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ABSTRACT
Advertising is a significant source of revenue for most online social
networks. Conventional online advertising methods need to be cus-
tomized for online social networks in order to address their distinct
characteristics. Recent experimental studies have shown that pro-
viding social cues along with ads, e.g. information about friends
liking the ad or clicking on an ad, leads to higher click rates. In
other words, the probability of a user clicking an ad is a function of
the set of friends that have clicked the ad. In this work, we propose
formal probabilistic models to capture this phenomenon, and study
the algorithmic problem that then arises. Our work is in the context
of display advertising where a contract is signed to show an ad to a
pre-determined number of users. The problem we study is the fol-
lowing: given a certain number of impressions, what is the optimal
display strategy, i.e. the optimal order and the subset of users to
show the ad to, so as to maximize the expected number of clicks?

Unlike previous models of influence maximization, we show that
this optimization problem is hard to approximate in general, and
that it is related to finding dense subgraphs of a given size. In
light of the hardness result, we propose several heuristic algorithms
including a two-stage algorithm inspired by influence-and-exploit
strategies in viral marketing. We evaluate the performance of these
heuristics on real data sets, and observe that our two-stage heuristic
significantly outperforms the natural baselines.

1. INTRODUCTION
Advertising is one of the main sources – if not the main source

– of revenue for most online social networks; e.g., online adver-
tising comprised about 91% of Facebook’s revenue in 2013. A
significant portion of this revenue comes from display ads where
certain business rules from traditional advertising apply. Conven-
tional display ads (and more generally traditional online advertising
methods) have not been as successful in generating revenue in so-
cial networks compared to other types of online advertising such
as sponsored search advertising. To increase their revenue, online
social networks have utilized a new paradigm called social adver-
tising, which aims to leverage the social influence of a user on their
friends. In this paper, we develop a formal model to study social
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advertising in display ads, and formalize the algorithmic problem
faced by a social network platform. We then present new theoreti-
cal and empirical results for this problem.

Let us start with a brief review of display advertising: An online
social network has multiple pages where it displays ads in the form
of images, video or text. Once a user visits a page, she views an ad.
Her exposure to the ad is called an “impression." Advertisers buy
blocks of impressions ahead of time via contracts, choosing blocks
carefully to target a particular market segment. Once the contract
is agreed upon, the advertiser expects a specified number of im-
pressions to be delivered by the social network platform over an
agreed-upon time period. In addition to delivering a predetermined
number of impressions, the advertiser may choose to optimize other
objectives like clicks or conversions [4, 3, 2].

It has been observed, however, that conventional methods of ad
allocation are not very successful in the context of online social
networks [6, 24], and the paradigm of social advertising was de-
veloped to address this shortcoming. The goal of social advertising
is to leverage social influence among users. The impact of social
influence among users has been confirmed in sociological studies,
statistical models, and in online randomized experiments (see [6]
and references therein). A social ad has been defined as “an ad
that incorporates user interactions that the consumer has agreed to
display and be shared. The resulting ad displays these interactions
along with the user’s persona (picture and/or name along with the
ad content)” [20]. In other words, an ad being shown to a person
can incorporate information about others who have clicked the ad
in the past (assuming their consent).

The goal of our work is to understand how social ads can affect
click-through rates in social networks. Recent field studies [24,
6] show that advertising using social cues are more effective than
conventional demographic and behavioral targeting methods.
Our Contributions and Techniques. The main contributions of
our paper are as follows:

• We propose a formal model for social ads in the context of
display advertising. In our model, ads are shown to users
one after the other. The probability of a user u clicking an
ad depends on the users who have clicked (or taken a certain
action on) this ad so far. This information is presented to u
as a social cue (which could be of different kinds, as we see
later), thus the click probability is a function of this cue.

• We introduce the social display optimization problem: sup-
pose an advertiser has a contract with a publisher for showing
some number (say B) impressions of an ad. What strategy
should the publisher use to show these ads so as to maximize
the expected number of clicks?1

1We will discuss publishers’ motivations for this in Section 2.1.



• We show that this optimization problem is APX hard.2 In
fact, under a complexity assumption known as the planted
dense subgraph conjecture (widely believed to be true, see [10]),
we prove that it is impossible to find a strategy that approxi-
mates the best one to a factor better than n1/8−ε, where n is
the total number of users, and ε > 0 is any constant.

• In light of the general hardness results, we develop heuristic
algorithms and compare them to natural baseline ones. In-
spired by influence-and-exploit strategies studied in [21, 18],
we propose a two-stage algorithm: we first show the ad to
αB users of highest influence, and then show it to users most
likely to click (given the ones that clicked so far).

• Finally, we evaluate the performance of this as well as other
heuristics on two real datasets with influence probabilities
from Flixster.com and GoodReads.com.

Our model shares some common elements with previous work
on influence maximization and viral marketing, but our aim is quite
different: we care only about the users we show the ad to (which we
are allowed to pick), and the strategy used for doing so (as opposed
to creating a cascade over the entire graph). The strong inapprox-
imability results mentioned above are also in contrast to constant-
factor approximations known for influence maximization models.

Formally, a display strategy will consist of a set of users and a
specificied order of showing ads, both of which are adaptive, in the
sense they depend on which users have clicked the ad so far (thus
it can be viewed as a decision tree). Indeed the number of such
strategy trees can be doubly exponential in the size of the graph.
Proving hardness results thus involves reasoning about arbitrary
adaptive strategies. This is our main theoretical contribution that
might find other applications.

This is also the reason proving worst approximation guarantees
is difficult – because any approximation algorithm must (implic-
itly) certify that there is no strategy that could obtain a value much
larger than that output by the algorithm. While this may suggest
that the problem is hopeless, we will see in the experiments that
our two-stage algorithm (outlined above) outperforms the baseline
heuristics by a large margin – typically by about 11% to 100%.

1.1 Related Work
There is a rich and diverse body of work in the intersection of

display advertising, social networks, marketing and influence max-
imization. For purposes of exposition, we will discuss these re-
sults in three categories. The most relevant to us is work on social
network advertising, which is what we intend to formalize in the
contex of display advertising.
Social Network Advertising: Works on social advertising have
looked at the impact of displaying social signals (cues) to users.
In other words, they measure the increase in the likelihood of a
user clicking an add, given she knows that her friends have already
taken an action on that ad. In particular, in [6], the authors run
an experiment on Facebook to measure this impact. They find that
showing social cues increases the probability of clicks on fan pages.
Tucker [24] studies the same problem on a different network and
makes similar observations. In a recent paper [7], the authors argue
that viral marketing would be more effective if a large number of
ordinary users are picked as influencers. None of the above work,
however, looks at how one could optimize the number of clicks,
likes or conversions in display ads by leveraging these social cues.

Recently, a social ad model considering user influence, called
AdHeat, has been explored [8]. In this model, the advertising plat-
2Hard to approximate to some constant factor unless P = NP .

form diffuses hint words of influential users to others and then
matches ads for each user with aggregated hints. They perform
experiments on a real-world data set, and show that AdHeat outper-
forms the traditional relevance models by a large factor. Although
this study shows the effectiveness of using social network informa-
tion in online advertising, they do not consider active propagation
of ads by the users of the social network.

Viral Marketing and Influence Maximization: The problem
of influence maximization in social networks has received a lot of
attention in the past decade or so, with applications to viral mar-
keting, studying the spread of diseases, and a variety of other set-
tings. Introduced in the seminal work of Kempe, Kleinberg and
Tardos [21], the goal is to pick a small set of vertices to influence,
with the goal of maximizing the expected number of nodes that this
influence cascades to. We do not get into the formal definitions, but
note that these works [12, 21, 18, 23] give formal ways to model the
probability of a user buying a product based on her friends buying
the product.

This is very similar to the way in which our work models the
click probability, and our model is indeed inspired by this litera-
ture. However, as we stated earlier, our goal is to find good display
strategies, which is quite different from finding good nodes from
which to start a cascade. Thus it seems the algorithmic tools devel-
oped there do not apply to our setting (indeed our hardness results
imply that we cannot obtain constant factor approximations, as in
the case of influence maximization).

Another related work is the revenue maximization model [18,
22], in which a person’s decision to buy a product is influenced
by the set of other people who own the product, as well as the
price at which the item is offered. The results in this line of work
have a more economic focus, and thus have a very different flavor
compared to ours.
Online display ad allocation: The problem of optimal allocation
for display ads has been recently studied as an online optimization
problem [16, 15, 25]. The display ad optimization model consid-
ered in these papers is similar to our model in that there is a goal of
delivering the ad to a predetermined number of impressions while
trying to maximize the expected number of clicks or conversions.
Incorporating social influence into these settings is partly the moti-
vation for our work.

2. MODEL
We will first give a brief background on display advertising, and

thus motivate our main question of study. This will help set up the
notation for describing the model formally.

2.1 Display Advertising
There are three major pricing models for online ads on the Inter-

net: Cost-per-mille/impression (CPM), Cost-per-click (CPC), and
Cost-per-action (CPA). In these models, the advertisers pay the
platform (publisher) for the number of impressions, clicks, or ac-
tions3 respectively. Even though a majority (in terms of revenue)
of search advertising operates on the CPC and CPA models, a sig-
nificant portion (roughly 33 percent, as of 2013 [1]) of display ads
are sold based on the CPM model.

The CPM model is simple to describe: an advertiser enters in
a contract with a web publisher for its ads to be shown to a fixed
number of site’s visitors. The advertiser may specify a segment of
the market or some demographic criteria to target the ads to. The

3Actions, or conversions correspond to a specific action by the on-
line user, e.g., purchases of a product or signs up for newsletters on
a website.



contract requires the publisher to show this number of impressions.
Thus the publisher can choose which users to show the ad to (and
on which pages). How should he make this choice?

Note that the more clicks an ad gets, the higher the chances that
the advertiser would come back for another advertising campaign.
Thus it is in the publisher’s interest to show the ads to users more
likely to click. This is a well-recognized objective – in fact, most
of the advanced display-ad platforms offer tools to optimize metrics
like clicks, conversions, or even return-on-investment (ROI) while
delivering a predetermined number of ads [4, 3, 2]. This motivates
the question of optimizing the expected number of clicks (or con-
versions) subject to displaying a specified number of ads. We study
this question formally in the setting of social networks.

2.2 Display ads in Social Networks
Let us consider the situation in which the publisher is a social

network. The contracts now require the publisher to show an ad
(from an advertiser) to a fixed number (say B) users of the social
network. As we saw above, the publisher wishes to maximize the
number of clicks or ‘likes’ the ad would receive. This, in turn, could
be used for pricing the contract, or improving the customer-loyalty.

We will develop a way to model how users react to social cues,
and use the model to optimize the number of clicks an ad is ex-
pected to get. Social cues can be of different kinds. In its most
general form, the publisher could display to a user the entire set of
friends who have clicked the ad so far. This has many problems
– the first is the privacy of the users who have clicked the ad. A
fix for this is (as in the experiments of [6]) is to only show users
who have given consent. Even so, displaying a list is cumbersome;
a realistic way is to show a small subset (say, ones with closest
ties) of friends, or the fraction of friends, who clicked the ad (and
consented to spreading the information). Additional information,
such as the number or demographics of other people (non-friends)
who clicked the ad may also be provided. We would like to have a
model that is general enough to capture the probability of a user’s
click probability in all of these settings.

We now formally describe such a model. Let B denote the bud-
get, i.e. the number of ads that are to be displayed. We show ads
one by one to users. At some point of time, suppose S is the set
of users who have clicked the ad. Then the probability that a user
u clicks the ad is given by an influence function pu(S). We as-
sume that pu(S) is increasing with S, i.e., the probability that a
user clicks an ad only increases if more people click the ad (e.g.
pu(S) may be a linear function or a submodular function). Given
this setting, the objective of the publisher (the social network) is to
find the optimal set of users and the optimal display strategy (de-
scribed below) in order to maximize the number of clicks the ad
receives.

What kind of functions pu(S) are possible? From our discussion
above, the user u does not see all of S, but only a social cue, which
is something derived from S. Thus pu(S) is only a function of
the social cue that u receives. In Section 2.2.1, we will see a list of
reasonable candidates for pu(S) and the corresponding social cues.

Display strategy.
Formally a display strategy is a binary decision tree of depth

B, the total number of impressions. The vertex at the root is the
first user to be shown the ad. If the user clicks the ad, we follow
the display strategy in the left subtree, else the right subtree, and
so on. Note that even if the same user appears in the tree at the
same depth, the probability of him/her clicking the ad will depend
on the set of users who clicked so far (which is captured by the
path from the root). Given a strategy, we can define the expected

clicks, which is the expected number of users who click the ad if the
publisher follows this strategy. This can be computed by a bottom-
up computation in the tree.

The caveat here is that a strategy tree typically has exponential
size (since it is a binary tree of depth B), thus computing the ex-
pected clicks is non-trivial. All the algorithms we consider will
have a ‘succinct description’ of the tree (at each step, it will be a
simple computation to pick the next root), however it is still not
clear how to compute the expected clicks. We will compute this
quantity using Monte-Carlo simulation. This can be done effi-
ciently, because the variance is at most k2 (in practice it is much
smaller), and thus we get a good estimate of the expectation with
only a few samples. The vast number of strategies is one reason it
is difficult to reason about the optimal strategy (one with the largest
expected clicks).

Adaptivity vs. non-adaptivity.
We have allowed our display strategy to be adaptive (the pub-

lisher can decide who to show the ad to based on which users
clicked it so far). This is reasonable in most realistic cases. There
are instances in which adaptivity gives a huge advantage (B vs.
Bε, for small ε). We do not get into them due to space constraints.

2.2.1 Influence Functions
In social advertising, the probability of a user u clicking or liking

an ad could increase depending on the knowledge that certain other
users have clicked the ad in the past, due to an inherent trust in the
taste or judgement of those users. This is what we capture using
influence functions, as we defined earlier. Below we will list out
some influence functions pu(S) we consider.

• Linear influence: Here for each pair (u, v) of users, we have
a weight w(u, v) (not necessarily symmetric), and pu(S) =
cu +

∑
v∈S w(v, u).4 The constant term cu could be zero

for certain vertices. An interesting special case is one in
which the weights w(u, v) are all in {0, p}, i.e., given a
graph G(V,E) over users, w(u, v) = p if (u, v) ∈ E(G)
and 0 otherwise. In this case, pu(S) = cu + p · |S ∩ Nu|.
This special case is particularly interesting because it is very
easy to communicate pu(S) via social cues – we can simply
tell a user the number of friends who clicked the ad so far.

• Independent Cascade Model: This is discussed and moti-
vated in [21]. Here as above, we have influences p(u, v) for
pairs of users, and pu(S) = 1−ΠS(1−p(u, v)). In our con-
text, we need to allow certain vertices u to have pu(S) = cu
for constants cu (otherwise no one would click the ad to start
with). We note that when p(u, v) are all small, ΠS(1 −
p(u, v)) is roughly 1 −

∑
S p(u, v), in which case this is

a special case of linear influence.

• Concave influence: We have weights w(u, v) as before, and
have a concave function g : R → R such that pu(S) =
g(
∑
v∈S w(v, u)). Interesting examples of such functions

are g(x) = xd for d < 1, and g(x) = log x.

The linear and concave functions for influence are inspired by
similar models considered in [18]. We could also have another
threshold based functions pu(S), again inspired by [21].

• Deterministic threshold function: We have weights w(u, v),
and thresholds Tu. We have pu(S) = 1 if

∑
v∈S w(v, u) ≥

Tu, and 0 otherwise. We also need to have some vertices
with pu(S) = cu as explained earlier.

4We cap probabilities at 1, though we do not explicitly write this.



Allowing thresholds makes the problem extremely hard to approx-
imate (and possibly unrealistic), thus we do not study algorithmic
results for it.

Let us now formally define our problem.

DEFINITION 1 ((SOCIAL DISPLAY OPTIMIZATION)). Given
a tuple (U,B, p) of a set of users U , a bound B on the number of
users to show an ad to, and influence functions pu(·), the goal is to
find a (possibly adaptive) strategy for showing the ad to B users so
as to maximize the expected clicks. Sometimes we will simply refer
to the problem as display optimization.

3. HARDNESS RESULTS
In this section, we will examine the complexity of the Display-

Optimization problem (in terms of approximating the objective,
which is the maximum expected clicks). We show that the problem
is NP-hard to approximate up to a factor (1 + ε) for some small
constant ε > 0.5 Such a result is also called APX-hardness. Then,
under a stronger hardness assumption, called the planted dense sub-
graph conjecture, we will show that we cannot approximate the op-
timal display strategy problem to a factor roughly n1/8, where n is
the number of users.

We first present the latter result — strong inapproximability un-
der planted dense subgraph assumption — because it seems to high-
light the crux of the problem, which is the following: if we wish to
influence k users in a network, and we wish to take advantage of
the graph structure, we should be able to find a set of k users who
are well connected to each other, and this is hard in general. The
reasoning below will make this rough intuition formal, and also
illustrate how to argue about adaptive algorithms.

3.1 Strong inapproximability
We prove that for any ε > 0, the Display-Optimization prob-

lem cannot be approximated to a factor better than n1/8−ε, unless
we can approximate the random-planted version of the densest k-
subgraph (DkS) problem to a factor better than n1/4−ε (conjectured
to be hard [10]).

Let B be the budget, and suppose the probability that u clicks
given S is the set of vertices that have clicked before, is given by

pu(S) = min{1, p0 + c · |S ∩N(u)|},

where p0 and c will be picked appropriately. So a user has an ‘in-
dependent’ probability p0 of clicking,6 and there is an increase de-
pending on the number of friends who clicked the ad. The aim, of
course, is to maximize the expected number of clicks.

The planted DkS problem is the following: let ε > 0 be any
constant; define two distributions over graphs as follows

D1: pick a graph fromG(n, n−1/2) (thus the expected
degree is n1/2).

D2: pick a graph from G(n, n−1/2), and a random
subset P of size n1/2. Replace the induced subgraph
on P by a graph from G(n1/2, n−(1/4+ε)).

To see that D1 and D2 are statistically different, we note that:

5Formally, it means that unless P = NP , it is impossible to tell
if the optimal display strategy has expected clicks equal to M or
expected clicks ≤M/(1 + ε) for some parameter M .
6This is necessary for the clicking to kick off. We can simulate
this by adding a new user who clicks with probability 1, and is
connected to everyone with an edge of weight p0.

1. For a graph in D1, every induced subgraph on n1/2 ver-
tices has average degree ≤ O(logn) with probability 1 −
exp(−n1/2). (Proof follows from Lemma 3.)

2. For a graph in D2, there exists an induced subgraph on n1/2

vertices and average degree Ω(n1/4−ε) with probability 1−
exp(−n1/2).

CONJECTURE 1 (PLANTED DENSE SUBGRAPH CONJECTURE).
Given a graph G, it is not possible in polynomial time to tell (with
probability > 2/3) if G ∼ D1 or G ∼ D2. [10]

Our theorem is now the following

THEOREM 2. Assuming Conjecture 1 (for some ε ∈ (0, 1/16)),
it is not possible to approximate the Display-Optimization problem
to a factor better than n1/8−ε in polynomial time.

PROOF. The reduction uses the same graph G (drawn from ei-
ther D1 or D2), with parameters as follows:

B = n1/2 ; p0 =
1

n1/8−ε/2 ; c =
1

n1/8−ε/2 .

We show that maxE[#clicks] is (a)O(log2 n)·n3/8+ε/2 ifG ∼
D1, and is (b) Ω(n1/2) if G ∼ D2, with high probability. These
two claims easily imply the theorem.

It is easier to see (b). Suppose we are given a graph G ∼ D2.
Suppose P is the planted set of vertices, and suppose we show ads
to the vertices in P (in a random order). Consider the situation
after we show the ads to half the vertices in P . Of these vertices,
(B/2)p0 = (1/2) · n3/8+ε/2 vertices will have clicked the ad in
expectation (and with very high probability, at least half this num-
ber). This means that for every remaining vertex in P , at least
Ω(n1/8−ε/2) of its neighbors will have clicked the ad w.h.p. (Here
we are using the fact that the planted subgraph is random and has
degree n1/4−ε). Thus by the choice of c, each subsequent vertex
will click the ad with probability Ω(1), thus the expected number
is Ω(n1/2) with high probability.

Now consider G ∼ D1, and let v1, v2, . . . , vB be any sequence
of B users. Now suppose a display strategy shows the ad to these
users in this order. Let Si be the subset of {v1, v2, . . . , vi−1} that
clicked. We can upper bound pvi(Si) as:

pvi(Si) = p0+c·|Si∩N(vi)| ≤ p0+c·|{v1, . . . , vi−1}∩N(vi)|.

Now for j ≥ 1, define vertex vi to be in level j if |{v1, . . . , vi−1}∩
N(vi)| lies in the interval [2j−1, 2j).7 Then, Lemma 3 (proved be-
low) shows that with high probability (≥ 1− 1/n2, say), for every
sequence v1, v2, . . . , vB , the number of vi in level j is at most
O(logn)n1/2

2j
.

Thus consider any (adaptive) display strategy. Suppose it shows
the ad to users v1, v2, . . . , vB . Now divide these users into levels
as above, and consider some level j. By the above, there are at
most O(logn)n1/2/2j users in level j. Thus the expected number
of these who click on the ad is

O(logn)n1/2

2j
·
(
p0 +

2j

n1/8−ε/2

)
≤ O(logn) · n3/8+ε/2.

By Chernoff bounds, the probability that the number who click is
twice the expectation is< 1/n4 in this case. Thus the total number
of clicks is at most O(log2 n)n3/8+ε/2 with probability at least
1 − 1/n4. This then implies that the expected number of clicks is
at most O(log2 n)n3/8+ε/2.

Note that the proof holds for every display strategy, thus con-
cluding the proof.
7Include vertices with no edges to their predecessors into level 1.



It only remains to show Lemma 3.

LEMMA 3. Let G = (V,E) ∼ G(n, n−1/2), and define M =

n1/2. Then with probability (1 − 1/n2), we have that for every
v1, v2, . . . , vM , the number of edges in the induced subgraph is at
most (2 logn)M . Consequently, the number of vi with > t neigh-
bors among {v1, . . . , vM} is at most (4 logn)M/t.

PROOF. Consider some v1, . . . , vM . The probability that there
are ≥ k edges is essentially(

M2/2

k

)
pk <

(
M2pe

2k

)k
.

Now for k = 2M logn, since Mp = 1, we have the probability
above to be less than e−2M logn. Thus we can take a union bound
over all choices of v1, . . . , vM (there are only nM = eM logn of
them), completing the proof.

3.2 APX hardness
The theorem here is the following. Though the factor is much

weaker, it is based on a much more standard assumption (NP hard-
ness). This is the reason we include the result.

THEOREM 4. There is an absolute constant ε > 0 such that it
is NP-hard to approximate the Display Optimization problem to a
factor (1 + ε).

We apply a result about the complexity of the k-uniform set
cover problem (set cover in which all sets have size precisely k)
and present a reduction from this. Formally, an instance of this
problem consists of a family S of m subsets S1, . . . , Sm, each of
size k, over a ground set of elements [n] := {1, 2, . . . , n}. The
goal is to find a subfamily of S of minimum size that covers all of
[n]. The following hardness result is known:

PROPOSITION 5. [14] For every choice of constants s0 > 0
and ε > 0, there exists a k (depending on ε) and instances of
k−uniform regular set cover with n elements on which it is NP-
hard to distinguish between the case in which all elements can be
covered by t = n

k
disjoint sets (called YES instances), and the case

in which every s ≤ s0t sets cover at most a fraction of 1 − (1 −
1
t
)s + ε of the elements (called NO instances).

Reduction. We now give a reduction from k-uniform set cover
to Display Optimization. Let V be the set of elements and S =
{S1, S2, . . . , Sm} be a family of sets over V each of size k. The
instance of Display-Optimization we construct is as follows: for
each element v ∈ V , we have one user. For each Si ∈ S, we
have a set Ui of 4 logn/p users, where p = 1/n1/4. The edges
are as follows. We place an edge between v ∈ V and u ∈ Ui iff
u ∈ Si (thus such a v has an edge to all the users in the ‘group’ Ui).
Now the influence functions pu() are defined as follows. For users
u ∈ Ui, pu(S) = p (i.e., these users click the ad with probability p
independent of the rest). For users v ∈ V , we have

pv(S) =

{
1 if |S ∩ Γ(v)| ≥ 1,

0 otherwise.

The number of users to show the ad to, i.e., the parameter B, is
picked to be (4t/p) + n. (Recall t = n/k, defined above.)

We now show that if we started with a YES instance for set cover,
there is a strategy which has expected clicks ≥ (1− δ)n+ 4t, and
if we started with a NO instance, then any strategy has an expected
clicks at most (1−δ′)n+4t, for some constants δ′ > δ > 0. Recall
that t = n/k (k constant), so this will establish APX-hardness.

YES case. In this case there exists a sub-family of t sets – say
S1, S2, . . . , St which cover all the elements V . Now consider the
following display strategy:

1. Show the ad to precisely 4t/p users, according to the follow-
ing algorithm: first show the ad to users in U1 until either
one of them clicks the ad, or we have exhausted all of U1,
then do the same with U2, and so on, until the ad is either
shown to 4t/p users, or we have one click in each each Ui
for i = 1, . . . , t. In the latter case, if we have not shown the
ad to 4t/p users in total, show it to arbitrary (other) users in
∪jUj so that the total is 4t/p.

2. Then show the item to all the n users in V in any order.

LEMMA 6. With probability 1 − 1/n2, step 1 of the algorithm
ends up with at least one click in each of U1, . . . , Ut.

PROOF. The full proof is technical, so we only give an outline
in this version. The intuition is that in each of the Ui, by showing
the ad to 1/p users, there is a probability roughly 1/2 of some user
clicking. Thus in roughly t/2 of the groups Ui, the algorithm will
show the ad only to 1/p users in the group. Now a similar argument
will show that in roughly 1/2 of the rest, we require showing the ad
to 2/p users, and in general, roughly t/2j of the groups will require
showing the ad to j/p users, for j = 1, 2, . . . , logn. Thus the total
number of users to show the ad to, will be

logn∑
j=1

j

p
· t

2j
< 2t/p.

By allowing some slack in each bound, we can get high-concentration
versions of these, which completes the proof.

Note that if we have one click in each Ui, i ≤ t, then in step 2,
we get n clicks. Further, the expected number of clicks in step
1 will be precisely p · (4t/p) = 4t, and by Chernoff bounds, it
will be ≥ 4t −

√
40t logn with probability at least (1 − 1/n2).

Thus with probability ≥ 1 − 2/n2, we have that in the YES case,
the algorithm above gets n + 4t −

√
40t logn clicks. Thus the

expectation is ≥ (1 − δ)n + 4t, for any constant δ > 0 (for large
enough n, since t = n/k < n). This completes the analysis.
NO case. Here we need to show that no display strategy can have
expected clicks > (1 − δ′)n + 4t, for some absolute constant δ′.
The key is to observe that an optimal strategy will (w.l.o.g.) first
show the ad to users in U and then to users in V (this is because of
the structure of our instance), and among the users in U , the order
does not matter – the only thing that matters is the number of users
in each Ui that are shown the ad.

LEMMA 7. In any strategy, the number of users in U who click
the ad is at most Bp+

√
10Bp logn with probability≥ 1− 1/n2.

PROOF. Any strategy shows the ad to at mostB users inU (B is
in fact the total number of users it shows the ad to). For this lemma,
it does not matter which users are shown the ad, because each user
likes with probability p independent of all others. Thus the lemma
follows by standard Chernoff bounds.

Note that the bound above isBp = 4t+np+O(
√
t logn), for our

choice of p. We introduce a bit of notation: we will call a group Ui
“good” if at least one of the users in Ui clicks the ad.

LEMMA 8. In any strategy, at most 40t of the groups are good
with probability at least 1− 1/n2.



PROOF. From the way n, t, p are related, we have B < 5t/p,
thus any strategy shows the ad only to 5t/p users in U . This means
that the number of groups in which the ad was shown to > 1/(2p)
users is at most 10t (else we would get a contradiction).

Thus if 40t groups are good in total, it means that in at least
30t groups, the strategy shows the ad to at most 1/(2p) users,
and it manages to have one of the users like the ad. We show
that this is very unlikely – can happen with probability at most
1/n2. Let us now perform a finer division. For each j, let nj
be the number of groups in which the ad is shown to 1/jp users,
for j = 2, . . . , (1/p).8 Define these groups to be in level j. By a
calculation similar to the above, we have that

1/p∑
j=2

nj ·
1

jp
<

5t

p
.

For convenience, denote the quantity nj/j by Cj . Then the
above inequality becomes

∑
j Cj < 5t. We claim that for each

j, the probability that there are > 4(Cj + logn) good groups in
level j, is at most 1/n2.

The probability that some group in level j is good, is at most
1 − (1 − p)1/jp ≈ 1 − exp(−1/j) < 2/j, for j ≥ 2. Thus the
expected number of good groups in level j is at most 2nj/j = 2Cj .
Simple concentration bounds then give the claim above (because
groups being good are independent events).

This then implies that with prob. 1 − 1/n2, the total number of
good groups is at most

∑
j 4(Cj + logn) < 20t + t log2 n/p <

30t. This completes the proof.

Once we have Lemmas 7, 8, it is easy to see that with probability
≥ 1 − 1/n2, the number of users who clicked the ad in total is at
most (because we are in the NO instance of set cover)

4t+np+O(
√
t logn)+

{(
1−1/t

)40t
+ε
}
·n < (1−δ′)n+4t,

for some absolute constant δ′ (since ε can be picked small enough).
This completes the proof of APX hardness.

Deterministic thresolds.
The proof above can be modified to show that if the influence

function is allowed to be hard threshold, then there is no hope of
approximating. More precisely we can show:

THEOREM 9. The Display-Optimization problem when some users
are allowed to have a deterministic threshold function is NP-hard
to approximate up to any polynomial (nc) approximation factor.

PROOF. (Sketch) We modify the reduction above, noting that
in the YES case, all n vertices of V would click the ad (in our
algorithm, w.h.p.), while in the NO case, at most (1−δ′) fraction of
V could click the ad w.h.p. (the same argument gives 1/n2c instead
of 1/n2 with minor changes). Now connect M = nc+1 new users
to all the users of V , and suppose these new users click the ad only
if all n of V click the ad (threshold). Then in the YES case we get
M + O(n) clicks, while in the NO case we only get O(n) clicks
w.h.p. This shows inapproximability to an nc factor.

4. ALGORITHMS
In light of the above hardness results, we cannot hope to obtain

algorithms with provably good approximation ratios. However, we
will describe heuristics which perform much better than the natural
baseline algorithms on real life data sets. The baseline algorithms
are similar to those used in the context of influence maximization
(and are known to give good algorithms for special cases).
8Formally, we need to have the interval (1/(j + 1)p, 1/jp].

Most Influential Greedy Heuristic
Input: (U,B, pu).
Output: A sequence (a1, a2, . . . , aB), and set S.
Goal: Maximize E[|S|].
1. Initialize: S = ∅, A = ∅
2. For i := 1 to B do
3. Let ai ∈ U\A be the user maximizing top-infl(u)

4. Let A := A ∪ {ai}.
5. With probability pai(S), let S = S ∪ {ai}.

Figure 1: Most Influential Greedy Heuristic

4.1 Baseline algorithms
We present two natural heuristics for the problem, which we then

use to compare the performance of our algorithms.

4.1.1 Largest probability greedy
One simple algorithm is to pick users that are most likely to

click on the ad at each time step, i.e., given an input (U,B, pu),
pick users {a1, a2, . . . , aB} as follows: at the i’th step, let ai ∈
U\{a1, a2, . . . , ai−1} be the user maximizing pai(Si−1) where
Si−1 ⊂ {a1, a2, . . . , ai−1} is the set of users who have clicked on
the ad so far. Ties are broken arbitrarily.

The problem with this heuristic is, intuitively, that it ignores the
future. While picking users most likely to click, we may have
picked ones that do not influence others (we will see examples).

4.1.2 Most influential greedy
The heuristic above ignores the influence of the chosen users on

others. We can consider the other extreme: algorithms that pick the
most influential users at each step (and ignore the click probability).

Given an input (U,B, pu) for an instance of social display op-
timization, we define a total influence infl(u) for each user u as∑
v∈U pv({u}). The algorithm simply picks the top B users in

the non-increasing order of infl(u). One issue with the above is
that it considers the total influence of a vertex on all other nodes
as opposed to the influence on at most B nodes. To deal with
this, we define the total top influence top-infl(u) for each user u
as
∑
v∈J(u) pv({u}), where J(u) ⊂ U is a subset of users v with

the B largest values of pv({u}). The greedy algorithm is to pick
the top B users in the non-increasing order of top-infl(u).

This algorithm performs poorly in instances where the click prob-
ability and the influence are negatively correlated, but is reasonable
on instances in which such correlations do not occur. We thus view
the algorithm as a relevant baseline for evaluating better heuristics.
The algorithm is formally stated in Figure 4.1.2.

4.1.3 Worst-case examples greedy heuristics
Let us describe concrete instances in which the baseline heuris-

tics perform badly. These will inspire the more sophisticated algo-
rithms.

For completeness, we also note that picking B vertices at ran-
dom will perform very poorly. A simple example is a path with
B vertices, in which the first vertex has a click probability 1 (al-
ways clicks), and each vertex has a click probability 1 if at least
one neighbor has clicked, and 0 otherwise. It is easy to see that
a random order does very badly, while the linear order obtains a
value B. (The largest-probability greedy recovers this.)

Next we see that even in simple linear influence models with
B = n, there are bad examples for the two greedy algorithms



Adaptive Hybrid Heuristic
Input: (U,B, pu).
Output: A sequence (a1, a2, . . . , aB), and set S.
Goal: Maximize E[|S|].
1. Initialize: S = ∅, A = ∅
2. For i := 1 to B do
3. Let ai ∈ U\A be the user maximizing pai(S)× top-infl(ai)

4. Let A := A ∪ {ai}.
5. With probability pai(S), let S = S ∪ {ai}.

Figure 2: Adaptive Hybrid Heuristic.

above. For the largest-probability greedy algorithm, consider a path
as above, but with asymmetric weights: w(i, i + 1) = 1 whereas
w(i + 1, i) = 0 (i influences the neighbor to the right, but not the
one on the left). Suppose the probability pu(S) = min{1, α+iε+
|S∩Ni|}, where α = nδ−1 for small δ, and ε = 1/n2. The greedy
algorithm picks vertices in the order n, n − 1, . . . (because of the
iε terms), and the expected number of clicks is only nδ . However
if shown in the order 1, . . . , n, then in roughly 1/α steps, we see at
least one click, and all vertices following that will definitely click,
thus the expected value is Ω(n) for this strategy.

We can also construct easy counter examples for most-influential
greedy heuristic, with two sets of vertices, one with slightly higher
influence but low click probabilities, which fool the greedy strategy.
We do not get into the details.

4.2 Better heuristics

4.2.1 Adaptive Hybrid Heuristic
This heuristic is based on the simplest way to take into account

both the influence and the click probability – the product of the
two. More specifically, given an input (U,B, pu) for an instance of
the social display optimization, the algorithm greedily picks users
{a1, . . . , aB} as follows: in the i’th step, let ai ∈ U\{a1, . . . , ai−1}
be the user maximizing pai(Si−1)× top-infl(ai) where S is the set
of users who clicked so far, and top-infl(ai) =

∑
v∈J(u) pv({u}),

where J(u) consists of users v who have not yet been shown the
ad, and who have the (B − i) highest values of pv({ai}). The
algorithm is shown in Fig. 4.2.1.

4.2.2 Two-stage heuristic
Inspired by the idea of the the influence-and-exploit strategies

in viral marketing [21, 18], and the greedy algorithm for Dens-
est k-subgraph [10], we propose the following two-stage heuris-
tic: follow the most-influential greedy heuristics for the first stage
of the algorithm, and then switch to the largest-probability greedy
algorithm in the second stage. More specifically, we can run the
adaptive most-influential algorithm for the first αB steps, and then
follow the naive greedy largest-probability heuristic in the last (1−
α)B steps. Our motivation for this greedy algorithm is to follow
the intuition behind the greedy algorithm for influence maximiza-
tion [21]. Although this algorithm does not provide a guaranteed
approximation algorithm for this problem, we hope that this tech-
nique works well in practice, since the greedy heuristic has been
very effective for influence maximization [21] [?, ?, ?]. The opti-
mal value of α certainly depends on the influence functions and the
structure of the influence among users. Such an optimal value of α
can be computed by trying a range of values for α and estimating
the expected number of clicks via simulations. As part of our em-

Two-stage Heuristic
Input: (U,B, pu).
Output: A sequence (a1, a2, . . . , aB), and set S.
Goal: Maximize E[|S|].
1. Initialize: S = ∅, A = ∅
2. For i := 1 to αB do
3. Let ai ∈ U\A be the user maximizing top-infl(u)

4. Let A := A ∪ {ai}.
5. With probability pai(S), let S = S ∪ {ai}.
6. For i := αB + 1 to B do do
7. Let ai ∈ U\A be the user maximizing pai(S)

8. Let A := A ∪ {ai}.
9. With probability pai(S), let S = S ∪ {ai}.

Figure 3: The two-stage heuristic for specific α; the overall al-
gorithm tries different α and picks the best

pirical study, we report a number of insights for the optimal choice
of α for various settings.
Bad examples. Note that our bad example for largest-probability
greedy (path with asymmetric influence) can be modified easily to
give an n1−δ gap for both the heuristics above. Influence of every
vertex in that example is precisely 1 – so the adaptive hybrid works
exactly like largest-probability; if ties are broken badly (which is
possible), this example is also bad for the two stage heuristic. How-
ever, the example is based on a chain of highly asymmetric influ-
ence, which is unlikely in real instances. We believe that this why
our algorithms seem to perform quite well in real instances.

5. EMPIRICAL EVALUATION
In this section, we evaluate variants of four heuristics discussed

in the previous section on two families of instances taken from real-
world datasets. After elaborating on our datasets, we report the
improvement of the two-stage and adaptive hybrid algorithms over
the two baseline algorithms.

5.1 Datasets
It is important to explain how we obtain the instances of Display-

Optimization (in particular the influences w(u, v)) from real data.
There is no a priori “correct” way.
Flixster9: Flixster is a social network for rating movies. We ob-
tained the Flixster dataset from Goyal et al’s work [17, 9]. This
dataset contains 13,000 users with 192,400 directed edges between
them. There are 1.84 million ratings done by these users. These
statistics are presented in Table 1. The influence probabilities are
learned by looking at the log of user ratings with time: < u, i, t, r >
(meaning user u rated item i at time t with rating r). We estimate
the influence probability of user u on user v as the fraction of times
user v rated an item after user u had rated that item. This fraction
is then normalized over all neighbors of user v to make the sum of
influence probabilities equal to 1.10

Goodreads11: Goodreads is a social book cataloging website where
users can register books to create personal bookshelves and also
form friendships with each other. The dataset contains 4,654 users

9www.flixster.com
10This typically overestimates causality; for the next dataset we con-
sider a different way to estimate influences.

11www.GoodReads.com



# Users 13,000
# Friendship links 192,400
# Ratings 1.84M

Table 1: Summary of Flixster Data Statistics

with 445,947 edges between them [5] (statistics in Table 2). This
time, we produce the influence probabilities according to the so-
called voter model. This was introduced by [11] and [19] to model
probabilistic influence. The model explains the diffusion of opin-
ions in a social network as follows: in each step, each node changes
her opinion by choosing one of her neighbors at random and adopt-
ing that neighbor’s opinion. In [13], the authors show that degree
is a good predictor of influence probabilities.

# Users 592,081
# Friendship links 2,045,177
# Books 248,252

Table 2: Summary of Goodreads: owner-book information data

5.2 Experimental Setup
Here, we report the performance of our algorithms on the Flixster

and GoodReads data sets. For each data set, we study the perfor-
mance of these algorithms with B = βn for four different values
β, 0.02, 0.05, 0.1 and 0.15. I.e., we set the the goal of showing
the ad to 2%, 5%, 10% or 15% of the whole population, and re-
port the results for each value of B. The way we compute the
edge weights (probabilities) is described in Secton 5.1. As for the
choice of the influence function, we examine the independent cas-
cade model, and linear and concave influences. The concave func-
tions we examined are g(x) =

√
x and g(x) = log x.

Finally, for each node u, the individual click probability pu(∅) is
drawn from a log-normal distribution with a large mean (between
0.1 and 0.45). We chose a large mean for these distributions to
make sure that in the final click probability, the individual click
probability is not dominated by the incremental probability due to
influence.12 The performance of the algorithms under the indepen-
dent cascade model were almost the same as linear influence (as we
noted, this is not surprising), thus we report the plots for the inde-
pendent cascade model, and concave influences with

√
x and log x.

The reason we report the results for both of these is to illustrate that
our empirical observations are similar for seemingly very different
influence functions.

As we discussed, we compare four algorithms (including two
baseline heuristics). For the two-stage algorithm, we try different
values of α and choose the α with maximum expected value.

5.3 Observations
The empirical results for both data sets and for all propagation

cases that we ran can be found in Figures 4, 5, 6, 7, 8, and 9. In
these plots, the X axis changes β where B = βn. The Y axis
is the expected number of clicks during the simulation. Here we
summarize our main observations in these plots:

12This probability could be much smaller for certain ad types. The
goal of our empirical study is mainly to compare different heuristic
methods. We observe that the magnitude of the click-through-rate
numbers is not important for this comparison, and we expect to get
similar relative performance if we scale all click-through-rates by
the same factor. It is, however, important to choose the individual
probability factors in such a way that their magnitude dominates
that of the probabilities due to influence.
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Figure 4: Performance of the heuristics on the Flixster dataset
for the independent cascade model. The X axis shows β, where
B = βn
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Figure 5: Performance of the heuristics on the Flixster dataset
with a concave influence function, specifically log(x)
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Figure 6: Performance of the heuristics on the Flixster dataset
with a concave influence function, specifically

√
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Figure 7: Performance of the heuristics on the GoodReads
dataset for the independent cascade model

0

5000

10000

15000

20000

0.04 0.08 0.12
β

E
xp

ec
te

d 
nu

m
be

r 
of

 c
lic

ks

Algorithm

AdaptiveHybrid

MostInf

NaiveLargestProb

TwoStage

Figure 8: Performance of the heuristics on the GoodReads
dataset with a concave influence function, specifically log(x)
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Figure 9: Performance of the heuristics on the GoodReads
dataset with a concave influence function, specifically
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Figure 10: Two-stage heuristic for different values of α. Plot is
for the independent cascade model on the Flixter dataset.

• Most notably, we observe that the two-stage heuristic algo-
rithm consistently outperforms all the other heuristics. Across
all instances, the gap between the performance of the two-
stage heuristic and other algorithms increases as the the bud-
get B increases. For example, for β = 0.15, for the Flixster
dataset, the percentage increases for the two-stage heuristic
from the best of other algorithms (i.e., adaptive hybrid) is
around 25%, 14%, and 6% for the three different influence
propagation models. For the GoodReads dataset, the percent-
age increases are around 7%, 5%, and 12%. The percentage
increases from the output of the largest-probability heuris-
tic (that ignores the influence function) to the output of the
two-stage are 26%, 62%, and 23%. The same percentage in-
creases for the GoodReads dataset are 11%, 100%, and 12%.
The interesting parameter in two-stage algorithms is the α at
which the best performance is achieved. See below for a dis-
cussion on how this behaves.

• Even our first heuristic, the adaptive hybrid greedy algorithm,
outperforms the baselines for all values of β except β = 0.02
where the largest-probability heuristic is slightly better for
two instances, and β = 0.05 where the largest-probability
heuristic is slightly better for one instance. Again the per-
formance increase from largest-probability heuristic to the
adaptive hybrid heuristic increases as the budget increases.

• Finally, the most-influential greedy algorithm performs the
worst. This was expected since it only focuses on picking
the most influential users and not on their click probability.

Optimal α for the two-stage heuristic: As we discussed, in order
to find the optimal α for the two-stage algorithm, we tried several
values and chose the best one. The expected number of clicks for
each value of α and for different budgets is plotted in Figure 11.
The optimal choice of α for each instance may be related to the
optimal way of influencing the network through ads. We observe
that the optimal α for different instances vary from 0.05 to 0.2. It
is worth noting the following points in these plots:

• The optimal choice of α increases as β increase from 2%
to 15%. This suggests that with a higher budget, we can
afford to spend a bit more fraction of time on ‘exploration’
(influencing) and attain higher expected clicks.

• The optimal choice of α decrease as the exponent of the con-
cave influence function decreases. This is reasonable, be-
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Figure 11: Two-stage heuristic for different values of α. Plot is
for
√
x influence function on the Flixter dataset.

cause the lesser the influence among users, the lesser the im-
portance of the influencing steps.

• Fixing an instance (i.e., fixing β and an influence propagation
model), we observe that as α increases, the expected number
of clicks from the two-stage heuristic is first monotonically
increasing, and then it decreases monotonically (i.e., it is uni-
modal). This is a curious fact which would be nice to prove
in restricted models. Of course, it also implies that the opti-
mal α can be found by trying only a logarithmic number of
values of α (by essentially binary search).

6. CONCLUSION
Social advertising has emerged as a promising alternative to con-

ventional online advertising methods. In the setting of display
advertising, relying on the notion that leveraging social cues can
increase clicks in online social networks, we proposed a formal
model for social display ad optimization, and initiated the study of
the problem of optimally allocating display ads by modeling the
impact of social influence on users’ decisions. We showed that
the social display ad optimization problem is APX-hard and is un-
likely to be approximable within a factor much better than n1/8.
On the algorithms side, we proposed new algorithms which seem to
perform significantly better than the baseline heuristics on datasets
from real social networks. E.g., our two-stage algorithm achieved
a 11% to 100% improvement over the output of baseline greedy
algorithms. We also examined the question of the optimal “influ-
ence/exploit trade-off” for the two-stage heuristic under different
choices of influence functions.

As a first step towards better display advertising in social net-
works, our work raises many interesting questions: can we develop
algorithms with provable guarantees for synthetic graphs, such as
the well-studied models for social networks? What other restricted
influence models can we study for which we can prove provable
approximation algorithms? What are good ways to learn influence
weights from real data? Can we extend the model to incorporate
multiple advertisers (each having a certain number of impressions)?

Our work suggests that the structure of the (induced) graph be-
tween the target users is a crucial parameter in this model of ‘social
display advertising’. It suggests that the graph structure, used well,
could significantly increase the expected click rate. Running ex-
periments to test this on real advertising platforms is an interesting
direction for future research.
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