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Abstract

We give an efficient algorithm for finding sparse approximate solutions to linear systems of
equations with nonnegative coefficients. Unlike most known results for sparse recovery, we do not
require any assumption on the matrix other than non-negativity. Our algorithm is combinatorial
in nature, inspired by techniques for the set cover problem, as well as the multiplicative weight
update method.

We then present a natural application to learning mixture models in the PAC framework. For
learning a mixture of k axis-aligned Gaussians in d dimensions, we give an algorithm that outputs
a mixture of O(k/ε3) Gaussians that is ε-close in statistical distance to the true distribution,
without any separation assumptions. The time and sample complexity is roughly O(kd/ε3)d.
This is polynomial when d is constant – precisely the regime in which known methods fail to
identify the components efficiently.

Given that non-negativity is a natural assumption, we believe that our result may find use
in other settings in which we wish to approximately explain data using a small number of a
(large) candidate set of components.

1 Introduction

Sparse recovery, or the problem of finding sparse solutions (i.e., solutions with a few non-zero
entries) to linear systems of equations, is a fundamental problem in signal processing, machine
learning and theoretical computer science. In its simplest form, the goal is to find a solution to a
given system of equations Ax = b that minimizes ‖x‖0 (which we call the sparsity of x).

It is known that sparse recovery is NP hard in general. It is related to the question of finding
if a set of points in d-dimensional space are in general position – i.e., they do not lie in any (d− 1)
dimensional subspace [Khachiyan, 1995]. A strong negative result in the same vein is due to Arora
et al. [1993] and (independently) Amaldi and Kann [1998], who prove that it is not possible to

approximate the quantity min{‖x‖0 : Ax = b} to a factor better than 2(logn)1/2 unless NP has quasi
polynomial time algorithms.

While these negative results seem forbidding, there are some instances in which sparse recovery
is possible. Sparse recovery is a basic problem in the field of compressed sensing, and in a beautiful
line of work, Candes et al. [2006], Donoho [2006] and others show that convex relaxations can be
used for sparse recovery when the matrix A has certain structural properties, such as incoherence,
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or the so-called restricted isometry property (RIP). However the focus in compressed sensing is
to design matrices A (with as few rows or ‘measurements’ as possible) that allow the recovery of
sparse vectors x given Ax. Our focus is instead on solving the sparse recovery problem for a given
A, b, similar to that of [Natarajan, 1995, Donoho and Elad, 2003]. In general, checking if a given
A possesses the RIP is a hard problem [Bandeira et al., 2012].

Motivated by the problem of PAC learning mixture models (see below), we consider the sparse
recovery problem when the matrix A, the vector b, and the solution we seek all have non-negative
entries. In this case, we prove that approximate sparse recovery is always possible, with some loss
in the sparsity. We obtain the following trade-off:

Theorem 1.1. (Informal) Suppose the matrix A and vector b have non-negative entries, and
suppose there exists a k-sparse1 non-negative x∗ such that Ax∗ = b. Then for any ε > 0, there is an
efficient algorithm that produces an xalg that is O(k/ε3) sparse, and satisfies ‖Axalg − b‖1 ≤ ε ‖b‖1.

The key point is that our upper bound on the error is in the `1 norm (which is the largest
among all `p norms). Indeed the trade-off between the sparsity of the obtained solution and the
error is much better understood if the error is measured in the `2 norm. In this case, the natural
greedy ‘coordinate ascent’, as well as the algorithm based on sampling from a “dense” solution
give non-trivial guarantees (see Natarajan [1995], Shalev-Shwartz et al. [2010]). If the columns of
A are normalized to be of unit length, and we seek a solution x with ‖x‖1 = 1, one can find an x′

such that ‖Ax′ − b‖2 < ε and x′ has only O( log(1/ε)
ε2

) non-zero co-ordinates. A similar bound can
be obtained for general convex optimization problems, under strong convexity assumptions on the
loss function [Shalev-Shwartz et al., 2010].

While these methods are powerful, they do not apply (to the best of our knowledge) when
the error is measured in the `1 norm, as in our applications. More importantly, they do not take
advantage of the fact that there exists a k-sparse solution (without losing a factor that depends on
the largest eigenvalue of A† as in Natarajan [1995], or without additional RIP style assumptions as
in Shalev-Shwartz et al. [2010]).

The second property of our result is that we do not rely on the uniqueness of the solution (as is
the case with approaches based on convex optimization). Our algorithm is more combinatorial in
nature, and is inspired by multiplicative weight update based algorithms for the set cover problem,
as described in Section 2. Finally, we remark that we do not need to assume that there is an
“exact” sparse solution (i.e., Ax∗ = b), and a weaker condition suffices. See Theorem 2.1 for the
formal statement.

Are there natural settings for the sparse recovery problem with non-negative A, b? One appli-
cation we now describe is that of learning mixture models in the PAC framework [Valiant, 1984,
Kearns et al., 1994].

Learning mixture models

A common way to model data in learning applications is to view it as arising from a “mixture model”
with a small number of parameters. Finding the parameters often leads to a better understanding
of the data. The paradigm has been applied with a lot of success to data in speech, document clas-
sification, and so on [Reynolds and Rose, 1995, Titterington et al., 1985, Lindsay, 1995]. Learning

1I.e., has at most k nonzero entries.
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algorithms for Gaussian mixtures, hidden Markov models, topic models for documents, etc. have
received wide attention both in theory and practice.

In this paper, we consider the problem of learning a mixture of Gaussians. Formally, given
samples from a mixture of k Gaussians in d dimensions, the goal is to recover the components with
high probability. The problem is extremely well studied, starting with the early heuristic methods
such as expectation-maximization (EM). The celebrated result of Dasgupta [1999] gave the first
rigorous algorithm to recover mixture components, albeit under a separation assumption. This was
then improved in several subsequent works (c.f. Arora and Kannan [2001], Vempala and Wang
[2002], Dasgupta and Schulman [2007]).

More recently, by a novel use of the classical method of moments, Kalai et al. [2010] and Belkin
and Sinha [2010] showed that any d-dimensional Gaussian mixture with a constant number of
components k can be recovered in polynomial time (without any strong separation). However the
dependence on k in these works is exponential. Moitra and Valiant [2010] showed that this is
necessary if we wish to recover the true components, even in one dimension.

In a rather surprising direction, Hsu and Kakade [2013], and later Bhaskara et al. [2014] and
Anderson et al. [2014] showed that if the dimension d is large (at least kc for a constant c >
0), then tensor methods yield polynomial time algorithms for parameter recovery, under mild
non-degeneracy assumptions. Thus the case of small d and much larger k seems to be the most
challenging for current techniques, if we do not have separation assumptions. Due to the lower
bound mentioned above, we cannot hope to recover the true parameters used to generate the
samples.

Our parameter setting. We consider the case of constant d, and arbitrary k. As mentioned
earlier, this case has sample complexity exponential in k if we wish to recover the true components
of the mixture (Moitra and Valiant [2010]). We thus consider the corresponding PAC learning
question (Valiant [1984]): given parameters ε, δ > 0 and samples from a mixture of Gaussians
as above, can we find a mixture of k Gaussians such that the statistical distance to the original
mixture is < ε with success probability (over samples) ≥ (1− δ)?

Proper vs improper learning. The question stated above is usually referred to as proper learn-
ing: given samples from a distribution f in a certain class (in this case a mixture of k Gaussians),

we are required to output a distribution f̂ in the same class, such that
∥∥∥f − f̂∥∥∥

1
≤ ε. A weaker

notion that is often studied is improper learning, in which f̂ is allowed to be arbitrary (it some
contexts, it is referred to as density estimation).

Proper learning is often much harder than improper learning. To wit, the best known algo-
rithms for proper learning of Gaussian mixtures run in time exponential in k. It was first studied
by Feldman et al. [2006], who gave an algorithm with sample complexity polynomial in k, d, but
run time exponential in k. Later works improved the sample complexity, culminating in the works
by Daskalakis and Kamath [2014], Acharya et al. [2014], who gave algorithms with optimal sam-
ple complexity, for the case of spherical Gaussians. We note that even here, the run times are
poly(d, 1/ε)k.

Meanwhile for improper learning, there are efficient algorithms known for learning mixtures
of very general one dimensional distributions (monotone, unimodal, log-concave, and so on). A
sequence of works by Chan et al. [2013, 2014] give algorithms that have near-optimal sample
complexity (of Õ(k/ε2)), and run in polynomial time. However it is not known how well these
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methods extend to higher dimensions.
In this paper we consider something in between proper and improper learning. We wish to

return a mixture of Gaussians, but with one relaxation: we allow the algorithm to output a mixture
with slightly more than k components. Specifically, we obtain a tradeoff between the number of
components in the output mixture, and the distance to the original mixture. Our theorem here is
as follows

Theorem 1.2. (Informal) Suppose we are given samples from a mixture of k axis-aligned Gaussians

in d dimensions. There is an algorithm with running time and sample complexity O
(

1
ε3
·
(
kd
ε3

)d)
,

and outputs a mixture of O(k/ε3) axis-aligned Gaussians which is ε-close in statistical distance to
the original mixture, with high probability.

The algorithm is an application of our result on solving linear systems. Intuitively, we consider
a matrix whose columns are the probability density functions (p.d.f.) of all possible Gaussians in
Rd, and try to write the p.d.f. of the given mixture as a sparse linear combination of these. To
obtain finite bounds, we require careful discretization, which is described in Section 3.

Is the trade-off optimal? It is natural to ask if our tradeoff in Theorem 1.1 is the best possible
(from the point of view of efficient algorithms). We conjecture that the optimal tradeoff is k/ε2,
up to factors of O(log(1/ε)) in general. We can prove a weaker result, that for obtaining an
ε approximation in the `1 norm to the general sparse recovery problem using polynomial time
algorithms, we cannot always get a sparsity better than k log(1/ε) unless P = NP.

While this says that some dependence on ε is necessary, it is quite far from our algorithmic bound
of O(k/ε3). In Section 4, we will connect this to similar disparities that exist in our understanding
of the set cover problem. We present a random planted version of the set cover problem, which
is beyond all known algorithmic techniques, but for which there are no known complexity lower
bounds. We show that unless this planted set cover problem can be solved efficiently, we cannot
hope to obtain an ε-approximate solution with sparsity o(k/ε2). This suggests that doing better
than k/ε2 requires significantly new algorithmic techniques.

1.1 Basic notation

We will write R+ for the set of non-negative reals. For a vector x, its ith co-ordinate will be denoted
by xi, and for a matrix A, Ai denotes the ith column of A. For vectors x, y, we write x ≤ y to mean
entry-wise inequality. We use [n] to denote the set of integers {1, 2, . . . , n}. For two distributions
p and q, we use ‖p− q‖1 to denote the `1 distance between them.

2 Approximate sparse solutions

2.1 Outline

Our algorithm is inspired by techniques for the well-known set cover problem: given a collection of
n sets S1, S2, . . . , Sn ⊆ [m], find the sub-collection of the smallest size that covers all the elements
of [m]. In our problem, if we set Ai to be the indicator vector of the set Si, and b to be the vector
with all entries equal to one, a sparse solution to Ax = b essentially covers all the elements of [m]
using only a few sets, which is precisely the set cover problem. The difference between the two
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problems is that in linear equations, we are required to ‘cover’ all the elements precisely once (in
order to have equality), and additionally, we are allowed to use sets fractionally.

Motivated by this connection, we define a potential function which captures the notion of
covering all the elements “equally”. For a vector x ∈ Rn, we define

Φ(x) :=
∑
j

bj(1 + δ)(Ax)j/bj (1)

This is a mild modification of the potential function used in the multiplicative weight update
method (Freund and Schapire [1997], Arora et al. [2012]). Suppose for a moment that ‖b‖1 = 1.
Now, consider some x with ‖x‖1 = 1. If (Ax)j = bj for all j, the potential Φ(x) would be precisely
(1 + δ). On the other hand, if we had (Ax)j/bj varying significantly for different j, the potential
would (intuitively) be significantly larger; this suggests an algorithm that tries to increment x
coordinate-wise, while keeping the potential small. Since we change x coordinate-wise, having a
small number of iterations implies sparsity. The key to the analysis is to prove that at any point in
the algorithm, there is a “good” choice of coordinate that we can increment so as to make progress.
We now make this intuition formal, and prove the following

Theorem 2.1. Let A be an m × n non-negative matrix, and b ∈ Rm be a non-negative vector.
Suppose there exists a k-sparse non-negative vector x∗ such that ‖Ax∗‖1 = ‖b‖1 and Ax∗ ≤ (1+ε0)b,
for some 0 < ε0 < 1/16. Then for any ε ≥ 16ε0, there is an efficient algorithm that produces an
xalg that is O(k/ε3) sparse, and satisfies ‖Axalg − b‖1 ≤ ε ‖b‖1.

Normalization

For the rest of the section, m,n will denote the dimensions of A, as in the statement of Theorem 2.1.
Next, note that by scaling all the entries of A, b appropriately, we can assume without loss of
generality that ‖b‖1 = 1. Furthermore, since for any i, multiplying xi by c while scaling Ai by (1/c)
maintains a solution, we may assume that for all i, we have ‖Ai‖1 = 1 (if Ai = 0 to start with, we
can simply drop that column). Once we make this normalization, since A, b are non-negative, any
non-negative solution to Ax = b must also satisfy ‖x‖1 = 1.

2.2 Algorithm

We follow the outline above, having a total of O(k/ε3) iterations. At iteration t, we maintain a
solution x(t), obtained by incrementing precisely one co-ordinate of x(t−1). We start with x(0) = 0;
thus the final solution is O(k/ε3)-sparse.

We will denote y(t) := (Ax(t)). Apart from the potential Φ introduced above (Eq.(1)), we keep
track of another quantity:

ψ(x) :=
∑
j

(Ax)j .

Note that since the entries of A, x are non-negative, this is simply ‖Ax‖1.

Running time. Each iteration of the algorithm can be easily implemented in timeO(mn log(mn)/δ)
by going through all the indices, and for each index, checking for a θ in multiples of (1 + δ).

Note that the algorithm increases ψ(x(t)) by at least 1/Ck in every iteration (because the
increase is precisely θ, which is ≥ 1/Ck), while increasing Φ as slowly as possible. Our next lemma
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procedure solve({A, b, k, ε})
// find an ε-approximate solution.

begin

1 Initialize x(0) = 0; set parameters T = Ck/δ2; C = 16/ε; δ = ε/16.
for t = 0, . . . , T − 1 do

2 Find a coordinate i and a scaling θ > 0 such that θ ≥ 1/Ck, and the ratio

Φ(x(t) + θei)/Φ(x(t)) is minimized.
3 Set x(t+1) = x(t) + θei.

end

4 Output xalg = x(t)/
∥∥x(t)

∥∥
1
.

end

says that once ψ is large enough (while having a good bound on Φ), we can get a “good” solution.
I.e., it connects the quantities Φ and ψ to the `1 approximation we want to obtain.

Lemma 2.2. Let x ∈ Rn satisfy the condition Φ(x) ≤ (1 + δ)(1+η)ψ(x), for some η > 0. Then we
have ∥∥∥∥(Ax)

ψ(x)
− b
∥∥∥∥

1

≤ 2

(
η +

1

δψ(x)

)
. (2)

Proof. For convenience, let us write y = Ax, and ỹ = y
‖y‖1

(i.e., the normalized version). Note that

since each column of A has unit `1 norm, we have ψ(x) = ‖Ax‖1 = ‖y‖1. Since ỹ and b are both
normalized, we have

‖ỹ − b‖1 = 2 ·
∑

j : ỹj>bj

(ỹj − bj).

From now on, we will denote S := {j : ỹj > bj}, and write p :=
∑

j∈S bj . Thus to prove the
lemma, it suffices to show that ∑

j∈S
(ỹj − bj) ≤

(
η +

1

δψ(x)

)
. (3)

Now, note that the LHS above can be written as
∑

j∈S bj
( ỹj
bj
− 1
)
. We then have

(1+δ)
ψ(x)
p
·
∑
j∈S bj

(
ỹj
bj
−1
)
≤ (1 + δ)

∑
j∈S

bj
p
·
(
yj
bj
−ψ(x)

)
≤
∑
j∈S

bj
p
· (1 + δ)

(
yj
bj
−ψ(x)

)
(convexity)

≤ 1

p
·
∑
j

bj(1 + δ)

(
yj
bj
−ψ(x)

)
(sum over all j)

≤ 1

p
· Φ(x) · (1 + δ)−ψ(x)

≤ 1

p
· (1 + δ)ηψ(x) (hypothesis on Φ).
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Thus taking logarithms (to base (1 + δ)), we can bound the LHS of Eq.(3) by

p

ψ(x)
log(1+δ)(1/p) + pη ≤ 1

δψ(x)
+ η.

The last inequalities are by using the standard facts that ln(1+δ) ≥ δ/2 (for δ < 1), and p ln(1/p) ≤
(1/e) for any p, and since p ≤ 1. This shows Eq. (3), thus proving the lemma.

The next lemma shows that we can always find an index i and a θ as we seek in the algorithm.

Lemma 2.3. Suppose there exists a k-sparse vector x∗ such that Φ(x∗) ≤ (1 + δ)(1+ε0). Then for
any C > 1, and any x(t) ∈ Rn, there exists an index i, and a scalar θ ≥ 1/(Ck), such that

Φ(x(t) + θei) ≤ (1 + δ)θ(1+ε0)(1+δ)/(1−(1/C))Φ(x(t)).

Proof. x∗ is k-sparse, so we may assume w.l.o.g., that x∗ = θ1e1 + θ2e2 + · · ·+ θkek. Let us define

∆i = Φ(x(t) + θiei)− Φ(x(t)).

First, we will show that

k∑
i=1

∆i ≤ Φ(x(t))
[
(1 + δ)(1+ε0) − 1

]
. (4)

To see this, note that the LHS of Eq.(4) equals

∑
j

bj

(
k∑
i=1

(1 + δ)(A(x(t)+θiei))j/bj − (1 + δ)(Ax(t))j/bj

)

=
∑
j

bj(1 + δ)(Ax(t))j/bj

(
k∑
i=1

(1 + δ)(A(θiei))j/bj − 1

)

≤
∑
j

bj(1 + δ)(Ax(t))j/bj
(

(1 + δ)(Ax∗)j/bj − 1
)
.

In the last step, we used the fact that the function f(t) := (1+δ)t−1 is sub-additive (Lemma A.1),
and the fact that x∗ =

∑k
i=1 θiei. Now, using the bound we have on Φ(x∗), we obtain Eq. (4). The

second observation we make is that since ‖x∗‖1 = 1, we have
∑

i θi = 1.
Now we can apply the averaging lemma A.2 with the numbers {∆i, θi}ki=1, to conclude that for

any C > 1, there exists an i ∈ [k] such that θi ≥ 1/(Ck), and

∆i ≤ Φ(x(t)) · (1 + δ)(1+ε0) − 1

1− (1/C)
.

Thus we have that for this choice of i, and θ = θi,

Φ(x(t) + θei) ≤ Φ(x(t))

(
1 + θ · (1 + δ)(1+ε0) − 1

1− (1/C)

)
.
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Now we can simplify the term in the parenthesis using Lemma A.3 (twice) to obtain

1 + θ · (1 + δ)(1+ε0) − 1

1− (1/C)
≤ 1 +

θ · δ(1 + ε0)

1− (1/C)

≤ (1 + δ)θ(1+ε0)(1+δ)/(1−(1/C)).

This completes the proof of the lemma.

Proof of Theorem 2.1. By hypothesis, we know that there exists an x∗ such that ‖Ax∗‖1 = 1 (or
equivalently ‖x∗‖1 = 1) and Ax∗ ≤ (1 + x∗)b. Thus for this x∗, we have Φ(x∗) ≤ (1 + δ)(1+ε0), so
Lemma 2.3 shows that in each iteration, the algorithm succeeds in finding an index i and θ > 1/Ck
satisfying the conclusion of the lemma. Thus after T steps, we end up with ψ(x(T )) ≥ 1/δ2, thus
we can appeal to Lemma 2.2. Setting η := 2(ε0 + δ + 1/C), and observing that

(1 + ε0)(1 + δ)/(1− 1/C) < 1 + η,

the lemma implies that the `1 error is ≤ 2(η + δ) < ε, from our choice of η, δ. This completes the
proof.

Remark 2.4. The algorithm above finds a column to add by going through indices i ∈ [m], and
checking if there is a scaling of Ai that can be added. But in fact, any procedure that allows us to
find a column with a small value of Φ(x(t+1))/Φ(x(t)) would suffice for the algorithm. For example,
the columns could be parametrized by a continuous variable, and we may have a procedure that
only searches over a discretization.2 We could also have an optimization algorithm that outputs the
column to add.

3 Learning Gaussian mixtures

3.1 Notation

Let N(µ, σ2) denote the density of a d-dimensional axis-aligned Gaussian distribution with mean
µ and diagonal covariance matrix σ2 respectively. Thus a k-component Gaussian mixture has the
density

∑k
r=1wrN(µr, σ

2
r ). We use f to denote the underlying mixture and pr to denote component

r. We use (ˆ) to denote empirical or other estimates; the usage becomes clear in context. For an
interval I, let |I| denote its length. For a set S, let n(S) be the number of samples in that set.

3.2 Algorithm

The problem for finding components of a k-component Gaussian mixture f can be viewed as finding
a sparse solution for system of equations

Aw = f, (5)

where columns of A are the possible mixture components and w is the weight vector and f is the
density of the underlying mixture. If f is known exactly, and A is known explicitly, (5) can be
solved using solve({A, f, k, ε}).

2This is a fact we will use in our result on learning mixtures of Gaussians.
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However, a direct application of solve has two main issues. Firstly, f takes values over Rd and
thus is an infinite dimensional vector. Thus a direct application of solve is not computationally
feasible. Secondly f is unknown and has to be estimated using samples. Also, for algorithm solve’s
performance guarantees to hold, we need an estimate f̂ such that f̂(x) ≥ f(x)(1 − ε), for all x.
This kind of a global multiplicative condition is difficult to satisfy for continuous distributions. To
avoid these issues, we carefully discretize the mixture of Gaussians. More specifically, we partition
Rd into rectangular regions S = {S1, S2, . . .} such that Si ∩ Sj = ∅ and ∪S∈SS = Rd. Furthermore
we flatten the Gaussian within each region to induce a new distribution over Rd as follows:

Definition 3.1. For a distribution p and a partition S, the new distribution pS is defined as3

• If x, y ∈ S for some S ∈ S, then pS(x) = pS(y)

• ∀S ∈ S, p(S) = pS(S).

Note that we use the standard notation that p(S) denotes the total probability mass of the
distribution p over the region S. Now, let AS be a matrix with rows indexed by S ∈ S and columns
indexed by distributions p such that AS(S, p) = p(S). AS is a matrix with potentially infinitely
many columns, but finitely many rows (number of regions in our partition).

Using samples, we generate a partition of Rd such that the following properties hold.

1. fS(S) can be estimated to sufficient multiplicative accuracy for each set S ∈ S.

2. If we output a mixture of O(k/ε3) Gaussians ASw′ such that
∑

S∈S |(ASw′)(S) − fS(S)| is
small, then ‖Aw′ − f‖1 is also small.

For the first one to hold, we require the sets to have large probabilities and hence requires S to
be a coarse partition of Rd. The second condition requires the partition to be ‘fine enough’, that
a solution after partitioning can be used to produce a solution for the corresponding continuous
distributions. How do we construct such a partition?

If all the Gaussian components have similar variances and the means are not too far apart,
then a rectangular grid with carefully chosen width would suffice for this purpose. However, since
we make no assumptions on the variances, we use a sample-dependent partition (i.e., use some of
the samples from the mixture in order to get a rough estimate for the ‘location’ of the probability
mass). To formalize this, we need a few more definitions.

Definition 3.2. A partition of a real line is given by I = {I1, I2, . . .} where Its are continuous
intervals, It ∩ It′ = ∅ ∀t, t′, and ∪I∈II = R.

Since we have d dimensions, we have d such partitions. We denote by Ii the partition of axis i.
The interval t of coordinate i is denoted by Ii,t.

For ease of notation, we use subscript r to denote components (of the mixture), i to denote
coordinates (1 ≤ i ≤ d), and t to denote the interval indices corresponding to coordinates. We now
define induced partition based on intervals and a notion of “good” distributions.

Definition 3.3. Given partitions I1, I2, I3, . . . Id for coordinates 1 to d, define I1, I2, I3, . . . Id-
induced partition S = {Sv} as follows: for every d-tuple v, x ∈ Sv iff xi ∈ Ii,vi ∀v.

3We are slightly abusing notation, with pS denoting both the p.d.f. and the distribution itself.
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Definition 3.4. A product distribution p = p1 × p2 × . . . × pd is (I1, I2, I3, . . . Id), ε-good if for
every coordinate i and every interval Ii,t, pi(Ii,t) ≤ ε.

Intuitively, ε-good distributions have small mass in every interval and hence binning it would
not change the distribution by much. Specifically in Lemma 3.8, we show that for such distributions∥∥p− pS∥∥

1
is bounded.

We now have all the tools to describe the algorithm. Let ε1 = ε3/kd. The algorithm first
divides Rd into a rectangular gridded fine partition S with ≈ ε−d1 bins such that most of them have
probability ≥ εd+1

1 . We then group the bins with probability < εd+1
1 to create a slightly coarser

partition S ′. The resulting S ′ is coarse enough that fS
′

can be estimated efficiently, and is also fine
enough to ensure that we do not lose much of the Gaussian structure by binning.

We then limit the columns of AS
′

to contain only Gaussians that are (I1, I2, . . . Id), 2ε2/d-
good. In Lemma 3.8, we show that for all of these we do not lose much of the Gaussian structure
by binning. Thus solve(AS

′
w, b, k, ε) yields us the required solution. With these definitions in

mind, the algorithm is given in Learn({(x1, . . . x2n), k, ε}). Note that the number of rows in AS
′

is
|S ′| ≤ |S| = ε−d1 .

We need to bound the time complexity of finding a Gaussian in each iteration of the algorithm
(to apply Remark 2.4). To this end we need to find a finite set of candidate Gaussians (columns
of AS

′
) such that running solve using a matrix restricted to these columns (call it AS

′
finite) finds

the desired mixture up to error ε. Note that for this, we need to ensure that there is at least one
candidate (column of AS

′
finite) that is close to each of the true mixture components.

We ensure this as follows. Obtain a set of n′ samples from the Gaussian mixture and for each
pair of samples x, y consider the Gaussian whose mean is x and the variance along coordinate i is
(xi − yi)2. Similar to the proof of the one-dimensional version in Acharya et al. [2014], it follows
that for any ε′ choosing n′ ≥ Ω((ε′)−d), this set contains Gaussians that are ε′ close to each of the
underlying mixture components. For clarity of exposition, we ignore this additional error which
can be made arbitrarily small and we treat ε′ as 0.

3.3 Proof of correctness

We first show that b satisfies the necessary conditions for solve that are given in Theorem 2.1. The
proof follows from Chernoff bound and the fact that empirical mass in most sets S ∈ S ′ is ≥ εd1ε.

Lemma 3.5. If n ≥ 8
εd1ε

3 log 2
δεd1

, then with probability ≥ 1− δ

∀S ∈ S ′, b(S) ≥ fS′(S)(1− 3ε),

and
∑

S∈S′ |fS
′
(S)− b(S)| ≤ 6ε.

Proof. Let f̂S
′

be the empirical distribution over S ′. Since |Ii| = 1
ε1

, the induced partition S
satisfies |S| ≤ 1

εd1
. Hence by the Chernoff and union bounds, for n ≥ 8

εd1ε
3 log 2

δεd1
, with probability

≥ 1− δ,
|fS′(S)− f̂S′(S)| ≤

√
fS′(S)εd1ε

3/2 + εd1ε
3/2, ∀S ∈ S. (6)

10



procedure Learn({(x1, . . . x2n), k, ε})
begin

1 Set parameter ε1 = ε3/(kd).
2 Use first n samples to find I1, I2 . . . Id such that number of samples x such that xi ∈ Ii,t

is nε1. Let S be the corresponding induced partition.
3 Use the remaining n samples to do:

4 Let U = ∪Sv : n(Sv) ≤ nεd1ε.
5 Let S ′ = {U} ∪ {S ∈ S : n(Sv) > nεd1ε}.
6 Set b(U) = 2ε and

∀S ∈ S ′ \ {U}, b(S) =
(1− 2ε)n(S)∑
S∈S′\{U} n(S)

7 Let AS
′

be the matrix with columns corresponding to distributions p that are

(I1, I2, . . . Id), 2ε2/d-good axis-aligned Gaussians, and AS
′

finite be the candidates obtained
as above, using ε′ = ε1/10.

8 solve(AS
′

finite, b, k, 64ε) using Remark 2.4.
9 Output the w.

end

For the set U ,

fS
′
(U) =

∑
S:f̂S′ (S)≤εdε

fS
′
(S)

≤ ε+
∑
S∈S

√
fS′(S)εd1ε

3/2 +
∑
S∈S

εd1ε
3/2

≤ 2ε,

where the second inequality follows from the concavity of
√
x. However b(U) = 2ε and hence

b(U) ≥ fS′(U)(1− 2ε).
By Equation (6),

|fS′(S)− f̂S′(S)| ≤
√
fS′(S)εd1ε

3/2 + εd1ε
3/2

≤
√
f̂S′(S)εd1ε

3/2 + εd1ε
3/2

≤ f̂S′(S)
(√

ε2/2 + ε2/2
)

≤ f̂S′(S)ε.

The penultimate inequality follows from the fact that f̂S
′
(S) ≥ εd1ε. Hence f̂S

′
(S) ≥ fS′(S)(1− ε).

Furthermore by construction b(S) ≥ f̂S′(S)(1− 2ε). Hence b(S) ≥ fS′(S)(1− 3ε)∀S ∈ S ′.

11



For the second part of the lemma observe that b and fS
′

are distributions over S ′. Hence∑
S∈S
|b(S)− fS′(S)| = 2

∑
S:b(S)≤fS′ (S)

fS
′
(S)− b(S)

≤ 2
∑
S∈S

fS
′
(S) · 3ε = 6ε.

Using the above lemma, we now prove that Learn returns a good solution such that
∥∥∥fS − f̂S∥∥∥

1
≤

O(ε).

Lemma 3.6. Let n ≥ max
(

2
ε21

log 2d
δ ,

8
εd1ε

3 log 2
δεd1

)
. With probability ≥ 1 − 2δ, Learn returns a

solution f̂ such that the resulting mixture satisfies∥∥∥fS − f̂S∥∥∥
1
≤ 74ε.

Proof. We first show that AS
′

has columns corresponding to all the components r, such that
wr ≥ ε/k. For a mixture f let fi be the projection of f on coordinate i. Note that f̂i(Ii,t) = ε1 ∀i, t.
Therefore by Dvoretzky-Kiefer-Wolfowitz theorem (see, Massart [1990]) and the union bound if
n ≥ 2

ε21
log 2d

δ , with probability ≥ 1− δ,

fi(Ii,t) ≤ ε1 + ε1 ≤ 2ε1 ∀i, t.

Since fi =
∑k

r=1wrpr,i, with probability ≥ 1− δ,

pr,i(Ii,t) ≤
2ε1
wr
∀i, r.

If wr ≥ ε/k, then pr,i(Ii,t) ≤ 2ε2/d and thus AS
′

contains all the underlying components r such
that wr ≥ ε/k. Let w∗ be the weights corresponding to components such that wr ≥ ε/k. Therefore
‖w∗‖1 ≥ 1 − ε. Furthermore by Lemma 3.5, b(S) ≥ fS

′
(1 − 3ε) ≥ (1 − 3ε)(AS

′
w∗)(S). Therefore,

we have ‖b‖ =
∥∥∥AS′w∗/ ‖w∗‖∥∥∥ and

b(S) ≥ (1− 3ε)(AS
′
w∗)(S) ‖w∗‖ / ‖w∗‖

≥ (1− 4ε)(AS
′
w∗/ ‖w∗‖)(S).

Hence, By Theorem 2.1, algorithm returns a solution AS
′
w′ such that

∥∥∥AS′w′ − b∥∥∥
1
≤ 64ε. Thus

by Lemma 3.5,
∑

S∈S′ |(AS
′
w′)(S)−fS′(S)| ≤ 70ε. Let f̂ be the estimate corresponding to solution

w′. Since fS
′

and f̂S
′

are flat within sets S, we have
∥∥∥f̂S′ − fS′∥∥∥

1
≤ 70ε.

Since S ′ and S differ only in the set U and by Lemma 3.5, fS(U) = fS
′
(U) ≤ ε/(1 − 3ε), we

have ∥∥∥f̂S − fS∥∥∥
1
≤
∥∥∥f̂S′ − fS′∥∥∥

1
+ 2fS(U) ≤ 74ε.

Note that the total error probability is ≤ 2δ.
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We now prove that if f̂S is close to fS , then f̂ is close to f . We first prove that flattened
Gaussians in one dimension are close to their corresponding underlying Gaussian.

Lemma 3.7. Let p be a one dimensional Gaussian distribution and I = (I1, I2, . . .) be a partition
of the real line such that ∀I ∈ I, I is a continuous interval and p(I) ≤ ε. Then∥∥p− pI∥∥

1
≤ 30

√
ε.

Proof. If p and I are simultaneously scaled or translated, then the value of
∥∥p− pI∥∥

1
remains

unchanged. Hence proving the lemma for p = N(0, 1) is sufficient. We first divide I into I1, I2, I3

depending on the minimum and maximum values of p(x) in the corresponding intervals.

I ∈


I1 if minx∈I p(x) ≥

√
ε/(2π),

I2 if maxx∈I p(x) ≤
√
ε/(2π),

I3 else.

The `1 distance between p and pI is∥∥p− pI∥∥
1

=
∑
I∈I

∫
x∈I
|p(x)− pI(x)|dx.

We bound the above summation by breaking it into terms corresponding to I1, I2, and I3 respec-
tively. Observe that |I3| ≤ 2 and p(I) ≤ ε∀ I ∈ I3. Hence,∑

I∈I3

∫
x∈I
|p(x)− pI(x)|dx ≤ 2ε.

Since maxx∈I p(x) for every interval in I ∈ I2 is ≤
√
ε/(2π), by Gaussian tail bounds∑

I∈I2

∫
x∈I
|p(x)− pI(x)|dx ≤

∑
I∈I2

∫
x∈I

p(x)dx

≤
√
ε.

For every interval I ∈ I1 we first bound its interval length and maximum value of p′(x). Note that

p(I) ≥ |I|min
y∈I

p(y).

In particular since p(I) ≤ ε and miny∈I p(y) ≥
√
ε/(2π), |I| ≤

√
2πε. Let s = maxx∈I |p′(x)|.

s = max
x∈I
|p′(x)| = max

x∈I

|x|√
2π
e−x

2/2 ≤ max
x∈I
|x| ·max

x∈I
p(x).

Since miny∈I p(y) ≥
√
ε/(2π), we have maxy∈I |y| ≤

√
log 1/ε. Let y1 = argmaxy∈Ip(y) and

13



y2 = argminy∈Ip(y), then

maxy∈I p(y)

miny∈I p(y)
=
p(y2)

p(y1)

= e(y21−y22)/2

= e(y1−y2)(y2+y1)/2

≤ e|I|
√

log 1
ε

≤ e
√

2πε log 1
ε

≤ 5.

Since pI(x) = p(I)/|I|, by Rolle’s theorem ∃x0 such that pI(x) = p(x0)∀x. By first order Taylor’s
expansion, ∫

x∈I
|p(x)− pI(x)|dx ≤

∫
x∈I
|(x− x0) max

y∈[x0,x]
|p′(y)|dx

≤ s
∫
x∈I
|x− x0|dx

≤ s|I|2

≤ s
(

p(I)

miny∈I p(y)

)√
2πε

≤
√

2πεp(I) max
x∈I
|x| ·

maxy∈I p(y)

miny∈I p(y)

≤ 5
√

2πεp(I) max
x∈I
|x|,

where the last three inequalities follow from the bounds on |I|, s, and
maxy∈I p(y)
miny∈I p(y) respectively. Thus,∫

x∈I
|p(x)− pI(x)|dx ≤ 5

√
2πεp(I) max

x∈I
|x|

≤ 5
√

2πε

∫
x∈I

p(x)(|x|+
√
ε)dx.

Summing over I ∈ I1, we get the above summation is≤ 5
√

2πε(1+
√
ε). Adding terms corresponding

to I1, I2, and I3 we get ∥∥p− pI∥∥
1
≤ 5
√

2πε(1 +
√
ε) +

√
ε+ 2ε < 30

√
ε.

Using the above lemma we now show that for every d-dimensional (I1, I2 . . . Id), ε-flat Gaussian
is close to the unflattened one.

Lemma 3.8. For every (I1, I2, . . . Id), ε-good axis-aligned Gaussian distribution p = p1×p2×. . . pd,
we have ∥∥p− pS∥∥

1
≤ 30d

√
ε.
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Proof. By triangle inequality, the distance between any two product distributions is upper bounded
by the sum of distances in each coordinate. Hence,

∥∥p− pS∥∥
1
≤

d∑
i=1

∥∥∥pi − pIii ∥∥∥
1
≤ 30d

√
ε,

where the second inequality follows from Lemma 3.7.

We now have all the tools to prove the main result on Gaussian mixtures.

Theorem 3.9. Let ε1 = ε3/kd and n ≥ max
(

2
ε21

log 2d
δ ,

8
εd1ε

3 log 2
δεd1

)
. Then given 2n samples from

an axis-aligned Gaussian mixture f , with probability ≥ 1− 2δ, Learn returns an estimate mixture f̂
with at most O(k/ε3) components such that∥∥∥f̂ − f∥∥∥

1
≤ 170ε.

The run time of the algorithm is O (1/ε1)d.

Proof. By triangle inequality,∥∥∥f̂ − f∥∥∥
1
≤
∥∥∥f̂S − fS∥∥∥

1
+
∥∥∥f̂S − f̂∥∥∥

1
+
∥∥fS − f∥∥

1
.

We now bound each of the terms above. By Lemma 3.6, the first term is ≤ 74ε. By triangle
inequality for f̂ =

∑k′

r=1 ŵrp̂r,∥∥∥f̂S − f̂∥∥∥
1
≤

k′∑
r=1

ŵr
∥∥p̂Sr − p̂r∥∥1

≤ 30
√

2ε,

where the last inequality follows from the fact that the allowed distributions inAS
′
are (I1, I2, . . . Id), 2ε2/d-

good and by Lemma 3.8. By triangle inequality,

∥∥fS − f∥∥
1
≤

k∑
r=1

wr
∥∥pSr − pr∥∥1

≤
∑

r:wr≥ε/k

wr
∥∥pSr − pr∥∥1

+
∑

r:wr<ε/k

wr
∥∥pSr − pr∥∥1

≤
∑

r:wr≥ε/k

wr
∥∥pSr − pr∥∥1

+ 2ε

≤ 30
√

2ε+ 2ε.

where the last inequality follows from the proof of Lemma 3.6, where we showed that heavy compo-
nents are (I1, I2, . . . Id), 2ε2/d-good and by Lemma 3.8. Summing over the terms corresponding to∥∥∥f̂S − fS∥∥∥

1
,
∥∥∥f̂S − f̂∥∥∥

1
, and

∥∥fS − f∥∥
1
, we get the total error as 74ε+30

√
2ε+30

√
2ε+2ε ≤ 170ε.

The error probability and the number of samples necessary are same as that of Lemma 3.6. The
run time follows from the comments in Section 3.2 and the bound on number of samples.

If we consider the leading term in sample complexity, for d = 1 our bound is Õ(k2/ε6), and for
d > 1, our bound is Õ((kd)d/ε3d+3). While this is not the optimal sample complexity (see Acharya
et al. [2014]), we gain significantly in the running time.
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4 Lower bounds

We now investigate lower bounds towards obtaining sparse approximate solutions to nonnegative
systems. Our first result is that unless P = NP, we need to lose a factor at least log(1/ε) in the
sparsity to be ε-close in the `1 norm. Formally,

Theorem 4.1. For any ε > 0, given an instance of the sparse recovery problem A, b that is promised
to have a k-sparse nonnegative solution, it is NP-hard to obtain an o

(
k ln

(
1
ε

))
-sparse solution xalg

with ‖Axalg − b‖1 < ε ‖b‖1.

Our second result gives a connection to a random planted version of the set cover problem, which
is beyond all known algorithmic techniques. We prove that unless this planted set cover problem
can be solved efficiently, we cannot hope to obtain an ε- approximate solution with sparsity o(k/ε2).

Theorem 4.1 is inspired by the hard instances of Max k-Cover problem [Feige, 1998, Feige et al.,
2004, Feige and Vondrák, 2010].

Hard Instances of Max k-Cover. For any c > 0, and δ > 0, given a collection of n sets
S1, S2, . . . , Sn ⊆ [m], it is NP-Hard to distinguish between the following two cases:

• Yes case: There are k disjoint sets in this collection whose union is [m].

• No case: The union of any ` ≤ ck sets of this collection has size at most (1− (1− 1
k )` + δ)n.

Proof outline, Theorem 4.1. We reduce hard instance of the Max k-cover problem to our problem
as follows. For each set Si, we set Ai (column i in A) to be the indicator vector of set Si. We also
let b to be the vector with all entries equal to one.

In the Yes case, we know there are k disjoint sets whose union is the universe, and we construct
solution x∗ as follows. We set x∗i (the ith entry of x∗) to one if set Si is one of these k sets, and
zero otherwise. It is clear that Ax∗ is equal to b, and therefore there exists a k-sparse solution in
the Yes case.

On the other hand, for every ε-approximate non-negative solution x̂, we know that the number
of non-zero entries of Ax̂ is at most εm by definition. Define C to be the sub-collection of sets with
non-zero entry in x̂, i.e. {Si | x̂i > 0}. We know that each non-zero entry in Ax̂ is covered by some
set in sub-collection C. In other words, the union of sets in C has size at least (1− ε)m. We imply
that the number of sets in collection C should be at least Ω(k ln( 1

ε+δ )) since (1 − 1
k )k is in range

[1
4 ,

1
e ]. We can choose δ to be ε, and therefore the sparsest solution that one can find in the No case

is Ω(k ln(1
ε ))-sparse. Assuming P 6= NP, it is not possible to find a o(k ln 1

ε )-sparse ε-approximate
solution when there exists a k-sparse solution, otherwise it becomes possible to distinguish between
the Yes and No cases of the Max k-Cover problem in polynomial time.

Finally, we show that unless a certain variant of set cover can be solved efficiently, we cannot
hope to obtain an ε-approximate solution with sparsity o(k/ε2). We will call this the planted set
cover problem:

Definition 4.2. (Planted set cover (k,m) problem) Given parameters m and k > m3/4, find an
algorithm that distinguishes with probability > 2/3 between the following distributions over set
systems over m elements and n = O(m/ logm) sets:

No case: The set system is random, with element i in set j with probability 1/k (independently).
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Yes case: We take a random set system with n−k sets as above, and add a random k-partition
of the elements as the remaining k sets. (Thus there is a perfect cover using k sets.)

To the best of our knowledge, none of the algorithmic techniques developed in the context of set
cover can solve this distinguishing problem. The situation is similar in spirit to the planted clique
and planted dense subgraph problems on random graphs, as well as random 3-SAT [Alon et al.,
1998, Bhaskara et al., 2010, Feige, 2002]. This shows that obtaining sparse approximate solutions
with sparsity o(k/ε2) requires significantly new techniques. Formally, we show the following

Theorem 4.3. Let m3/4 < k < m/ log2m. Any algorithm that finds an o(k/ε2) sparse ε-
approximate solution to non-negative linear systems can solve the planted set cover (k,m) problem.

Proof. Let n (which is O(m/ logm)) be the number of sets in the set system. Let A be the m× n
matrix whose i, jth entry is 1 if element i is in set j, and 0 otherwise. It is clear that in the Yes
case, there exists a solution to Ax = 1 of sparsity k. It suffices to show that in the No case, there
is no ε-approximate solution to Ax = 1 with fewer than Ω(k/ε2) entries.

Let us define C = 1/ε2, for convenience. The proof follows the standard template in random
matrix theory (e.g. Rudelson and Vershynin [2010]): we show that for any fixed Ck-sparse vector
x, the probability that ‖Ax− 1‖1 < 1/(4

√
C) is tiny, and then take a union bound over all x in a

fine enough grid to conclude the claim for all k-sparse x.
Thus let us fix some Ck sparse vector x and consider the quantity ‖Ax− 1‖1. Let us then

consider one row, which we denote by y, and consider |〈y, x〉 − 1|. Now each element of y is 1 with
probability 1/k and 0 otherwise (by the way the set system was constructed). Let us define the
mean-zero random variable Wi, 1 ≤ i ≤ n, as follows:

Wi =

{
1− 1/k with probability 1/k,

−1/k otherwise.

We first note that E[|〈y, x〉 − 1|2] ≥ E[(
∑

iWixi)
2]. This follows simply from the fact that for any

random variable Z, we have E[|Z−1|2] ≥ E[|Z−E[Z]|2] (i.e., the best way to “center” a distribution
with respect to a least squares objective is at its mean). Thus let us consider

E

(∑
i

Wixi

)2
 =

∑
i

x2
i · E[W 2

i ] =
∑
i

x2
i ·

1

k

(
1− 1

k

)
.

Since x is Ck-sparse, and since ‖x‖1 ≥ 3k/4, we have
∑

i x
2
i ≥ 1

Ck · ‖x‖
2
1 ≥ k/2C. Plugging this

above and combining with our earlier observation, we obtain

E[|〈y, x〉 − 1|2] ≥ E

(∑
i

Wixi

)2
 ≥ 1

3C
. (7)

Now we will use the Paley-Zygmund inequality,4 with the random variable Z := |〈y, x〉 − 1|2. For
this we need to upper bound E[Z2] = E[|〈y, x〉−1|4]. We claim that we can bound it by a constant.

4For any non-negative random variable Z, we have Pr(Z ≥ θE[Z]) ≥ (1− θ)2 · E[Z]2

E[Z2]
.
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Now since ‖x‖1 is between 3k/4 and 5k/4, we have |〈y, x〉 −
∑

iWixi| < 1/2. This in turn implies
that E[Z2] ≤ 4(E[(

∑
iWixi)

4] + 4). We will show that E[(
∑

iWixi)
4] = O(1).

E[(
∑
i

Wixi)
4] =

∑
i

W 4
i x

4
i + 3

∑
i,j

W 2
i W

2
j x

2
ix

2
j

≤ 1

k
·
∑
i

x4
i +

3

k2

∑
i,j

x2
ix

2
j

≤ 1 +
3

k2
· (
∑
i

x2
i )

2 = O(1).

Here we used the fact that we have 0 ≤ xi ≤ 1 for all i, and that
∑

i x
2
i ≤

∑
i xi ≤ 5k/4.

This implies, by using the Paley-Zygmund inequality, that

Pr

[
|〈y, x〉 − 1| < 1

4
√
C

]
< 1− 1/10. (8)

Thus if we now look at the m rows of A, and consider the number of them that satisfy |〈y, x〉−
1| < 1/(4

√
C), the expected number is < 9m/10, thus the probability that there are more than

19m/20 such rows is exp(−Ω(m)). Thus we have that for any Ck-sparse x with ‖x‖1 ∈ [3k/4, 5k/4]
and ‖x‖∞ ≤ 1,

Pr

[
‖Ax− 1‖1 <

1

80
√
C

]
< e−m/40. (9)

Now let us construct an ε′-net5 for the set of all Ck-sparse vectors, with ε′ = 1/m2. A simple
way to do it is to first pick the non-zero coordinates, and take all integer multiples of ε′/m as the
coordinates. It is easy to see that this set of points (call it N ) is an ε′ net, and furthermore, it has
size roughly (

m

Ck

)(m
ε′

)Ck
= O

(
m4Ck

)
.

Thus as long as m > 200Ck logm, we can take a union bound over all the vectors in the ε′ net,
to conclude that with probability e−Ω(m), we have

‖Ax− 1‖1 >
1

80
√
C

for all x ∈ N .

In the event that this happens, we can use the fact that N is an ε′ net (with ε′ = 1/m2), to conclude
that ‖Ax− 1‖1 >

1
100
√
C

for all Ck-sparse vectors with coordinates in [0, 1] and ‖x‖1 ∈ [3k/4, 5k/4].

This completes the proof of the theorem, since 1
100
√
C

is Ω(ε), and k < m/ log2m.
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A Auxiliary lemmas

The simple technical lemma we required in the proof is the following.

Lemma A.1. Let δ > 0, and f(t) := (1 + δ)t − 1. Then for any t1, t2 ≥ 0, we have

f(t1) + f(t2) ≤ f(t1 + t2).

Proof. The proof follows immediately upon expansion:

f(t1 + t2)− f(t1)− f(t2) =
(
(1 + δ)t1 − 1

)(
(1 + δ)t2 − 1

)
.

The term above is non-negative because δ, t1, t2 are all ≥ 0.

Lemma A.2 (Averaging). Let {ai, bi}ki=1 be non-negative real numbers, such that∑
i

ai = A and
∑
i

bi = 1.

Then for any parameter C > 1, there exists an index i such that bi ≥ 1/(Ck), and ai ≤ bi ·A/(1−
1/C).

Proof. Let S := {i : bi ≥ 1/(Ck)}. Now since there are only k indices, we have
∑

i∈[k]\S bi <
k · 1/(Ck) < 1/C, and thus ∑

i∈S
bi > (1− 1/C). (10)

Next, since all the ai are non-negative, we get that∑
i∈S

ai ≤ A.

Combining the two, we have ∑
i∈S ai∑
i∈S bi

<
A

1− 1/C
.

Thus there exists an index i ∈ S such that ai < bi · A/(1 − 1/C) (because otherwise, we have
ai ≥ biA/(1− 1/C) for all i, thus summing over i ∈ S, we get a contradiction to the above). This
proves the lemma.

Lemma A.3. For any 0 < x < 1 and δ > 0, we have

(1 + δ)x ≤ 1 + δx ≤ (1 + δ)x(1+δ).

Proof. For any 0 < θ < δ, we have

1

1 + θ
<

1

1 + θx
<

1 + δ

1 + θ
.

The first inequality is because x < 1, and the second is because the RHS is bigger than 1 while the
LHS is smaller. Now integrating from θ = 0 to θ = δ, we get

log(1 + δ) <
log(1 + xδ)

x
< (1 + δ) log(1 + δ).

Multiplying out by x and exponentiating gives the desired claim.
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