (Small deviation) For any δ ∈ [0, 1],

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3,

Pr[X ≤ (1 − δ)µ] ≤ e−µδ2/3.

2. (Large deviation) For δ ≥ 1, we have

Pr[X ≥ (1 + δ)µ] ≤ e−µδ/3.

Define Zi,t to be the random variable indicating if arm i is the primary arm at time t.
The first observation is that for all arms with ∆i > 0,

Pr[Zi,t = 1] ≤ 2 exp(−t∆2
i /4n). (9)
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To see this, note that in order to choose arm i over arm q, we must have either µ̂i ≥ µi + ∆i

2
or µ̂q ≤ µq − ∆i

2 . Since we have at least t/n i.i.d. samples for each arm and since the
rewards are in [0, 1], the probability of each of these events can be bounded using Bernstein’s
inequality, and taking the union over the two events implies (9).

Next, we turn to the analysis of the quantities Gij and their estimates Ĝij . The first
observation is the following:

▶ Observation 15. For any two arms (i, j), we have E[max(Xi, Xj)] = µi +E[(Xj −Xi)+] =
µi + Gji. Furthermore, for every arm i, there exists j such that Gji ≥ ∆i.

This implies that when we play i, if we are able to identify its “optimal partner” j, then
we will incur zero regret in expectation. However, since we only estimate Gji, the actual
regret can be higher. To analyze this difference, let us define Di(t) to be E[(Xj − Xi)+],
where j is the partner of i at time t and the expectation is over the reward distribution. As
j is a random variable (depending on the rewards observed at times t′ < t), so is Di(t). The
key observation is that the expected regret at time t conditioned on i being the explore arm
is bounded by ∆i − Di(t).

Our overall approach is to bound the expected regret as∑
i

∑
t

E[Zi,t(∆i − Di(t))].

To bound this, we fix an index i and analyze the sum over t. We can further bound the sum
as: ∑

t≤Ti

E[∆i − Di(t)] +
∑
t>Ti

E[Zi,t]∆i, (10)

where Ti = 4n2 log(1/∆i)
∆2

i
. The second summation is bounded easily using (9):

∑
t>Ti

E[Zi,t]∆i ≤ 2∆i

∫ ∞

t=Ti

e−t∆2
i /4n dt = 2∆i · 4n

∆2
i

· e−Ti∆2
i /4n ≤ O(1).

Let us thus focus on the first sum. For the first 12n2

∆i
time steps, we simply bound the

expectation by ∆i, which makes the sum add up to O(n2). As t increases, the following
lemma shows that (∆i − Di(t)) becomes much smaller than ∆i with high probability.

▶ Lemma 16. Assume w.l.o.g. that ∆i < 1. Suppose that t ≥ 12n2/∆i. Then for any c ≥ 0,

Pr[∆i − Di(t) ≥ c] ≤ Pr[∆i − Di(t) > c∆i] ≤ ne−c2∆it/36n2
.

Proof. First note that we can assume 0 < c < 1; the bound for c ≥ 1 is trivial. The proof
proceeds in two parts, both of which use the fact that after t steps, the explore arms (which
perform round robin) use at least (t/n2) samples for computing each of the Ĝji. First, we
show that for the optimal arm q, since Gqi ≥ ∆i from Observation 15,

Pr[∆i − Ĝqi >
c

2∆i] ≤ Pr[Ĝqi < (1 − c

2)Gqi] ≤ e−c2∆it/12n2
.

This is a direct application of Theorem 14. Next, we consider any arm j for which Gji is
≤ ∆i(1 − c). In this case, we wish to argue that Ĝij < ∆i − c

2 ∆i with high probability. For
this, we consider two cases.
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Case 1. Gji < ∆i/4. In this case, ∆i− c
2 ∆i > ∆i/2 > 2Gji, and thus to bound Pr[Ĝji ≥ 2Gji],

we can use the “high deviation” regime of Chernoff bounds (see Theorem 14) to conclude
that

Pr[Ĝji ≥ ∆i − c

2∆i] ≤ Pr[Ĝji ≥ ∆i/2] ≤ e−t∆i/6n2
.

Case 2. Gji ≥ ∆i/4. In this case, since ∆i − c
2 ∆i ≥ (1 + c

2 )Gji, we can use a Chernoff bound
again, to obtain

Pr[Ĝji ≥ ∆i − c

2∆i] ≤ e−c2Gjit/12n2
≤ e−c2∆it/48n2

.

Combining the two parts and taking a union bound, we have that with probability at
least 1 − ne−c2∆it/48n2 , we have that (a) maxj Ĝji ≥ ∆i − c

2∆i, and (b) the max is not
attained by any j with Gij ≤ Gji(1 − c). If both (a) and (b) hold, then ∆i − Di(t) ≤ c∆i,
and this completes the proof of the lemma. ◀

Lemma 16 can be used to bound the first term of (10), using the following technical
lemma.

▶ Lemma 17. Let n, β ≥ 1 be parameters, and Y be a random variable that satisfies the
condition:

∀c > 0, Pr[Y ≥ c] ≤ ne−c2β .

Then E[Y ] ≤ 2n√
β

.

Proof. Since we are only interested in an upper bound on E[Y ], we can ignore potential
negative values of Y , and write

E[Y ] ≤
∫ ∞

c=0
Pr[Y ≥ c] dc ≤ n

∫ ∞

c=0
e−c2βdc.

We then split the integrals into a sum over the intervals c ∈ [0, 1√
β

], [ 1√
β

, 2√
β

], [ 2√
β

, 3√
β

], . . . .

As the integrand in the (i + 1)th interval is bounded by exp(−i2), the sum can be bounded
as desired. ◀

Using the lemmas, we can bound the first summation in (10). The main observation is that
by using Lemma 16, if t = β 48n2

∆i
, the hypothesis of Lemma 17 is satisfied for Y = ∆i − Di(t).

This implies that we can bound

E[∆i − Di(t)] ≤ 2n√
β

= 12n2
√

∆i

t
.

Summing this between t = 48n2

∆i
(or even t = 1) and t = Ti = 4n2 log(1/∆i)

∆2
i

, we obtain a
bound of O

(
n2√

∆iTi

)
. Plugging in the value of Ti then completes the proof of Theorem 13.

6.2.1 Tight Instance
We now show an instance where the above algorithm has regret Ω(n/

√
∆). There are three

arms and n − 3 dummy arms for large n. Arm 1 has reward Xt that is drawn i.i.d. from a
Bernoulli distribution that is 1/3 with probability 1/2 and 2/3 with probability 1/2. Arm
2 has reward Yt = Xt + At, where At is i.i.d. drawn from Bernoulli(1/3, 3∆). Arm 3 has
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reward Zt = Xt + Bt, where Bt is i.i.d. drawn from Bernoulli(1/3, 3∆(1 −
√

∆)), with
Pr[Bt = 0|At = 0] = 1.

The dummy arms have reward zero at all time steps. We assume that at every step, one
pair of arms (i, j) is sampled, and these samples are used to estimate Gij , Gji, µi, and µj . The
dummy arms ensure the estimates µ̂i are approximately independent for all i, j ∈ {1, 2, 3}.
Further, Ĝji and Ĝki are independent for all i, j, k ∈ {1, 2, 3}, since these estimates are
constructed at different time steps.

On this instance, the regret is with respect to arm 2, with E[Y ] = 1
2 + ∆. However, the

construction of reward distributions ensures that E[max(X, Y )] = E[max(Z, Y )] = E[Y ].
Therefore, at any step, the expected regret of any strategy that plays pairs of arms is
non-negative.

Using the tightness of Chernoff bounds on Bernoulli distributions, we can check that on
this instance, with constant probability, the following two events happen for all t ≤ Ω(n/∆2):

µ̂1 > max (µ̂2, µ̂3), so that the algorithm plays arm 1;
Ĝ31 > Ĝ21, so that arm 3 is the partner of arm 1 and gets played.

In this event, the algorithm incurs regret ∆3/2 against the optimal arm 2 each step, for a
total regret of Ω(n/

√
∆). This shows the analysis above is tight.

7 Conclusion

We conclude with some open questions. The main open question is whether the stochastic
assumptions are needed for the MAB results. In other words, can we obtain improved regret
guarantees for the adversarial MAB problem [6]. We make progress in this direction with
our results for correlated MAB in Section 6; however, we believe our results even for this
case can be improved.

For the stochastic MAB problem, one intriguing open question is whether constant regret
is possible for k = 2 probes in the AllProbe model. Note that Theorem 8 implies a regret
of O(n2 log T ). However, unlike the celebrated Lai-Robbins result [32] that shows the log T

factor is necessary when k = 1, we have not been able to show a lower bound requiring such
dependence on T for k = 2, either for the AllProbe model or for the BestProbe model.
We leave this as an interesting open question. Another interesting question is to extend our
bandit results to the case with imperfect hints.

At a higher level, it would be interesting to explore the power of a few probes in more
complex bandit settings. One example is the linear contextual bandit problem [1, 35] where
the stochastic arms correspond to latent variables. At any step, a decision space is given and
the policy needs to choose a linear combination of these variables from the decision space,
obtaining that linear combination of the reward of the arms as its reward. Now suppose the
latent space of variables has small dimension, then does having multiple probes help with
the regret bounds?
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