
Non-Negative Sparse Regression and Column
Subset Selection with L1 Error
Aditya Bhaskara∗1 and Silvio Lattanzi2

1 School of Computing, University of Utah, Salt Lake City, UT, USA
bhaskara@cs.utah.edu

2 Google Research, Zurich, Switzerland
silviol@google.com

Abstract
We consider the problems of sparse regression and column subset selection under `1 error. For
both problems, we show that in the non-negative setting it is possible to obtain tight and efficient
approximations, without any additional structural assumptions (such as restricted isometry, in-
coherence, expansion, etc.). For sparse regression, given A, b with non-negative entries, we give
an efficient algorithm to output a vector x of sparsity O(k), for which ‖Ax− b‖1 is comparable to
the smallest error possible using non-negative k-sparse x. We then use this technique to obtain
our main result: an efficient algorithm for column subset selection under `1 error for non-negative
matrices.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity.

Keywords and phrases Sparse regression, L1 error optimization, Column subset selection

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.7

1 Introduction

Sparsity plays a crucial role in learning and signal processing. Representing a signal as a sparse
combination of “elementary” signals (sparse recovery) and finding bases in which a collection of
signals have sparse representation (sparse coding) are fundamental problems, with applications
ranging from genetics, to speech processing, to computer vision [12, 33, 31, 32, 38, 40, 41].

In most of these applications, we require recovery algorithms that are tolerant to noise.
Different “types” of noise lead to different optimization formulations. For instance, if signals
are corrupted under independent Gaussian noise, recovery algorithms with an `2 objective
perform well. On the other hand, when there are a few yet large deviations, recovery
algorithms with an `1 objective perform much better (cf. [13, 26, 42]). This is also the
case for problems involving matrices, such as low rank approximation and column subset
selection, in which we could either have uniform noise in all the columns, or have a few
“outlier” columns with large error. Also, from a theoretical perspective, it is interesting to
ask the approximation question for general `p norms. Interestingly, for the matrix problems
above, minimizing the `1 error (and more generally `p error for p 6= 2) turns out to be
significantly harder than minimizing the `2 error. The beautiful theory of singular value
decompositions that lets us minimize `2 error does not have a counter-part for `1. Indeed,
even finding approximate solutions has recently been shown to be NP hard [36]. However,
given its effectiveness in applications ([31, 32, 38, 41]), many heuristics [27, 37, 43, 11, 20]
and, more recently, approximation algorithms [15, 36] have been proposed.

∗ Partially supported by a Google Research Faculty Award.

© A. Bhaskara and S. Lattanzi;
licensed under Creative Commons License CC-BY

9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 L1 Sparse Regression and Column Selection

Our main focus in this paper is the well-studied problem of column selection, with the goal
of minimizing the `1 reconstruction error. The column selection problem is the following: we
are given a matrix A (m×n), and the goal is to find a subset S of its columns of a prescribed
size, so as to minimize the “reconstruction error” minX∈R|S|×n ‖A−ASX‖1, where AS is the
submatrix of A restricted to the columns S. Besides its direct applications [12, 31, 32, 38, 40,
41] column selection has found several applications as a tool for building efficient machine
learning algorithms, including feature selection (as a pre-processing step for learning), coreset
computation, and more broadly, as interpretable dimension reduction [1, 16, 21].

While column selection has been quite well understood with `2 error (in a sequence of
works, including [10, 23, 25, 34]), it is computationally much harder under `1 error. Recently,
Song et al. [36] provided the first CUR and low rank approximation algorithm for general
matrices and for p ∈ [1, 2]. Their main result is an (O(logm) poly(k))-approximation to
the error in nnz(A) + (n + m) poly(k) time, for every k, where nnz(A) is the number of
non-zero entries in A. They also prove that if one compares the error obtained by the column
approximation with the best rank-k approximation, a factor of

√
k is inevitable, even if one

uses significantly more than k columns. Our result is incomparable in two respects: first,
it gets past the lower bound by comparing the solution obtained with the error of the best
k-column approximation. Second, our focus is on the non-negative setting (defined below),
for which we obtain a significantly better approximation. A more detailed comparision with
the works of Song et al. [36] and Chierichetti et al. [15] is provided in Section 1.2.

It is important to note that the non-negativity assumption is natural, in fact in many
applications where column selection is used to “explain” a collection of points in terms of
a smaller subset, we have that all the points are expressible as a non-negative (often even
convex) combination of the selected points. Further, in applications such as recommender
systems and image reconstruction, the points themselves have coordinates that are all non-
negative. Motivated by such applications, we define the non-negative column subset selection
problem, as follows.
I Problem 1 (Non-negative CSS(A,B)). Given two matrices A,B with non-negative entries
and parameter k, find a subset S of the columns of A of size k, so as to minimize the
best reconstruction error for B, i.e., the quantity minX≥0 ‖B −ASX‖1. (X ≥ 0 refers to
entry-wise non-negativity.)

Note that this is a slight generalization of column selection as explained earlier (which
can be viewed as the case B = A). Our main result in this paper is an efficient algorithm
for this problem; enroute to this we also design an algorithm for the `1 sparse regression
problem.

Sparse regression.

The key ingredient in our result is a new algorithm for another fundamental problem – sparse
regression. Given a matrix A, and a target vector b, the goal here is to find a sparse x such
that ‖Ax− b‖1 is as small as possible. The classic paper of Donoho [19], and the beautiful
line of work [5, 14, 24, 30] have resulted in algorithms for approximate recovery, under
special assumptions on A (for instance, the so-called restricted isometry property (RIP), or
expansion properties of an appropriate graph associated with A). Here we solve the general
version of the non-negative problem.

It is also known that sparse recovery is hard if we do not make assumptions on A [2, 22]
(incidentally, even checking if a matrix satisfies the RIP condition is hard, in many interesting
parameter ranges [6, 28, 39]). So our focus here is on a non-negative variant, defined as
follows.

A. Bhaskara and S. Lattanzi 7:3

I Problem 2 (Non-negative sparse regression). Given a non-negative matrix A, a non-negative
target vector b, and a parameter k, find a vector x ≥ 0 (entry-wise) of sparsity k that
minimizes ‖Ax− b‖1.

Finding sparse solutions to optimization problems is a classic theme in approximation
theory. A classic approach to solve those problems for a large class of convex functions f(x)
over the domain ∆n := {(x1, . . . xn) : xi ≥ 0,

∑
i xi = 1} is the Frank-Wolfe procedure that

produces a solution that is O(1/T) away from the optimum, after T iterations. This method
can be used to obtain a trade-off between the approximation of the objective and the sparsity
of the solution obtained. [17, 18, 35] are three excellent sources for this line of work. For
`2 sparse regression, this implies that for any A, we can obtain a solution sparsity roughly
O(1/ε2), that has a loss ε away from the optimum (Maurey’s lemma, see also [7]).

However, such a result is impossible with `1 error. It is easy to see that if A is the identity,
and b = (1

n ,
1
n , . . . ,

1
n), then the minimum over x ∈ ∆n of f(x) = ‖Ax− b‖1 is zero, while

for any k-sparse x, the error is ≥ 1− k
n . Thus, we ask the question: can we perform such

an approximation, when the goal is simply to compete with the best k-sparse solution? Our
contribution in Theorem 3 is to show that this is possible via a Frank-Wolfe type update
using a novel potential function.

A setting very similar to ours was considered in the work [8], where it is shown that
if there is a k-sparse vector x∗ such that Ax∗ = b exactly, then an algorithm based on an
exponential potential function finds an O(k/ε3)-sparse vector y such that ‖Ay − b‖1 ≤ ε.1
The paper [8] uses sparse regression for learning low-dimensional Gaussian mixtures (i.e.,
express the p.d.f. of the mixture —obtained empirically— as a sparse convex combination of
the p.d.f.’s of Gaussians). Our ability to handle error implies that our algorithm can learn
mixtures even in the presence of noisy points.

Further related work. Problem 1 above is closely related to many well-studied questions.
Blum et al. [9] consider the problem of finding a small subset Q of a given point set P , such
that the convex hulls of P and Q are “close”. This is equivalent to approximately representing
the points in P \Q using points in Q – a goal similar to ours. However, they consider `2
error, and also require a good approximation for every point in P . Another closely related
question is that of finding a non-negative matrix factorization (NMF), under the “anchor
word” assumption [4, 3]. In NMF, we are given a non-negative matrix M , and the goal is to
write M = XY , where X,Y are non-negative matrices. The anchor word assumption states
that X can be chosen to be a subset of the columns of M , which reduces the problem to
non-negative CSS. Our methods can thus be directly applied; however in [3] and related
works, the measures of error are different from ours. Also in contrast to our result, much of
the work in this area focuses on finding precisely k columns.

Notations. We review some of the notation we will use throughout the paper. For a matrix
A, Ai refers to its i’th column, and A(i) refers to its ith row. By ‖A‖1, we refer to the sum
of the absolute values of the entries in A. Also, nnz(A) refers to the number of non-zero
entries in the matrix. We will refer to ∆n the “probability simplex” in n dimensions, namely
{(x1, . . . , xn) : xi ≥ 0,

∑
i xi = 1}.

1 Their proof can handle a small amount of noise, albeit under the restriction that in every coordinate,
Ax∗ and b are within a (1± ε) factor. Note that is a lot more restrictive than ‖Ax∗ − b‖1 being small.

ITCS 2018

7:4 L1 Sparse Regression and Column Selection

1.1 Our results
Let us start by stating our result for sparse regression. The non-negative sparse regression
problem (stated above) has as input a matrix A and a target vector b (both non-negative).

I Theorem 3. Suppose there exists a non-negative k-sparse vector x∗ such that ‖Ax∗ − b‖1 ≤
ε ‖b‖1. Then, there is an efficient algorithm that, for any δ > 0, outputs a y of sparsity
O(k log(1/δ)/δ2), with the guarantee that ‖Ay − b‖1 ≤

(
4
√

2(ε+ 2δ)
)
‖b‖1.

The running time of the algorithm is O(k log(1/δ)/δ2 · nnz(A)). Note also that if we
set δ = ε, we obtain an error roughly O(

√
ε) factor of the optimum. It is an interesting

open problem to understand if this ε versus
√
ε guarantee is necessary. In our analysis, it

arises due to a move from KL divergence to `1 error (via Pinsker’s inequality). Indeed, our
algorithm produces a much better approximation in KL divergence, as we will see. We then
use the theorem above to show our main result, on the non-negative CSS problem.

I Theorem 4. Let A,B be non-negative matrices, and suppose there exists a subset S of
k columns of A, such that minX≥0 ‖B −ASX‖1 ≤ ε ‖B‖1. Then for any δ > 0, there is
an efficient algorithm that finds a set S′ of O(k log(1/δ)/δ2) columns of A that give an
approximation error O(

√
δ + ε) ‖B‖1.

Theorems 3 and 4 are proved in sections 2 and 3 respectively. Given the conceptual
simplicity of the algorithms, we also implement them effectively, and show some preliminary
experimental results in Appendix A.

1.2 Interpreting error bounds and comparisons to prior work
We now focus on the low-rank approximation result (Theorem 4) and discuss the tradeoff
between error and the number of columns output. We then compare our result with prior
work on `1 low rank approximation.

First, note that our error bound is additive. Specifically, the approximation factor can
be arbitrarily bad if ε is sufficiently small. Indeed, if ε = o(1)/k, then prior work ([36, 15])
gives better approximations. While it is common in theory to assume that low-rank and
k-column approximations have error that is tiny compared to the norm of the matrix, in
practice it is quite common to have situations in which only (say) 90% of the “mass” can be
“explained” via a low rank approximation, while the rest is noise. These are the settings in
which our methods do significantly better (to the best of our knowledge, known results do
not give any non-trivial guarantees in such a setting). In the case of `2 error (when we can
actually compute the error efficiently), we often observe a drop in the singular values (i.e.,
σ1, . . . , σk are larger than the rest) in practice, but the total Frobenius mass on the tail is
still non-trivial.

Second, we have a tradeoff between the number of columns output and the error we can
obtain. We do not know if such a dependence is optimal, and this is an interesting open
question. A partial result on this was shown in [8]. Even in the zero error case, [8] establishes
that a trade-off of this nature is essential, assuming that a random planted version of the
set cover problem does not have polynomial time algorithms (which seems consistent with
current algorithmic techniques).

Finally, we point out a few other differences between our work and those of Song et
al. [36] and Chierichetti et al. [15], besides the techniques. First, the guarantee we get
is quite different, even when we restrict to non-negative matrices. We compare the error
of the algorithm with the best k-column approximation, as opposed to the best rank-k

A. Bhaskara and S. Lattanzi 7:5

approximation. Second, our analysis also applies to the generalized CSS problem, where
we have two matrices, and we approximate one using the columns of the other. Third, as
mentioned above, our algorithm has weaker guarantees than the earlier works when the
matrix B has a very low error (� (1/k) ‖B‖1) `1 approximation.

2 Sparse recovery under noise

The aim of this section is to outline the proof of Theorem 3. We start with some simple
observations about re-scaling. The first is that we may assume that ‖b‖1 = 1 without loss
of generality, because otherwise, we can run the entire procedure with b/ ‖b‖1, and re-scale
the coefficients of the obtained y by a factor ‖b‖1. The second observation is that we may
assume that all the columns of A (which we may assume to be non-zero, as zero columns
can be ignored) have unit `1 norm, w.l.o.g. This is again simple: if not, we can solve the
problem with a matrix whose columns are Ai/ ‖Ai‖1, and then divide the obtained xi by the
corresponding ‖Ai‖1 to obtain a solution with the original matrix.

Thus, by way of simplifying notation, assume that the columns of A are denoted by
the set V of vectors on the “probability simplex” ∆n in Rn, and we denote by p ∈ ∆n

be the target vector. Suppose there exist v1, . . . , vk ∈ V , and non-negative αi, such that
‖p−

∑
i αivi‖1 ≤ ε.

Our goal is to design an iterative algorithm that maintains a vector q ∈ ∆n (the current
approximation to p), and adds one vector from v ∈ V to q (with appropriate step size) in each
iteration so as to improve a potential. The most natural potential (which works for `p norms
for all p > 1), is simply the `1 distance ‖p− q‖1. Unfortunately, for this potential, depending
on the current q, there may not exist “local improvements”. This can be observed in a simple
example: let v1 = (0.1, 0, 0.9), v2 = (0.5, 0.4, 0.1), and p = (v1+v2)/2 = (0.3, 0.2, 0.5). Clearly,
p is in the convex hull of the vectors. Now, consider the starting point q = (0.2, 0.3, 0.5).
A simple calculation shows that for all small enough η, moving to the point (1− η)q + ηvi
will result in an increase in the `1 distance to the target p. (Indeed, simpler examples are
well-known when the vectors involved are not restricted to be on the unit simplex; see [18].)

Another natural potential is the relative entropy DKL (p ‖ q). The problem with this is
that it can be extremely sensitive to changes in q when q is close to the boundary of the
simplex. While we may hope to control the distance to the boundary via a “warm start”, it
turns out to be tricky to implement.

Instead, we maintain a potential that automatically controls the distance to the boundary,
while at the same time, allows us to reason about proximity to the optimum at the end:

Φ(q) := DKL

(
p ‖ p+ q

2

)
=
∑
i

pi log
(

2pi
pi + qi

)
. (1)

The potential is, roughly speaking, “one part” of the Jensen-Shannon divergence. The
updates we consider are analogous to Frank-Wolfe iterations. In particular, in every round
of the algorithm we greedily select the column that minimizes the potential and using it we
recompute the vector q as shown in Algorithm 1.

To prove our main results we analyze the drop of the potential in every round of our
algorithm. Interestingly we can show that the potential decrease geometrically during the
execution of the algorithm. More formally, we show the following lemma.

I Lemma 5 (Potential drop). Consider the execution of the algorithm, and suppose Φ(q(t−1)) ≥
4(ε+ 2δ). Then we have

Φ(q(t)) ≤
(

1− η

2

)
Φ(q(t−1)).

ITCS 2018

7:6 L1 Sparse Regression and Column Selection

Algorithm 1 Warm-KL
Initialize q(0) = v for an arbitrary v ∈ V , S = ∅, η = δ2/2k, and T =
dlog
(

1
4
√
ε+2δ

)
/log
(

1
1− η2

)
e

for t = 1 . . . T do
Find the column u ∈ V that minimizes Φ((1− η)q(t−1) + ηu), and add it to S.
Set q(t) ← (1− η)q(t−1) + ηu.

end for

We first show how to prove Theorem 3 using Lemma 5, then in the next section we focus
on the proof of the lemma.

Proof of Theorem 3. Note that Φ(q(t)) =
∑
i pi log

(
2pi
pi+qi

)
≤
∑
i pi ln 2 ≤ 1. So after

T = dlog
(

1
4
√
ε+2δ

)
/log
(

1
1− η2

)
e steps, we have Φ(q(T)) ≤ 4(ε + 2δ). Now, using Pinsker’s

inequality, we have that∥∥∥∥p− p+ q(T)

2

∥∥∥∥
1
≤
√

2Φ(q(T)) ≤ 2
√

2(ε+ 2δ).

This then implies that
∥∥p− q(T)

∥∥
1 ≤ 4

√
2(ε+ 2δ), completing the proof of the theorem. J

2.1 Analyzing the potential drop
As shown in the previous subsection the key is to analyze the drop in potential. Let us fix
some t, and for convenience, write q = q(t−1), and q′ = q(t). We have q′ = (1− η)q + ηu, for
some u ∈ V . Then, we have

Φ(q)− Φ(q′) =
∑
i

pi log
(
pi + q′i
pi + qi

)
=
∑
i

pi log
(

1 + η · ui − qi
pi + qi

)
. (2)

Note that we wish to lower bound this potential drop. In other words, we need to prove
that there exists a u ∈ V such that the difference above is “large”. Since we know that there is
a linear combination

∑
i αivi that is ε-close to p (in `1), the natural goal is to prove that one

of the vi achieves the necessary potential drop, by an averaging argument. This is typically
done by approximating the change in Φ by a linear function of the ui’s. If η · ui−qipi+qi < 1, this
can be done using log(1 + x) ≈ x. But unfortunately in our case, the term ui−qi

pi+qi can be
arbitrarily large, making such an approximation impossible.

To deal with this, we take advantage of additional structure. The first observation is the
following.

I Lemma 6. Let vj, 1 ≤ j ≤ k, be vectors in ∆n such that
∥∥∥p−∑j αjvj

∥∥∥
1
≤ ε. Then

for all δ > 0, there exists a subset S∗ of [k], such that
∥∥∥p−∑j∈S∗ αjvj

∥∥∥
1
≤ δ + ε, and

additionally, αj ≥ δ/k for all j ∈ S∗. (I.e., the coefficients used are all “non-negligible”.)

Remark. Even though the lemma is straightforward, it is the only place in the proof we
use the “promise” that there exists a k-sparse approximation to p.

Proof. The proof is simple: we consider
∑
j αjvj , and remove all the terms whose coefficients

are < δ/k. As there are at most k terms, the total `1 norm of the removed terms is ≤ δ.
This implies that considering only the terms that remain has an error at most ε+ δ. J

A. Bhaskara and S. Lattanzi 7:7

The lemma shows that we can obtain a good approximation only using large coefficients.
As a consequence, we now show that we can restrict our attention to a truncated version of
the vectors V , which enables our analysis. Formally, define “truncated” vectors wj by setting

wji = min
{
vji,

kpi
δ

}
.

I.e., the wj are the vectors vj , truncated so that no entry is more than k/δ times the
corresponding entry in p. We start with a simple observation.

I Lemma 7. For the vectors vj , wj as above, we have∥∥∥∥∥∥p−
∑
j∈S∗

αjwj

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥p−
∑
j∈S∗

αjvj

∥∥∥∥∥∥
1

.

Proof. Let us look at the ith coordinate of the vectors on the LHS and RHS. The only way
we can have vji 6= wji (for some j) is when vji > kpi/δ, in which case αjvji > pi. Thus in
this coordinate,

∑
j∈S∗ αjvj has a value larger than pi. Now, by moving to

∑
j∈S∗ αjwj , we

decrease the value, but remain larger or equal to pi. Thus, the norm of the difference only
improves. J

Let us now go back to the drop in potential we wished to analyze (eq. (2)). Our aim is to
prove that setting u = vj for some j ∈ S∗ in the algorithm leads to a significant drop in the
potential. We instead prove that setting u = wj (as opposed to vj) leads to a significant drop
in the potential. Then, we can use the fact that the RHS of (2) is monotone in u (noting
that vji ≥ wji) to complete the proof.

Let us analyze the potential drop when u = wj for some j ∈ S∗. Let η = δ2/2k. Write
γi := ui−qi

pi+qi . Then, we have

γi = pi + ui
pi + qi

− 1 ∈ [−1, k/δ], as wji/pi ≤ k/δ for j ∈ S∗.

Now, using the value of η, we have that ηγi ∈ (−η, δ/2). This allows us to use a linear
approximation for the logarithmic term in Φ. Once we move to a linear approximation, we
can use an averaging argument to show that there exists a choice of u that improves the
potential substantially.

More formally, let I+ denote the set of indices with ui ≥ qi (i.e., γi ≥ 0), and I− denote the
other indices. Then, using that, for x > −1, log(1+x) ≥ x(1−x) we have that for any i ∈ I+,
we have log(1 + ηγi) ≥ ηγi(1 − δ

2). Further, for i ∈ I−, we have log(1 + ηγi) ≥ ηγi(1 + η).
Thus, in both the cases, we have that

log(1 + ηγi) ≥ ηγi −
δη|γi|

2 . (3)

Now before showing how to use to the inequality to conclude the proof, we use an
averaging argument to prove the existence of a good column j.

I Lemma 8. There exists an index j ∈ S∗ such that setting u = wj in the algorithm gives

∑
i

piγi ≥ DKL

(
p ‖ p+ q

2

)
− (2ε+ δ).

ITCS 2018

7:8 L1 Sparse Regression and Column Selection

Proof. We start by recalling (via Lemmas 7 and 6), that∥∥∥∥∥∥p−
∑
j∈S∗

αjwj

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥p−
∑
j∈S∗

αjvj

∥∥∥∥∥∥
1

≤ (ε+ δ).

For convenience, let us write r =
∑
j∈S∗ αjwj , and so ‖p− r‖1 ≤ ε + δ. Now, we wish to

analyze the behavior of γi when we set u = wj for different j.
We start by defining τ (j)

i as

τ
(j)
i := wji − qi

pi + qi
,

i.e., the value of γi obtained by setting u = wj . For convenience, write Z =
∑
j∈S∗ αj . Now

by linearity, we have

∑
j∈S∗

αj

(∑
i

piτ
(j)
i

)
=
∑
i

pi
(
∑
j∈S∗ αjwji)− Zqi

pi + qi
=
∑
i

pi
ri − Zqi
pi + qi

.

Thus, by averaging (specifically, the inequality that if
∑
j αjXj ≥ Y for αj ≥ 0, then

there exists a j such that Xj ≥ Y/(
∑
j αj)), we have that there exists a j ∈ S∗ such that

∑
i

piτ
(j)
i ≥ 1

Z
·
∑
i

pi
ri − Zqi
pi + qi

=
∑
i

pi
ri − qi
pi + qi

+
(

1
Z
− 1
)∑

i

pi
ri

pi + qi
. (4)

The first term on the RHS can now be lower bounded as:∑
i

pi
ri − qi
pi + qi

=
∑
i

pi

(
2pi

pi + qi
− 1− pi − ri

pi + qi

)
≥
∑
i

pi

(
2pi

pi + qi
− 1
)
−
∑
i

|pi − ri|,

where we use the fact that |pi/(pi+qi)| ≤ 1. Thus, appealing to the inequality (x−1) ≥ log x,
if we write D := DKL

(
p ‖ p+q

2
)
, then we have∑

i

pi
ri − qi
pi + qi

≥ D − ε− δ, since ‖p− r‖1 ≤ ε+ δ.

To conclude the proof, let us consider the second term in the RHS of (4). If Z ≤ 1,
the term is non-negative, and there is nothing to show. We next argue that Z ≤ 1 + ε, by
showing that the sum of αj over all j ∈ S can be bounded by 1 + ε. In fact, note that∥∥∥∑j∈S αjvj

∥∥∥
1
− 1 ≤

∥∥∥p−∑j∈S αjvj

∥∥∥
1
≤ ε (triangle inequality). Furthermore for vj ∈ ∆n,

we have
∥∥∥∑j αjvj

∥∥∥
1

=
∑
j αj . Thus

∑
j∈S αj ≤ 1 + ε, and thus(

1− 1
Z

)∑
i

piri
pi + qi

≤ ε

1 + ε

∑
i

ri ≤ ε.

Plugging this into (4) we can conclude the proof of the lemma. J

We are now ready to complete the proof of the main lemma of this section – Lemma 5.

Proof of Lemma 5. Let D := DKL
(
p ‖ p+q

2
)
. We can use Lemma 8 in conjunction with

Eq. (3) to obtain that there exists a j such that setting u = wj gives us∑
i

pi log(1 + ηγi) ≥
∑
i

ηpiγi −
δη

2
∑
i

pi|γi| ≥ η(D − 2ε− δ)− δη

2
∑
i

pi|γi|.

A. Bhaskara and S. Lattanzi 7:9

The last term on the RHS can be bounded, noting that

∑
i

pi|γi| ≤
∑
i

pi ·
|ui − qi|
pi + qi

≤
∑
i

|ui − qi| ≤ 2,

as ui, pi, qi are all probability distributions, and pi
pi+qi ≤ 1. This implies that there exists a

choice of u = wj (and thus setting u = vj also works, as discussed earlier), such that the
potential drop is at least η(D − 2ε − δ) − ηδ. If D ≥ 4(ε + δ), this is at least ηD/2. This
completes the proof of the lemma. J

3 Low rank approximation

We now come to our main result – Theorem 4. Let the dimensions of B be n×m (thus A
also has n rows for the problem to be well-defined). The main difference between this setting
and the one in Section 2 is that we have a collection of m columns, and we wish to find a
subset S that can “simultaneously” approximate all of them. Another technical difference is
that the columns of B can all have different lengths, thus we can only re-scale all of them by
the same amount.

Let us start with some simple assumptions we can make w.l.o.g. First, we may assume
that ‖B‖1 = 1, as we can scale the entire matrix by 1/ ‖B‖1, solve the problem, and then
multiply the obtained X (entry-wise) by ‖B‖1. Second, we may assume that every column
of A has unit `1 norm, as otherwise, we can solve the problem using a matrix with columns
Ai/ ‖Ai‖1, and then re-scale the ith row of the obtained X by 1/ ‖Ai‖ to find a solution to
the original problem.

Under these assumptions (i.e., ‖B‖1 = 1 and Ai ∈ ∆n), we now show how Section 2 gives
a “framework” that can be used here. The main idea is as follows.

3.0.0.1 Outline of the approach.

Let us flatten the matrix B into an nm dimensional vector p (thus the (i, j)th entry of B
now appears in the [(j − 1)n+ i]th position of p). Now, the CSS problem can be re-stated as
expressing p as a linear combination of vectors of the form Ai ⊗ yi, for some non-negative
vectors yi (these will form the rows of X in the problem definition). Thus, let V denote the
set of all vectors of the form

{Ai ⊗ z : Ai is a column of A, z ∈ ∆m}.

The goal is to use the framework of Section 2 to find a small subset of V . Unfortunately, the
set V above is infinite! So we cannot apply Algorithm 1 directly. However, note that as long
as we can find a u ∈ V that satisfies the potential drop condition of Lemma 5, the analysis
still applies. In the remainder of the section, we show how to design an efficient “oracle” to
find such a u, thus proving the theorem.

Before we begin, let us observe that our normalizations indeed reduce our matrix problem
to the problem analyzed in the previous section. For any u ∈ V , we have ‖u‖1 = ‖Ai‖1 ‖z‖1 =
1. We have also normalized so that ‖p‖1 = 1 (recall p is the flattened form of B). Now,
suppose B has a good `1 approximation using a submatrix AS , i.e., suppose ‖B −ASX‖ ≤ ε,
for some matrix X. Then, denoting by X(j) the jth row of X, we can re-write the above as∥∥∥B −∑j∈S AjX

(j)
∥∥∥

1
≤ ε. Now setting yj = X(j)/

∥∥X(j)
∥∥

1 (so yj ∈ ∆m), and αj =
∥∥X(j)

∥∥
1,

ITCS 2018

7:10 L1 Sparse Regression and Column Selection

we can re-write the above as

∥∥∥∥∥∥p−
∑
j∈S

αj(Aj ⊗ yj)

∥∥∥∥∥∥
1

≤ ε, (5)

which is precisely the form we need. Let us thus see how to efficiently find a u ∈ V that
reduces the potential significantly.

3.1 Oracle for each iteration
Consider the t-th iteration, and let q(t−1) be the previous iterate (which we denote by q, for
convenience). Our goal is to find a u such that Φ((1 − η)q + ηu) is small. The technical
difficulty here is the logarithmic term in the definition of Φ().

As this was also the challenge in Section 2, we begin by recalling one key aspect of the
analysis: the definition of the truncated vectors w. Following the notation earlier, and from
Eq. (5), define vj = Aj ⊗ yj , and let wj be defined using wji := min{vji, kpiδ } (i now ranges
from 1 to nm). The main component of the argument was the existence of an index j such
that

∑
i pi

wji−qi
pi+qi is large.

Thus, if we can find a u ∈ V such that for its truncation h (defined by hi := min{ui, kpiδ }),
the value

∑
i pi

hi−qi
pi+qi is large, we would be done. When V is finite, we simply did this by

iterating over all u ∈ V , constructing the h, and computing the values. In the current
setting, we have infinitely many V . Fortunately we can handle this complication by analyzing
the columns separately. First partition V into Vj , one for each column Aj . I.e., Vj :=
{Aj ⊗ z : z ∈ ∆n}. We then design an efficient method to maximize the quantity described
above over a single Vj . Since there are only finitely many columns in A, we can finally just
take the maximum.

I Lemma 9. Let us fix some j. There is an efficient algorithm to find u ∈ Vj (defined above)
to maximize

∑
i pi

hi−qi
pi+qi , where hi = min{ui, kpiδ }.

Proof. Observe that as every u is of the form Aj⊗z, we need to find a z ∈ ∆m that maximizes
the objective value. The key observation is that this can be written as a linear program! To
define the LP, it helps to view i as being defined by (i1, i2), where i = n(i2 − 1) + i1, where
i1 ∈ [n] and i2 ∈ [m]. The variables are h ∈ Rnm, z ∈ Rm; p, q are given (p is the target and
q is the current iterate). The LP is as follows:

maximize
∑
i1,i2

p(i1,i2)

p(i1,i2) + q(i1,i2)
h(i1,i2), subject to (6)

∀ i1 ∈ [n], i2 ∈ [m], 0 ≤ h(i1,i2) ≤ Aj,i1 · zi2 (7)

∀ i1 ∈ [n], i2 ∈ [m], h(i1,i2) ≤
kp(i1,i2)

δ
(8)

∀ i2 ∈ [m], zi2 ≥ 0 (9)∑
i2∈[m]

zi2 = 1. (10)

In the above, Aj,i1 is simply the i1’th entry of the vector Aj . The optimum solution will
satisfy h(i1,i2) = min{Aj,i1 · zi2 ,

kp(i1,i2)
δ }, as for any given z, this setting will maximize the

objective (which is the goal). From the definition of Vj , it follows that the LP indeed captures
the problem of maximizing over Vj . This proves the lemma. J

A. Bhaskara and S. Lattanzi 7:11

As the LP can be solved in polynomial time, we can follow this procedure for every
column j of A. This completes the proof of Theorem 4 if we only require a polynomial
time algorithm. As LP solvers can be inefficient, in the next subsection we developed a fast
“greedy” solution to our specific LP.

4 Solving the linear program efficiently

While linear programs can be solved in polynomial time, they can often be a bottleneck in
learning algorithms in practice. We thus give a simple “greedy” algorithm to solve the LP
in (6)-(10)2.

I Theorem 10. Consider the LP (6)-(10), written for a given column Aj of A. There is a
greedy algorithm that find the optimal z in time O(mn logn). (For sparse matrices this can
be further reduced to O(nnz(A) logn)).

Proof. Let us rewrite the objective function, splitting it according to i2:∑
i2∈[m]

∑
i1∈[n]

p(i1,i2)

p(i1,i2) + q(i1,i2)
h(i1,i2).

Let us now focus on one index i2, and consider increasing zi2 from 0 to 1. The value of
h(i1,i2) is equal to Aj,i1 · zi2 until zi2 hits min{1, kp(i1,i2)/δAj,i1}, and then remains constant.
(If Aj,i1 = 0, then it stays 0 throughout.) This happens for each i1, and thus the inner
summation, as a function of zi2 , is piecewise linear and non-decreasing. Let us denote this
function by fi2(x).

Finding the optimal z can now be cast as the following problem: we have monotone,
concave, piecewise-linear functions f1, . . . , fm defined on [0, 1], and we wish to find zj ≥ 0,
summing to 1, such that

∑
j fj(zj) is maximized.

This can be greedily done as follows: suppose we have a sorted list of the “break-points”
for each fj (a break-point is the value of x at which a piece-wise linear function changes
slope). Note that for every j, the number of break-points (in the interval [0, 1]) is no more
than n. Now, we start with zj = 0 for all j. In every iteration, we decide to increment one
zj . The choice will depend on the j that has the largest slope to the right of zj . Once we
pick a j, we increment the zj until its next break-point (or until the sum of zj ’s becomes 1).

The correctness of this procedure follows from the fact that we always increment the zj
with the largest slope so we maximize the value of

∑
j fj(zj) (and because the functions are

concave, we can never encounter a higher slope later). As for the run time, we note that
the total number of break points is mn, and in the worst case, we could encounter each one.
At each step, as the slopes are monotone, the choice of the j can be found using a priority
queue, and this leads to a run time of O(mn logn). If the A is sparse, then the number
of “slopes” we need to consider is at most the number of non-zero entries, which gives the
desired bound. J

5 Conclusion

We have presented new algorithmic results for two fundamental problems, sparse regression
and column subset selection, under `1 error. The key assumption necessary for us is the

2 We note that our argument is similar to the fractional knapsack argument.

ITCS 2018

7:12 L1 Sparse Regression and Column Selection

non-negativity of the associated matrices and the decomposition. Under this assumption,
our algorithms provably achieve approximation guarantees with respect to the corresponding
optimal solutions. Our sparse regression analysis gives a simple framework for obtaining `1
error guarantees. We have used it for our column selection result, but it may be applicable to
other contexts as well, such as non-negative matrix factorization (for which our result applies
under the anchor word assumption), matrix and tensor variants of sparse regression/recovery,
and also in obtaining recovery algorithms for broader classes of mixture models under noise.
We leave these as interesting avenues for future work.

A. Bhaskara and S. Lattanzi 7:13

A Experiments

We now outline some preliminary experimental results that show the effectiveness of our `1
column subset selection algorithm. In particular we compare our algorithm with the greedy
algorithm of [1], which optimizes a potential function similar to ours, but tailored towards `2
approximation. We compare on synthetic as well as a real-life dataset.

The synthetic dataset is constructed as follows. The matrix A has all its columns on the
unit simplex ∆n, where n = 150. The points are divided into two categories – inliers and
outliers. The inliers are all in the convex hull of a special set of k = 15 points, and there are
115 of them (including the k special points). Along with these, there are M = 40 outliers,
which are chosen to be sparser than the average point in the special set. (Note that the
special points are the “anchor points” in the non-negative factorization connection pointed
to in Section 1.) Thus the dataset has a large number of outliers (25%). The figure shows
the decay of `1 error as we pick more columns. Note that even in the first few iterations, our
potential allows quickly zeroing in on the right columns.

We then consider a real world matrix obtained from a region economic model, known as
the WM1 matrix. The matrix is asymmetric and it is 207 x 277 and contains 2909 real-valued
entries. The results on these matrices (showing rank vs the approximation error) for the two
algorithms we consider can be found in the figure below. It is interesting to observe that
the our `1 based algorithms has better performances when the error becomes smaller and it
converges earlier to a better solution.

Figure 1 L1-recovery error of the two column selection algorithms on (a) a synthetic dataset, (b)
WM1 dataset.

ITCS 2018

7:14 L1 Sparse Regression and Column Selection

References
1 Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab S. Mirrokni, Afshin Rostamizadeh, and

Morteza Zadimoghaddam. Greedy column subset selection: New bounds and distributed
algorithms. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2539–2548, 2016. URL:
http://jmlr.org/proceedings/papers/v48/altschuler16.html.

2 Edoardo Amaldi and Viggo Kann. On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems. Theoretical Computer Science, 209(1Ð2):237 –
260, 1998.

3 Sanjeev Arora, Rong Ge, Yonatan Halpern, David M. Mimno, Ankur Moitra, David Sontag,
Yichen Wu, and Michael Zhu. A practical algorithm for topic modeling with provable
guarantees. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 280–288, 2013. URL: http://
jmlr.org/proceedings/papers/v28/arora13.html.

4 Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonneg-
ative matrix factorization - provably. In Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
145–162, 2012. URL: http://doi.acm.org/10.1145/2213977.2213994, doi:10.1145/
2213977.2213994.

5 Arturs Backurs, Piotr Indyk, Ilya P. Razenshteyn, and David P. Woodruff. Nearly-optimal
bounds for sparse recovery in generic norms, with applications to k-median sketching. In
Krauthgamer [29], pages 318–337. URL: http://dx.doi.org/10.1137/1.9781611974331.
ch24, doi:10.1137/1.9781611974331.ch24.

6 Afonso S. Bandeira, Edgar Dobriban, Dustin G. Mixon, and William F. Sawin. Certifying
the restricted isometry property is hard, 2012. arXiv:arXiv:1204.1580.

7 Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via an
approximate version of caratheodory’s theorem. In Proceedings of the Forty-seventh Annual
ACM Symposium on Theory of Computing, STOC ’15, pages 361–369, New York, NY,
USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2746539.2746566, doi:10.1145/
2746539.2746566.

8 Aditya Bhaskara, Ananda Theertha Suresh, and Morteza Zadimoghaddam. Sparse solu-
tions to nonnegative linear systems and applications. In Guy Lebanon and S. V. N.
Vishwanathan, editors, Proceedings of the Eighteenth International Conference on Arti-
ficial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12,
2015, volume 38 of JMLR Workshop and Conference Proceedings. JMLR.org, 2015. URL:
http://jmlr.org/proceedings/papers/v38/bhaskara15.html.

9 Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generating
point sets. In Krauthgamer [29], pages 548–557. URL: http://dx.doi.org/10.1137/1.
9781611974331.ch40, doi:10.1137/1.9781611974331.ch40.

10 Christos Boutsidis and David P. Woodruff. Optimal CUR matrix decompositions. SIAM
J. Comput., 46(2):543–589, 2017. URL: https://doi.org/10.1137/140977898, doi:10.
1137/140977898.

11 J.P. Brooks, J.H. Dulá, and E.L. Boone. A pure `1-norm principal component analysis.
Computational Statistics & Data Analysis, 61:83–98, 2013.

12 Joe M Butler, D Timothy Bishop, and Jennifer H Barrett. Strategies for selecting sub-
sets of single-nucleotide polymorphisms to genotype in association studies. BMC genetics,
6(1):S72, 2005.

13 Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? JACM, 58(3):11:1–11:37, 2011.

http://jmlr.org/proceedings/papers/v48/altschuler16.html
http://jmlr.org/proceedings/papers/v28/arora13.html
http://jmlr.org/proceedings/papers/v28/arora13.html
http://doi.acm.org/10.1145/2213977.2213994
http://dx.doi.org/10.1145/2213977.2213994
http://dx.doi.org/10.1145/2213977.2213994
http://dx.doi.org/10.1137/1.9781611974331.ch24
http://dx.doi.org/10.1137/1.9781611974331.ch24
http://dx.doi.org/10.1137/1.9781611974331.ch24
http://arxiv.org/abs/arXiv:1204.1580
http://doi.acm.org/10.1145/2746539.2746566
http://dx.doi.org/10.1145/2746539.2746566
http://dx.doi.org/10.1145/2746539.2746566
http://jmlr.org/proceedings/papers/v38/bhaskara15.html
http://dx.doi.org/10.1137/1.9781611974331.ch40
http://dx.doi.org/10.1137/1.9781611974331.ch40
http://dx.doi.org/10.1137/1.9781611974331.ch40
https://doi.org/10.1137/140977898
http://dx.doi.org/10.1137/140977898
http://dx.doi.org/10.1137/140977898

A. Bhaskara and S. Lattanzi 7:15

14 Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from in-
complete and inaccurate measurements. Communications on pure and applied mathematics,
59(8):1207–1223, 2006.

15 Flavio Chierichetti, Sreenivas Gollapudi, Ravi Kumar, Silvio Lattanzi, Rina Panigrahy,
and David P. Woodruff. Algorithms for ℓ_p low-rank approximation. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, pages 806–814, 2017. URL: http://proceedings.mlr.press/
v70/chierichetti17a.html.

16 Hugh A Chipman and Hong Gu. Interpretable dimension reduction. Journal of applied
statistics, 32(9):969–987, 2005.

17 Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Trans. Algorithms, 6(4):63:1–63:30, September 2010. URL: http://doi.acm.org/10.
1145/1824777.1824783, doi:10.1145/1824777.1824783.

18 M. J. Donahue, C. Darken, L. Gurvits, and E. Sontag. Rates of convex approximation in
non-hilbert spaces. Constructive Approximation, 13(2):187–220, 1997. URL: http://dx.
doi.org/10.1007/BF02678464, doi:10.1007/BF02678464.

19 David L Donoho and Michael Elad. Optimally sparse representation in general (nonortho-
gonal) dictionaries via ?1 minimization. Proceedings of the National Academy of Sciences,
100(5):2197–2202, 2003.

20 A. Eriksson and A. van den Hengel. Efficient computation of robust low-rank matrix
approximations using the L1 norm. PAMI, 34(9):1681–1690, 2012.

21 Dan Feldman, Mikhail Volkov, and Daniela Rus. Dimensionality reduction of massive
sparse datasets using coresets. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
2766–2774. Curran Associates, Inc., 2016. URL: http://papers.nips.cc/paper/
6596-dimensionality-reduction-of-massive-sparse-datasets-using-coresets.
pdf.

22 Dean P. Foster, Howard J. Karloff, and Justin Thaler. Variable selection is hard. In Peter
Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, volume 40 of JMLR Workshop
and Conference Proceedings, pages 696–709. JMLR.org, 2015. URL: http://jmlr.org/
proceedings/papers/v40/Foster15.html.

23 Alan M. Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for
finding low-rank approximations. J. ACM, 51(6):1025–1041, 2004. URL: http://doi.acm.
org/10.1145/1039488.1039494, doi:10.1145/1039488.1039494.

24 Rahul Garg and Rohit Khandekar. Gradient descent with sparsification: an iterative al-
gorithm for sparse recovery with restricted isometry property. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 337–344. ACM, 2009.

25 Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix
reconstruction. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1207–1214,
2012. URL: http://portal.acm.org/citation.cfm?id=2095211&CFID=63838676&
amp;CFTOKEN=79617016.

26 Peter J. Huber. Robust Statistics. John Wiley & Sons, New York„ 1981.
27 Qifa Ke and Takeo Kanade. Robust L1 norm factorization in the presence of outliers and

missing data by alternative convex programming. In CVPR, pages 739–746, 2005.
28 Pascal Koiran and Anastasios Zouzias. Hidden cliques and the certification of the restricted

isometry property. IEEE Trans. Information Theory, 60(8):4999–5006, 2014. URL: http:
//dx.doi.org/10.1109/TIT.2014.2331341, doi:10.1109/TIT.2014.2331341.

ITCS 2018

http://proceedings.mlr.press/v70/chierichetti17a.html
http://proceedings.mlr.press/v70/chierichetti17a.html
http://doi.acm.org/10.1145/1824777.1824783
http://doi.acm.org/10.1145/1824777.1824783
http://dx.doi.org/10.1145/1824777.1824783
http://dx.doi.org/10.1007/BF02678464
http://dx.doi.org/10.1007/BF02678464
http://dx.doi.org/10.1007/BF02678464
http://papers.nips.cc/paper/6596-dimensionality-reduction-of-massive-sparse-datasets-using-coresets.pdf
http://papers.nips.cc/paper/6596-dimensionality-reduction-of-massive-sparse-datasets-using-coresets.pdf
http://papers.nips.cc/paper/6596-dimensionality-reduction-of-massive-sparse-datasets-using-coresets.pdf
http://jmlr.org/proceedings/papers/v40/Foster15.html
http://jmlr.org/proceedings/papers/v40/Foster15.html
http://doi.acm.org/10.1145/1039488.1039494
http://doi.acm.org/10.1145/1039488.1039494
http://dx.doi.org/10.1145/1039488.1039494
http://portal.acm.org/citation.cfm?id=2095211&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095211&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1109/TIT.2014.2331341
http://dx.doi.org/10.1109/TIT.2014.2331341
http://dx.doi.org/10.1109/TIT.2014.2331341

7:16 L1 Sparse Regression and Column Selection

29 Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. SIAM, 2016. URL: http://dx.doi.org/10.1137/1.9781611974331, doi:10.1137/
1.9781611974331.

30 Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse projec-
tions onto the simplex. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 235–243, 2013. URL:
http://jmlr.org/proceedings/papers/v28/kyrillidis13.html.

31 Cewu Lu, Jiaping Shi, and Jiaya Jia. Scalable adaptive robust dictionary learning. TIP,
23(2):837–847, 2014.

32 Deyu Meng and Fernando. D. L. Torre. Robust matrix factorization with unknown noise.
In ICCV, pages 1337–1344, 2013.

33 Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set:
A strategy employed by v1? Vision Research, 37(23):3311 – 3325, 1997. URL: http:
//www.sciencedirect.com/science/article/pii/S0042698997001697, doi:https://
doi.org/10.1016/S0042-6989(97)00169-7.

34 Saurabh Paul, Malik Magdon-Ismail, and Petros Drineas. Column selection via ad-
aptive sampling. In Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 406–414, 2015. URL: http://papers.nips.cc/paper/
6011-column-selection-via-adaptive-sampling.

35 Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in
optimization problems with sparsity constraints. SIAM J. on Optimization, 20(6):2807–
2832, August 2010.

36 Zhao Song, David P. Woodruff, and Pelin Zhong. Low rank approximation with entrywise
`1-norm error. In STOC, 2017.

37 Naiyan Wang, Tiansheng Yao, Jingdong Wang, and Dit-Yan Yeung. A probabilistic ap-
proach to robust matrix factorization. In ECCV, pages 126–139, 2012.

38 Naiyan Wang and Dit-Yan Yeung. Bayesian robust matrix factorization for image and
video processing. In ICCV, pages 1785–1792, 2013.

39 Tengyao Wang, Quentin Berthet, and Yaniv Plan. Average-case hardness of RIP certifica-
tion. CoRR, abs/1605.09646, 2016. URL: http://arxiv.org/abs/1605.09646.

40 Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and Jeff Bilmes. Submodular subset
selection for large-scale speech training data. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 3311–3315. IEEE, 2014.

41 L. Xiong, X. Chen, and J. Schneider. Direct robust matrix factorization for anomaly
detection. In ICDM, pages 844–853, 2011.

42 L. Xu and A. L. Yuille. Robust principal component analysis by self-organizing rules based
on statistical physics approach. IEEE Transactions on Neural Networks, 6(1):131–143,
1995.

43 Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank matrix
approximation under robust L1-norm. In CVPR, pages 1410–1417, 2012.

http://dx.doi.org/10.1137/1.9781611974331
http://dx.doi.org/10.1137/1.9781611974331
http://dx.doi.org/10.1137/1.9781611974331
http://jmlr.org/proceedings/papers/v28/kyrillidis13.html
http://www.sciencedirect.com/science/article/pii/S0042698997001697
http://www.sciencedirect.com/science/article/pii/S0042698997001697
http://dx.doi.org/https://doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/https://doi.org/10.1016/S0042-6989(97)00169-7
http://papers.nips.cc/paper/6011-column-selection-via-adaptive-sampling
http://papers.nips.cc/paper/6011-column-selection-via-adaptive-sampling
http://arxiv.org/abs/1605.09646

	Introduction
	Our results
	Interpreting error bounds and comparisons to prior work

	Sparse recovery under noise
	Analyzing the potential drop

	Low rank approximation
	Oracle for each iteration

	Solving the linear program efficiently
	Conclusion
	Experiments

