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Abstract

In dictionary learning, also known as sparse coding, we are given samples of the form y = Ax
where x ∈ Rm is an unknown random sparse vector and A is an unknown dictionary matrix
in Rn×m (usually m > n, which is the overcomplete case). The goal is to learn A and x.
This problem has been studied in neuroscience, machine learning, vision, and image processing.
In practice it is solved by heuristic algorithms and provable algorithms seemed hard to find.
Recently, provable algorithms were found that work if the unknown feature vector x is

√
n-

sparse or even sparser. [SWW12] did this for dictionaries where m = n; [AGM13] gave an
algorithm for overcomplete (m > n) and incoherent matrices A; and [AAN13] handled a similar
case but with somewhat weaker guarantees.

This raised the problem of designing provable algorithms that allow sparsity �
√
n in the

hidden vector x. The current paper designs algorithms that allow sparsity up to n/poly(log n). It
works for a class of matrices where features are individually recoverable, a new notion identified
in this paper that may motivate further work. The algorithm runs in quasipolynomial time
because it uses limited enumeration.
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1 Introduction

Dictionary learning, also known as sparse coding in neuroscience, tries to understand the structure
of observed samples y by representing them as sparse linear combinations of “dictionary” elements.
More precisely, there is an unknown dictionary matrix A ∈ Rn×m (usually m > n, which is the
overcomplete case), and the algorithm is given samples y = Ax where x is an unknown sparse vector.
(We say a vector is k-sparse if it has at most k nonzero coordinates.) The goal is to learn A and x.
Such sparse representation was first studied in neuroscience, where Olshausen and Field [OF97]
suggested that dictionaries fitted to real-life images have similar properties as the receptive fields
of neurons in the first layer of visual cortex. Inspired by this neural analog, dictionary learning is
widely used in machine learning for feature selection ([AEP06]). More recently the idea of sparse
coding has also influenced deep learning ([BC+07]). In image processing, learned dictionaries
have been successfully applied to image denoising ([EA06]), edge detection ([MLB+08]) and super-
resolution ([YWHM08]). For exposition purposes we refer to the coordinates of the hidden vector
x as features, and those of the visible vector y = Ax as pixels, even though the discussion below
applies more broadly than computer vision.

Provable guarantees for dictionary learning have seemed difficult because the obvious mathe-
matical programming formulation is nonconvex: both A and the x’s are unknown. Even when the
dictionary A is known, it is in general NP-hard to get the sparse combination x given worst-case
y ([DMA97]). This problem of decoding x given Ax with full knowledge of A is called sparse
recovery or sparse regression, and is closely related to compressed sensing. For dictionaries with
special structure, sparse recovery was shown to be tractable even on worst-case y; eg this was shown
for incoherent matrices by [DH01], who required x to be

√
n-sparse. Then Candes et al. [CRT06]

showed how to do sparse recovery even when the sparsity is Ω(n), assuming A satisfies the restricted
isometry property (RIP) (which random matrices do).

But dictionary learning itself (recovering A given samples y) has proved much harder and
heuristic algorithms are widely used. The method in [LS00] was the first, followed by the method
of optimal directions (MOD) ([EAHH99]) and K-SVD ([AEB06]). See [Aha06] for more references.
However, until recently no algorithms were known that provably recover the correct dictionary.
Recently Spielman et al. [SWW12] gave such an algorithm for the full rank case (i.e., m = n) and
the unknown feature vector x is

√
n-sparse. However, in practice overcomplete dictionaries (m > n)

are preferred. Arora et al. [AGM13] gave the first provable learning algorithm for overcomplete
dictionaries that runs in polynomial-time; they required x to be n1/2−ε-sparse (roughly speaking)
and A to be incoherent. Independently, Agarwal et al. [AAN13] gave a weaker algorithm that also
assumes A is incoherent and allows x to be n1/4-sparse. All three papers are inherently unable to
handle sparsity more than

√
n: they require two random x, x′ to intersect in no more than O(1)

coordinates with high probability, which is false whp when sparsity �
√
n. Since sparse recovery

(where A is known) is possible even up to sparsity Ω(n), this raised the question whether dictionary
learning is possible in that regime. In this paper we will refer to feature vectors with sparsity
n/poly(log n) as slightly-sparse. The recent paper on learning deep neural networks ([ABGM13],
Section 7) shows how to solve dictionary learning in the slightly-sparse regime for dictionaries which
are adjacency matrices of random weighted sparse bipartite graphs.

Our result in ([ABGM13]) may seem natural enough since dictionaries corresponding to
weighted sparse random graphs were earlier shown to allow compressed sensing [Ind08, JXHC09,
BGI+08]). But one should beware of defining the goals of dictionary learning –where x is random
and the unknown A corresponds to naturally-occuring features– by analogy to compressed sensing,
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where x is worst-case and A is synthesized by the algorithm designer. Thus the natural question
is whether dictionary learning is possible in the slightly sparse case for classes of dictionaries other
than sparse random graphs (which seems a strong assumption about “nature”).

In this work, we give quasipolynomial-time algorithms (i.e., npoly(logn) time) for the slightly-
sparse case for an interesting class of dictionaries where features are individually recoverable, a
new notion we now introduce.

Some of our discussion below refers to nonnegative dictionary learning, which constrains ma-
trices A and hidden vector x to have nonnegative entries. This is a popular variant proposed by
Hoyer [Hoy02], motivated again partly by the neural analogy. Algorithms like NN-K-SVD ([AEB05])
were then applied to image classification tasks. This version is also related to nonnegative matrix
factorization ([LS99]), which has been observed to lead to factorizations that are usually sparser
and more local than traditional methods like SVD.

1.1 Interesting cases for dictionary learning

Individual recoverability of features means, roughly speaking, that to an observer who knows the
dictionary, the presence of a particular feature should not be confusable with the effects produced
by the usual distribution of other features: xiAi should not be confusable with

∑
j 6=i xjAj . In fact,

should even be able to detect the presence of the ith feature by looking only at the pixels that are
nonzero in Ai. All the above-mentioned works on dictionary learning involve dictionaries with this
property; (see Appendix A for details) but RIP matrices don’t necessarily.

A precise analysis of the above intuitive notion seems difficult (though we hope this will stimulate
further work analogous to Dasgupta’s formalization of separability for gaussian mixtures [Das99]).
Instead we identify other natural definitions that imply it, i.e. are stronger. Roughly speaking,
these require that each column has many significant entries, and that most pairs of columns do not
“overlap much” (though we do not require this for every pair, as we will see).

1.2 Our assumptions

Let us start with some basic notation. The dictionary matrix is denoted A ∈ Rn×m; its jth column

is denoted by Aj , the ith row by A(i), and the i, j entry of A by A
(i)
j . We are given N i.i.d samples

y1, . . . , yN generated as yi = Axi, where each xi ∈ Rm is chosen from the same distribution.
Coordinates of x are called features and those of y are pixels.

Assumptions about x In most of the paper, the unknown vector is assumed for ease of expo-
sition to be drawn iid as a Bernoulli variable with probability ρ of being 1. Our proofs actually
only require the coordinates to be pairwise independent, and

∑
iwixi (for any fixed weights wi’s)

to have have tails that drop fast (a la Bernstein bounds). Nonzero entries of x can also be in [1, c]
instead of being exactly 1, for some constant c which will then come up in the running time. We
can also handle the case in which xi can be 1 with unequal (and unknown) probability, as long as
it is within a constant of ρ.

Let Gτ denote the support of the entries in A that are at least τ in magnitude. We think of it
as a bipartite graph with features on one side and pixels on the other.

Motivation for many large entries. A key assumption for us is that the matrix A has many
significant entries. The rough motivation for this is as follows: suppose we define two dictionaries
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A and Â to be “ε-equivalent”, if for a random vector x drawn from our distribution, Ax and Âx
are entry-wise ε-close with high probability. Then from a practical perspective, it does not matter
if we recovered A or Â (if ε is small enough). To this end, we note that the entries of A that are
< ε2/ log n are not “interesting”. I.e., we can see (by easy Chernoff bounds) that their effect on
each pixel has deviation lower than ε/2 w.h.p., thus for purposes of an ε-approximation such entries
can be zeroed out and their effect mimicked by adding a suitable constant to each entry in the
corresponding rows!

Conditions for Nonnegative case.

By simple scaling one can assume that the expected value of each pixel is 1. Assume σ is a constant
> 0. We now present our conditions formally. The parameters are fixed later in Section 2.

Assumption 1: (Every feature has significant effect on pixels) Each column of A has at least d
entries of magnitude ≥ σ. I.e., the degree of each feature in Gσ is ≥ d.

Assumption 2’: (Low pairwise intersections among features) In Gτ (for a τ which will be < σ),
the intersection of the neighborhoods of any two features is less than κ, where τ = O(1/ log n)
and κ = O(d/ log2 n), as explained below.

In the latter assumption, note that the intersection we allow is much larger than that in a random
graph of degree d (in that case the intersection is d2/n, which is much smaller than κ). This
assumption still seems strong for real life, where one may wish to allow feature pairs to have
constant fraction overlap. Our algorithms work with a weaker assumption that does allow such
overlaps, provided it does not happen for too many pairs of features.

Assumption 2: In Gτ (for a τ which will be < σ) the neighborhood of each feature (that is,

{i ∈ [n] : A
(i)
j ≥ τ}) has intersection up to d/10 (with total weight < dσ/10) with each of

at most o(1/
√
ρ) other features, and intersection at most κ with the neighborhood of each

remaining features. Here τ is O(1/ log n) and κ = O(d/ log2 n).

For ease of exposition, our proofs will work with Assumption 2’, and at the end of Section 3,
we will outline how to work with Assumption 2 instead.
Remark: Assumption 2 is essentially the best possible. For instance, if we allow poly(1/ρ) features
to intersect the neighborhood of feature j using edges of total weight Ω(`1-norm of Aj) then feature
j is could no longer be individually recoverable: its effect can be duplicated w.h.p. by combinations
of these other features. But a more precise characterization of individual recoverability would be
nice, as well as a matching algorithm.

Conditions for case with positive and negative entries

Now the natural normalization is the one that makes the variances of yi’s equal to 1. We assume
that the magnitude of edge weights are at most Λ, and that features do not overlap a lot as
before. We need one additional assumption to bound the variance contributed by the small entries.
Formally, the assumptions are:

Assumption G1: The degree in Gσ of every feature is larger than 2d.
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Assumption G2’: In Gτ , (for a τ < σ), the intersection of the neighborhoods of any two features
j, k is less than κ,where τ = Oθ(1/ log n) and κ = Oθ(d/ log2 n).

Assumption G3: (small entries of A do not cause large deviations) ρ||A(i)
≤τ ||22 ≤ γ, where A

(i)
≤δ

denotes the vector consisting of the entries of A(i) that are at most δ, and γ = σ4/2∆Λ2 logn

where ∆ is a large enough constant.

Note that Assumption G1 differs from Assumption 1 by a constant factor 2 just to simplify some
notation later. Assumption G2’ is the same as before.

The assumption G3 intuitively says that for each yi =
∑

k A
(i)
k xk, the smaller A

(i)
k ’s should not

contribute too much to the variance of yi. This is automatically satisfied for nonnegative dictionaries
in our setting. Notice that this assumption is talking about rows of matrix A (corresponding to
pixels), whereas the earlier assumptions talk about columns of A (corresponding to features).

Comparing with incoherence. Our combinatorial assumptions, though similar in spirit, are
not directly related to incoherence. On the one hand, we require the column entries to be “chunky”,
i.e., have reasonably many significant entries (as motivated below), a seemingly strong assumption.
On the other hand, our requirement on the dot products is quite weak. We only require, roughly,
that |〈Ai, Aj〉|/‖Ai‖‖Aj‖ < 1/ log2 n,1 which is much weaker than n−1/2+ε required in typical results
that solely assume incoherence.

2 Main Results

We will think of σ ≤ 1 as a small constant as in assumption 1. The largest magnitude of edge
weights is Λ ≥ 1, a constant, and ∆ will be a sufficiently large constant that controls the error
guarantee and the other parameters. For convenience, let θ = (σ,Λ,∆). We use the notation Oθ(·)
to hide the dependencies of σ,Λ,∆. Also, we think of ρ as < 1/poly(log n), and d being � n. The
normalization assumption (essentially) implies that mdρ ∈ [n/Λ, n/τ ].

Precisely, for our algorithms to work, we need d ≥ ∆Λ log2 n/σ2, τ = O(σ4/∆Λ2 log n) =
Oθ(1/ log n), κ = O(σ8d/log2 n∆2Λ6) = Oθ(d/ log2 n) (recall ∆ is a large constant), and the density
ρ = o(σ5/Λ6.5 log2.5 n) = oθ(1/ log2.5 n). The main theorem is now the following:

Theorem 1 (Non-negative Case). Under Assumptions 1 and 2, when ρ = oθ(1/ log2.5 n), Algo-

rithm 2 runs in nOθ(log2 n) time, uses poly(n) samples and outputs a matrix Â that is entry-wise
o(ρ)-close to the true dictionary A.2 Furthermore, under Assumptions 1 and 2’ the same algorithm
returns an Â that is entry-wise n−C-close to the true dictionary, using n4C+3 samples, where C is
a large constant controlled by ∆.

Now we move to the general case. In term of parameters, we still need d ≥ ∆Λ log2 n/σ2, and
κ, τ as before, and ∆ to be a large enough constant.

Theorem 2 (General Case). Under Assumptions G1, G2’ and G3, when ρ = o(σ5/Λ6.5 log2.5 n) =

oθ(1/ log2.5 n) there is an algorithm that runs in nO(∆Λ log2 n/σ2) time, uses n4C+5m samples and
outputs Â that is entry-wise n−C-close to the true dictionary A, where C is a constant depending
on ∆.

1Even here, we allow exceptions.
2It also turns out to be “o(ρ)-equivalent” to A, as defined in the motivation earlier.
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Section 3 presents the algorithm for nonnegative dictionaries and serves to illustrate our algo-
rithmic ideas. The case of general dictionaries (Theorem 2) is then sketched in Section 4. Details
are in the appendix.

A few months after the preliminary version of this paper, Barak et al. have informed us (personal
communication) that they have improved upon the results here using semidefinite programming.

3 Nonnegative Dictionary Learning

Let us start with a rough outline of the algorithm. Recall that the difficulty in dictionary learning is
that both A and x are unknown. To get around this problem, previous works (e.g. [AGM13]) try to
extract information about the assignment x without first learning A (but assuming nice properties
of A). After finding x, recovering A becomes easy. In [AGM13] the unknown x’s were recovered
via an overlapping clustering procedure. The procedure relies on incoherence of A, as when A is
incoherent it is possible to test whether the support of x1, x2 intersect. This idea fails when x is
only slightly sparse, because in this setting the supports of x1, x2 always have a large intersection.

3.1 Outline of our algorithm

Our algorithm instead relies on correlations among pixels. The key observation is as follows: if the
jth bit in x is 1, then Ax = Aj +

∑
k 6=j Akxk. Pixels with high values in Aj tend to be elevated

above their mean values (recall A is nonnegative). At first it is unclear how this elevation can
be spotted, since Aj is unknown and these elevations/correlations among pixels are much smaller
than the standard deviation of individual pixels. Therefore we look for subsets of pixels that are
jointly elevated (in terms of the sum of pixel values). For every feature, we define signature sets
(Definition 1), that help us identify when xj = 1. That is, if the pixles in a signature set are jointly
elevated, then with good probability, it must be because feature xj is present in the image.

Our assumptions will imply the existence of signature sets of polylogarithmic size. Thus in
quasi-polynomial time we can afford to enumerate all sets of that size, and check if the pixels in
these sets are likely to be elevated together. However there can be many sets – called correlated
sets below – that could be elevated together, but not all of them are signature sets for some feature.
The challenge is thus to separate signature sets from other correlated sets.

This leads to the next idea: try to expand a correlated set. If it happens to be a signature set
for some feature xj , then we obtain a set of size d (which is� polylog(n), and hence could not have
been found by exhaustive guessing) that still behaves like a signature set. The key to the analysis is
to prove that expanded sets look different for signature sets as compared to other correlated sets.

Once we find expanded sets with this ‘signature like’ property, and we can get a rough estimate
for the matrix A. Then, using the individually recoverable properties of the features, we can refine
the solution to be inverse polynomially close to the true dictionary.

The overall algorithm is described at the end of Section 3; the concepts such as correlated sets,
and empirical bias are defined below. It has three main steps. Section 3.2 explains how to test for
correlated sets and expand a set (steps 1-2 in the algorithm); Section 3.3 shows how to identify
expansions of signature sets and use it to roughly estimate A (steps 3-6); finally Section 3.4 shows
how to refine the solution and get Â that is inverse polynomially close to A (steps 7-10).

6



3.2 Correlated Sets, Signature Sets and Expanded Sets

We consider a set of pixels T of size t = Ω(poly log n) (to be specified later), and denote by βT the
random variable representing the sum of all pixels in T , i.e., βT =

∑
i∈T yi. We can expand βT as

βT =
∑
i∈T

yi =
∑
i∈T

 m∑
j=1

A
(i)
j xj

 =
m∑
j=1

(∑
i∈T

A
(i)
j

)
xj .

Let βj,T =
(∑

i∈T A
(i)
j

)
be the contribution of xj to the sum βT , then βT is just

βT =
m∑
j=1

βj,Txj (1)

Note that by the normalization of E[yi], we have E[βT ] =
∑

i∈T E[yi] = t. Intuitively, if for all
j, βj,T ’s are relatively small, βT should concentrate around its mean. On the other hand, if there
is some j whose coefficient βj,T is significantly larger than other βk,T , then βT will be elevated by
βj,T precisely when xj = 1. That is, with probability roughly ρ (corresponding to when xj = 1),
we should observe βT to be roughly βj,T larger than its expectation.

This motivates the definition of signature sets, which have only one large value βk,T .

Definition 1 (Signature Set). A set of pixels T of size t is a signature set for the feature xj, if
βj,T ≥ σt, and for all k 6= j, the contribution βk,T ≤ σ2t/∆ logn. Here ∆ is a large enough constant.

The following lemma formalizes the earlier intuition that if T is a signature set for xj , then a
large βT is highly correlated with the event xj = 1.

Lemma 3. Suppose T of size t is a signature set for feature xj with t = ω(
√

log n). Let E1 be
the event that xj = 1 (feature is on) and E2 be the event that βT ≥ E[βT ] + 0.9σt (signature is
observed). Then for large constant C (depending on the ∆ in Definition 1)

1. Pr[E1] + n−2C ≥ Pr[E2] ≥ Pr[E1]− n−2C .

2. Pr[E2|E1] ≥ 1− n−2C , and Pr[E2|Ec1] ≤ n−2C .

3. Pr[E1|E2] ≥ 1− n−C .

Proof. (Sketch) We can write βT as βT = βj,Txj +
∑

k 6=j βk,Txk. The idea is that the summation
in the RHS above is highly concentrated around its mean, which is roughly t. Note that it is a sum
of independent variables with maximum value M = σ2t/(∆ log n), by the definition of signature
sets. Thus the variance ρ

∑
k 6=j β

2
k,T is bounded by Mρ

∑
k 6=j βk,T ≤ Mt. Then by Bernstein’s

inequality this sum is 0.1σt-close to its mean with high probability. Therefore since βj,T > σt, we
know βT > t+ 0.9σt essentially iff xj = 1. A formal proof can be found in Appendix B.1.

Thus if we can find a signature set for xj , we would roughly know the samples in which xj = 1.
The following lemma shows that assuming a low pairwise overlap among features, there exists a
signature set for every feature xj .

Lemma 4. Suppose A satisfies Assumptions 1 and 2, let t = Ω(Λ∆ log2 n/σ2), then for any feature
j ∈ [n], there exists a signature set of size t for xj.
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The proof is by the probabilistic method, noting that each xj has at least d neighbors in Gσ,
and then using Assumption 2’. See Appendix B.2 for the full proof.

Although signature sets exist for all xj , it is difficult to find them; even if we enumerate all
subsets of size t, it is not clear how to know when we found a signature set. Thus we first look for
“correlated” sets, which are defined as follows:

Definition 2 (Correlated Set). A set of pixels T of size t is called correlated, if with probability at
least ρ− 1/n2 over the choice of x’s, βT ≥ E[βT ] + 0.9σt = t+ 0.9σt.

It follows easily (Lemma 3) that signature sets must be correlated sets. However, the other
direction is far from true. There can be many correlated sets that are not signature sets . A simple
counterexample would be that there are j and j′ such that both βj,T and βj′,T are larger than σt.
This kind of counterexample seems inevitable for any test on a set T of polylogarithmic size.

To overcome this, we expand the correlated set T into T̃ of size d. Using these larger sets, we
will see how to find signature sets. Algorithm 1 and Definition 3 show how to expand T to T̃ . The
quantity Ê[f(y)] denotes the “empirical expectation” of f(y), i.e., 1

N

∑N
i=1 f(yi).

Algorithm 1 T̃ = expand(T , threshold)

Input: Correlated set T , d, and N samples
{
y1, . . . , yN

}
Output: vector ÃT ∈ Rn and expanded set T̃ of size d

1: Let L be the set of samples whose βT values are larger than Ê[βT ] + threshold

L =
{
yk | βkT ≥ Ê[βT ] + threshold

}
(here βkT is the value of βT in sample yk)

2: Estimation Step: Compute empirical mean in L, and obtain ÃT

Ê
L

[y] =
1

|L|

∑
yk∈L

yk

 , and ÃT (i) = max{0, (Ê
L

[yi]− Ê[yi])/(1− ρ)}

3: Expansion Step: T̃ = {d largest coordinates of ÃT }

Definition 3. For any set of pixels T of size t, the expanded set T̃ for T is defined as the one
output by the procedure expand(T, 0.9σt) (Algorithm 1). The estimation ÃT is the output at step 2.

When T is a signature set for xj , it turns out that ÃT is close to the true Aj , and the expanded
set T̃ is essentially the set of largest entries of Aj .

Lemma 5. If T is a signature set for xj and the number of samples N = Ω(n2C/ρ3), where δ is
any positive constant, then with high probability ||ÃT −Aj ||∞ ≤ 1/nC .

The proof uses Lemma 3 to conclude that L will almost precisely be the samples in which
xj = 1, which then implies the bound. See appendix B.3 for the details.

3.3 Using Expanded Sets

We will now see the advantage that the expanded sets T̃ provide. If T happens to be a signature
set, the expanded set T̃ for T also has similar property (defined below). But now T̃ is a much larger
set (size d as opposed to polylog(n)), so Assumption 2’ will imply that if we see a large elevation
it is much more likely to be caused by a single feature.
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Definition 4 (Weak signature property). An expanded set T̃ is said to have a weak signature
property for xj if βj,T̃ ≥ 0.7σd and for all k 6= j, βk,T̃ ≤ 0.3σd.

Note that the weak signature property only requires a constant gap between largest βj,T and
the second largest one, as opposed to logarithmic in the definition of signature sets. We now have
the following:

Lemma 6. If T is a signature set for xj, then the expanded set T̃ has the weak signature property
for xj. In fact, we have βj,T̃ ≥ 0.9σd.

The proof proceeds by combining Lemma 5, which implies that T̃ contains almost all the d large
neighbors of xj (thus βj,T̃ is large), and Assumption 2’, which gives that for k 6= j, βk,T̃ should
be small. See Section B.4 for the details. We now introduce a key notion that helps us identify
signature sets. It is a precise way to measure simultaneous elevation of coordinates in T̃ .

Definition 5 (Empirical Bias). The empirical bias B̂T̃ of an expanded set T̃ is defined to be the
largest B that satisfies ∣∣∣{k ∈ [N ] : βk

T̃
≥ Ê[βT̃ ] +B

}∣∣∣ ≥ ρN/2.
In other words, B̂T̃ is the difference between the ρN/2-th largest βk

T̃
in the samples and Ê[βT̃ ].

It will turn out that the bias of T̃ is roughly equal to the largest βj,T̃ . The key lemma is now
that the expanded set with largest empirical bias must have the weak signature property for some
xj . This immediately lets us estimate the column Aj to a good accuracy, which we then “subtract
off” and iteratively estimate columns.

Lemma 7. Let T̃ ∗ be the set with largest empirical bias B̂T̃ ∗ among all the expanded sets T̃ . Then

T̃ ∗ has the weak signature property for some xj.

The lemma is proved in multiple steps. The first is to show that the bias of T̃ is roughly equal
to the largest βj,T̃ . If βT̃ contains a large term βj,T̃xj , then certainly this term will contribute to

the bias B̂T̃ ; on the other hand, suppose for instance that βT̃ has precisely two non-zero terms
βj,T̃xj + βk,T̃xk. Then they cannot contribute more than max{βj,T̃ , βk,T̃ } to the bias, because
otherwise both xk and xj have to be 1 to make the sum larger than max{βj,T̃ , βk,T̃ }, and this only

happens with probability ρ2 � ρ/2.
The intuitive argument above is not far from true: basically we will show that (a) there are very

few large coefficients βk,T̃ (see Claim 8 for the precise statement), and (b) the sum of the terms
with small βk,T̃ concentrates around its mean, thus will not contribute much to the bias.

After relating the bias of T̃ to the largest coefficients maxj βj,T̃ , we will argue that taking the

set T̃ ∗ with largest bias among all the T̃ , we not only see a large coefficient βj,T̃ , but we also see a
gap between the the top βj,T̃ and other βk,T , thus establishing the weak signature property for xj .

We make the arguments above precise by the following claims. First, we shall show there cannot
be too many large coefficients βj,D for any set D of size d

Claim 8. For any set of pixels T̃ of size d, the number of features k such that βk,T̃ is larger than

dσ4/∆Λ2 logn is at most O(∆Λ3 log n/σ4).
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Each large βk,T̃ implies that the neighborhood of xk has a large intersection with T̃ . Therefore
many such large βk,T̃ implies there are k, k′ whose neighborhoods have a large intersection, which
contradicts assumption 2. See the formal proof in Appendix B.6.

Let us define k∗ = arg maxk βk,T̃ . The next claim shows that the empirical bias B̂T̃ is a good
estimate of βk∗,T̃ when βk∗,T̃ is large.

Claim 9. For any expanded T̃ of size d, with high probability over the choices of all the N samples,
the empirical bias B̂T̃ is within 0.1dσ2/Λ to βk∗,T̃ = maxk βk,T̃ when βk∗,T̃ is at least 0.5dσ.

The idea is to show that the empirical bias is determined by the samples in which xk∗ =
1. Roughly speaking, this is because the small βk,T do not contribute to the bias (because of
concentration bounds), and there are only a few large βk,T by the earlier claim, so the probability
that two such xk are 1 is � ρ/2. See Appendix B.5 for a formal proof.

Now we are ready to prove Lemma 7.

Proof of Lemma 7. By Claim 9 and Lemma 6, we know the maximum bias is at least 0.8σd. Apply
Claim 9 again, we know for the set T̃ ∗ that has largest bias, there must be a feature j with
βj,T̃ ∗ ≥ 0.7σd.

For the sake of contradiction, let us assume that this T̃ ∗ does not have the weak signature
property. Then there must be some k 6= j where βk,T̃ ∗ ≥ 0.3σd. Let Qj and Qk be the set of nodes

in T̃ ∗ that are connected to j and k in Gτ (these are the same Q’s as in the proof of Claim 8). We
know |Qj ∩Qk| ≤ κ by assumption, and |Qk| ≥ 0.3σd/Λ. This implies that |Qj | ≤ d−0.3σd/Λ+κ.

Now let T ′ be a signature set for xj , and let T̃ ′ be its expanded set. From Lemma 5 we know βj,T̃ ′

is almost equal to the sum of the d largest entries in Aj , which is at least 0.2σ2d/Λ larger than βj,T̃ ∗ ,

since |Qj | ≤ d−0.2σd/Λ. By Claim 9 we know B̂(T̃ ′) ≥ βj,T̃ ′−0.1σ2d/Λ > βj,T̃ ∗+0.1σ2d/Λ ≥ B̂(T̃ ),

which contradicts the assumption that T̃ ∗ is the set with max bias.

We now show that having a set T̃ with a weak signature property for xj allows us to obtain a
good estimate for the column Aj using the procedure expand() (Algorithm 1).

Lemma 10. Suppose T̃ has the weak signature property for xj, and let ÃT̃ be the column output

by expand(T̃ , 0.6σd), then with high probability ‖ÃT̃ −Aj‖∞ ≤ O(ρ(Λ3 log n/σ2)2
√

Λ log n) = o(σ).

The lemma is very similar to the Lemma 5 for signature sets, and is proved using a similar idea
(see Appendix B.7). However, the main advantage is that it helps us recover all the significant
entries in the column Aj ! We will now use this to iteratively find other columns.

Suppose we estimated k columns. For simplicity, assume the estimates we obtained are for
the first k columns (call the estimates Ã1, Ã2, . . . , Ãk). Since they are close to A1, A2, . . . , Ak
respectively, for any expanded set T̃ , we can estimate β̂j,T̃ up to an additive o(σd), for any 1 ≤ j ≤ k.
We now have the following:

Lemma 11. Suppose we estimated the first k columns as Ãi, each entry correct up to an additive
o(σ) error. Let T̃ be the set with largest empirical bias among the expanded sets that have β̂j,T̃ <

0.2σd for all j ≤ k. Then T̃ has the weak signature property for some xj with j > k.

The proof is almost identical to that of Lemma 7 (see Appendix B.9).
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3.4 Refining an Approximate Dictionary

Repeatedly finding columns as above, we obtain estimates Ãj of all the columns Aj that are entry-
wise o(σ) close. We will now see how to refine this solution to obtain dictionaries that are entry-wise
ε-close for very small ε. The key is to look at all the large entries in the column Aj , and use them
to identify whether feature xj is 1 or 0.

Lemma 12. Let Sj be the set of all entries larger than σ/2 in Ãj, then |Sj | ≥ d, βj,Sj ≥ (0.5 −
o(1)) |Sj |σ, and for all k 6= j βk,Sj ≤ σ2 |Sj | /∆ log n where ∆ is a large enough constant.

This follows directly from the assumptions (see Appendix B.8).
We can now prove the main theorem.

Proof of Theorem 1. Since Sj has a unique large coefficient βj,Sj , and the rest of the coefficients

are much smaller, when ∆ is large enough, and N ≥ n4C+δ/ρ3 we have that Âj is entry-wise
n−2C/ log n close to Aj (this is using the same argument as in Lemma 5), and this completes the
proof of the theorem.

This completes the description of the algorithm, and the proof of (the second part of) Theorem 1.
We formally write down the algorithm below (Algorithm 2).

Algorithm 2 Nonnegative Dictionary Learning

Input: N samples
{
y1, . . . , yN

}
generated by yi = Axi. Unknown dictionary A satisfies Assump-

tions 1 and 2.
Output: Â that is n−C close to A

1: Enumerate all sets of size t = O(Λ log2 n/σ4), keep the sets that are correlated.
2: Expand all correlated sets T , T̃ = Expand(T, 0.9σt).
3: for j = 1 TO m do
4: Let T̃j be the set with largest empirical bias, and ∀k < j, β̂k,T̃ =

∑
i∈T ÃT̃k(i) ≤ 2dσ.

5: Let ÃT̃k be the result of estimation step in Expand(T̃ , 0.6σd).
6: end for
7: for j = 1 TO m do
8: Let Sj be the set of entries that are larger than σ/2 in ÃT̃j
9: Let Âi be the result of estimation step in Expand(Sj , 0.4σ |Sj |)

10: end for

3.5 Working with Assumption 2

In order to assume Assumption 2 instead of 2’, we need to change the definition of signature sets
to allow o(1/

√
ρ) “moderately large” (σt/10) entries. This makes the definition look similar to

the weak signature property. Such signature sets still exist by similar probabilistic argument as in
Lemma 4. Lemma 6 and Claims 8 and 9 can also be adapted.

Finally, in the proof of Theorem 1, the guarantee will be weaker (there can be o(1/
√
ρ) moder-

ately large coefficients). The algorithm will only estimate xj incorrectly if at least 6 such coefficients
are “on” (has the corresponding xj being 1), which happens with less than o(ρ3) probability. By
argument similar to Lemma 5, we get the first part of Theorem 1.

11



4 General Case

We show that with minor modifications, our algorithm and its analysis can be adapted to the
general case in which the matrix A can have both positive and negative entries (Theorem 2).

We follow the outline from the non-negative case, and look at sets T of size t. The quantities
βT and βj,T are defined exactly the same as in Section 3.2. Additionally, let νT be the standard
deviation of βT , and let ν−j,T be the standard deviation of βT − βj,Txj . That is,

ν2
−j,T = V[βT − βj,Txj ] = ρ

∑
k 6=j

β2
k,T .

The definition of signature sets requires an additional condition to take into account the standard
deviations.

Definition 6 ((General) Signature Set). A set T of size t is a signature set for xj, if for some large
constant ∆, we have: (a) |βj,T | ≥ σt, (b) for all k 6= j, the contribution |βk,T | ≤ σ2t/(∆ log n), and
additionally, (c) ν−j,T ≤ σt/

√
∆ log n.

In the nonnegative case the additional condition ν−j,T ≤ σt/
√

∆ log n was automatically implied
by nonnegativity and scaling. Now we use Assumption G3 to show there exist T in which (c) is
true along with the other properties. To do that, we prove a simple lemma which lets us bound
the variance (the same lemma is also used in other places).

Lemma 13. Let T be a set of size t and S be an arbitrary subset of features, and consider the
sum βS,T =

∑
j∈S βj,Txj. Suppose for each j ∈ S, the number of edges from j to T in graph Gτ is

bounded by W . Then the variance of βS,T is bounded by 2tW + 2t2γ.

Proof. (Sketch) The idea is to split the weights A
(i)
j into the big and small ones (threshold being

τ). Intuitively, on one hand, the contribution to the variance from large weights is bounded above
because the number of such large edges in bounded by W . On the other hand, by assumption
(3), the total variance of small weights is less than γ, which implies that the contribution of small
weight to the variance is also bounded. A full proof can be found in Section D.1.

Lemma 14. Suppose A satisfies our assumptions for general dictionaries, and let t = Ω(Λ∆ log2 n/σ2).
Then for any j ∈ [n], there exists a general signature set of size t for node xj (as in Definition 6).

The proof is very similar to that of Lemma 4, which uses probabilistic method. We defer the
proof to Appendix D.2.

The proof of Lemma 3 now follows in the general case (here we will use the variance bound
(c) in the general definition of signature sets), except that we need to redefine event E2 to handle
the negative case. For completeness, we state the general version of Lemma 3 in Appendix C. As
before, signature sets give a very good idea of whether xj = 1.

Let us now define correlated sets: here we need to consider both positive and negative bias

Definition 7 ((General) Correlated Set). A set T of size t is correlated, if either with probability
at least ρ − 1/n2 over the choice of x’s, βT ≥ E[βT ] + 0.8σt, or with probability at least ρ − 1/n2,
βT ≤ E[βT ]− 0.8σt.
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Starting with a correlated set (a potential signature set), we expand it similar to (Definition 3),
except that we find T̃ as follows:

T̃temp = {2d coordinates of largest magnitude in ÂT }, T̃1 = {i ∈ T̃temp : ÂT ≥ 0}

T̃ =

{
T̃1 if |T1| ≥ d

T̃temp \ T̃1 otherwise

Our earlier definitions of the weak signature property and bias can also be adapted naturally:

Definition 8 ((General) Weak Signature Property). An expanded set T̃ is said to have the weak
signature property for xj if |βj,T̃ | ≥ 0.7σd and for all k 6= j, |βk,T̃ | ≤ 0.3σd.

Since Lemma 5 still holds, Lemma 6 is straightforward. That is, there always exists an expanded
set T̃ with the general weak signature property, that is produced by a set T of size t = Oθ(log n2).
(We use the fact that Gσ has degree at least 2d)

Definition 9 ((General) Empirical Bias). The empirical bias B̂T̃ of an expanded set T̃ of size d is
defined to be the largest B that satisfies∣∣∣{k ∈ [p] :

∣∣∣βk
T̃
− Ê[βT̃ ]

∣∣∣ ≥ B}∣∣∣ ≥ ρN/2.
In other words, B̂T̃ is the difference between the ρN/2-th largest βk

T̃
in the samples and Ê[βT̃ ].

Let us now intuitively describe why the analog of Lemma 7 holds in the general case. The
formal statement and the proof can be found in Appendix C

1. The first step, Claim 8 is a statement purely about the magnitudes of the edges (in fact,
cancellations in βk,T̃ for k 6= j only help our case).

2. The second step, Claim 9 essentially argues that the small βk,T̃ do not contribute much to the
bias (a concentration bound, which still holds due to Lemma 13), and that the probability of
two “large” features j, j′ being on simultaneously is very small. The latter holds even if the
βj,T̃ have different signs.

3. The final step in the proof of Lemma 7 is an argument which uses the assumption on the
overlap between features to contradict the maximality of bias, when βj,T̃ and βj′,T̃ are both
“large”. This only uses the magnitudes of the entries in A, and thus also follows.

Recovering an approximate dictionary. The main lemma in the nonnegative case, which
shows that Algorithm 1 roughly recovers a column, is Lemma 10. The proof uses the property that
expanded sets with the weak signature property are elevated “almost iff” the xj = 1 to conclude
that we get a good approximation to one of the columns. We have seen that this also holds in the
general case, and since the rest of the argument deals only with the magnitudes of the entries, we
conclude that we can roughly recover a column also in the general case. Let us state this formally.

Lemma 15. Suppose an expanded set T̃ has the weak signature property for xj, and ÃT̃ is the
corresponding column output by Algorithm 1. Then with high probability,

‖ÃT̃ −Aj‖∞ ≤ O(ρ(Λ3 log n/σ2)2
√

Λ log n) = o(σ).

Proof of Theorem 2. Once we have all the entries which are > σ/2 in magnitude, we can use the
refinement trick of Lemma 12 to conclude that we can recover the entries up to a much higher
precision. The argument is very similar to Lemma 5.
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A Individual Recoverability of features

All the recent works on dictionary learning mentioned in the introduction use assumptions that
imply individual recoverability. The papers of [AGM13] and [AAN13] assume that the columns
of A are incoherent, i.e., they have pairwise inner product at most µ/

√
n where µ is small (about

poly(log n)). In such matrices, the features are individually recoverable since ATA ≈ I, so given
Ax one can take its inner product with the ith column Ai to roughly determine the extent to which
feature i is present. So also, dictionaries corresponding to sparse random graphs with random
edges weights in [−1, 1] (handled in [ABGM13]) also have sparse, individually recoverable features.
However, the learning algorithm there requires strong random-like assumptions on the graph.
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B Full Proofs from Section 3

In this section we give the full proofs of lemmas and theorems from Section 3.

B.1 Proof of Lemma 3

We can write βT as

βT = βj,Txj +
∑
k 6=j

βk,Txk (2)

Formally, observe that E[βj,Txj ] = ρβj,T ≤ ρΛt = o(σt), and recall that E[βT ] = t, we have

E[
∑

k 6=j βk,Txk] = (1 − o(σ))t. Let M = σ2t/(∆ log n) be the upper bound for βk,T , and then the
variance of the sum

∑
k 6=j βk,Txk is bounded by ρM

∑
k 6=j βk,T ≤ Mt. Then by calling Bernstein

inequality (see Theorem 20, but note that σ there is the standard deviation), we have

Pr

∣∣∣∣∣∣
∑
k 6=j

βk,Txk − E[
∑
k 6=j

βk,Txk]

∣∣∣∣∣∣ > σt/20

 ≤ 2 exp(− σ2t2/400

2Mt+ 2
3

M√
Mt
σt/20

) ≤ n−2C .

where C is a large constant depending ∆.
Part (2) immediately follows: if xj = 1, then βT < t + 0.9σt iff the sum deviates from its

expectation by more than σt/20, which happens with probability < n−2C . So also if xj = 0, E2

occurs with probability < n−2C .
This then implies part (1), since the probability of E1 is precisely ρ.
Combining the (1) and (2), and using Bayes’ rule Pr[E1|E2] = Pr[E2|E1] Pr[E1]/Pr[E2], we

obtain (3).

B.2 Proof of Lemma 4

We show the existence by probabilistic method. By Assumption 1, node xj has at least d neighbors
in Gσ. Let T be a uniformly random set of t neighbors of xj in Gσ. Now by the definition of Gσ
we have βj,T ≥ σt.

Using a bound on intersection size (Assumption 2’) followed by Chernoff bound, we show that
T is a signature set with good probability. For k 6= j, let fk,T be the number of edges from xk to T
in graph Gτ . Then we can upperbound βk,T by tτ + fk,TΛ since all edge weights are at most Λ and
there are at most fj,T edges with weights larger than τ . Using simple Chernoff bound and union
bound, we know that with probability at least 1 − 1/n, for all k 6= j, fk,T ≤ 4 log n. Therefore
βk,T ≤ tτ + fk,TΛ ≤ σ2t/(∆ log n) for t ≥ Ω(Λ∆ log2 n/σ2), and τ = O(σ2/∆ logn).

B.3 Proof of Lemma 5

Let us first consider E[ÃT ] , (E[y|E2] − 1)/(1 − ρ) where E2 is the event that βT ≥ t + 0.9σt

defined in Lemma 3. Recall that because of normalization, we know for any j,
∑

i∈[n]A
(i)
j =

1/ρ, so in particular yi ≤ 1/ρ. By Lemma 3 and some calculations (see Lemma 18), we have
that |E[y|E2] − E[y|E1]|∞ ≤ n−C . Note that E[y|E1] = 1 + (1 − ρ)Aj . Therefore we have that
|E[ÃT ]−Aj |∞ ≤ n−C .

16



B.4 Proof of Lemma 6

Since we know there are at least d weights A
(i)
j bigger than σ for any column Aj , by Lemma 5 we

know βj,T̃ ≥ σd− o(1)d ≥ 0.9σd.

Furthermore, Lemma 5 says xj connects to every node in T̃ with weights larger than 0.9σ (since
by Assumption 1 there are more than d edges of weight at least σ from node j). By Assumption
2 on the graph, for any other k 6= j, the number of yi’s that are connected to both k and j in
Gτ is bounded by κ. In particular, the number of edges from k to T̃ with weights more than τ

is bounded by κ. Therefore the coefficient βk,T̃ =
∑

(i,k)∈Gτ A
(i)
k +

∑
(i,k)6∈Gτ A

(i)
k is bounded by

Λκ+ |T̃ |τ = o(d) ≤ 0.3d. (Recall τ = o(1) and κ = o(d))

B.5 Proof of Claim 9

Let K ′large = Klarge \ {k∗} 3, and βsmall,T̃ =
∑

k 6∈Klarge βk,T̃xk, and βlarge,T̃ =
∑

k∈K′large
βk,T̃xk.

First of all, the variance of βsmall,T̃ is bounded by ρ
∑

k 6∈Klarge β
2
k,T̃
≤ dσ4/∆Λ2 logn·

(
ρ
∑

k 6∈Klarge βk,T̃

)
≤

d2σ4/∆Λ2 logn. By Bernstein’s inequality, for sufficiently large ∆, with probability at most 1/n2 over
the choice of x, the value |βsmall,T̃ − E[βsmall,T̃ ]| is larger than 0.05dσ2/Λ, that is, βsmall,T̃ nicely
concentrates around its mean. Secondly, with probability at most ρ we have xk∗ = 1 , and then
βk∗,T̃xk∗ is elevated above its mean by roughly βk∗,T̃ . Thirdly, the mean of βlarge,T̃ is at most
ρ
∑

k∈K′large
βk,T̃ ≤ ρ|K|d, which is o(σd) by Claim 8. These three points altogether imply that

with probability at least ρ − n−2, βT̃ is above its mean by βk∗,T̃ − 0.1σ2d/Λ. Also note that the

empirical mean Ê[βT̃ ] is sufficiently close to the βT̃ with probability 1−exp(−Ω(n)) over the choices
of N samples, when N = poly(n). Therefore with probability 1 − exp(−Ω(n)) over the choices of
N samples, B̂T̃ > βk∗,T̃ − 0.1σ2d/Λ.

It remains to prove the other side of the inequality, that is, B̂T̃ ≤ βk∗,T̃ + 0.1σ2d/Λ.

Note that |Klarge| = O(log n), thus with probability at least 1 − 2ρ2|K|2, at most one of the
xk, (k ∈ Klarge) is equal to 1. Then with probability at least 1 − 2ρ2|K|2 over the choices of x,
βlarge,T̃ + βk∗,T̃ is elevated above its mean by at most βk∗,T̃ . Also with probability 1 − n−2 over

the choices of x, βsmall,T̃ is above its mean by at most 0.1σ2d/Λ. Therefore with probability at

least 1 − 3ρ2|K|2 over the choices of x, βT̃ is above its mean by at most βk∗,T̃ + 0.1σd/Λ. Hence

when 3ρ2|K|2 ≤ ρ/3, with probability at least 1 − exp(−Ω(n)) over the choice of the N samples,
B̂T̃ ≤ βk∗,T̃ + 0.1σ2d/Λ. The condition is satisfied when ρ ≤ c/ log2 n for a small enough constant
c.

B.6 Proof of Claim 8

For the ease of exposition, we define Klarge = {k : βk,T̃ ≥ dσ4/∆Λ2 logn}. Hence the goal is

to prove that |Klarge| ≤ O(∆Λ3 log n/σ4). Recall that βk,T̃ =
∑

i∈T̃ A
(i)
k . Let Qk = {i ∈ T̃ :

A
(i)
k ≥ τ} be the subset of nodes in T̃ that connect to k with weights larger than τ . We have

that βk,T̃ =
∑

i 6∈Qk A
(i)
k +

∑
i∈Qk A

(i)
k . The first sum is upper bounded by dτ ≤ dσ4/2∆Λ2 logn.

Therefore for k ∈ Klarge, the second sum is lower bounded by dσ4/2∆Λ2 logn. Since A
(i)
k ≤ Λ, we

3Klarge is defined in proof of Claim 8
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have |Qk| ≥ σ4d/2∆Λ3 logn. We will use this, along with a bound on |Qk ∩Qk′ | to bound the size of
Klarge.

By Assumption 2’ we know in graph Gτ , any two features cannot share too many pixels:
for any k and k′, |Qk ∩Qk′ | ≤ κ. Also note that by definition, Qj ⊂ T̃ , which implies that
| ∪k∈Klarge Qk| ≤ |T̃ | = d. By inclusion-exclusion we have

d ≥ |
⋃

k∈Klarge

Qk| ≥
∑

k∈Klarge

|Qk|−
∑

k,k′∈Klarge

|Qk ∩Qk′ | ≥ |Klarge|σ4d/2∆Λ3 logn−|Klarge|2/2 ·κ (3)

This implies that |Klarge| ≤ O(∆Λ3 log n/σ4), when κ = O(σ8d/∆2Λ6 log2 n). 4

B.7 Proof of Lemma 10

Define E1 to be the event that xj = 1, and E2 to be the event that βT̃ ≥ 0.6dσ.
When E1 happens, event E2 always happen unless βT̃ ,small is far from its expectation. In the

proof of Claim 9 we’ve already shown the number of such samples is at most n with very high
probability.

Suppose E2 happens, and E1 does not happen. Then either βT̃ ,small is far from its expectation,

or at least two xj ’s with large coefficients βj, T̃ ’s are on. Recall by Claim 8 the number of xj ’s
with large coefficients is |K| ≤ O(Λ3 log n/σ2), so the probability that at least two large coefficient
is “on” (with xj = 1) is bounded by O(ρ2 · |K|2) = ρ ·O(ρΛ6 log2 n/σ4) = ρ · o(σ/

√
Λ log n). With

very high probability the number of such samples is bounded by ρN · o(σ/
√

Λ log n).
Combining the two parts, we know the number of samples that is in E1 ⊕ E2 (the symmetric

difference between E1 and E2) is bounded by ρN · o(σ/
√

Λ log n). Also, with high probability
(1−n−C) all the samples have entries bounded by O(

√
Λ log n) by Bernstein’s inequality (variance

of yi is bounded by
∑

j ρ(A
(i)
j )2 ≤ maxj A

(i)
j

∑
j ρA

(i)
j ≤ Λ). Notice that this is a statement of the

entire sample independent of the set T , so we do not need to apply union bound over all expanded
signature sets.

Therefore by Lemma 18

‖ÃT̃ −Aj‖∞ ≤ o(σ/
√

Λ log n) ·O(
√

Λ log n) = o(σ).

B.8 Proof of Lemma 12

This follows directly from the assumptions. By Assumption 1, there are at least d entries in Aj
that are larger than σ, all these entries will be at least (1− o(1))σ in ÃT̃j , so |Sj | ≥ d.

Also, since for all i ∈ Sj , ÃT̃j (i) ≥ 0.5σ, we know Aj(i) ≥ 0.5σ − o(σ), hence βj,Sj ≥ (0.5 −
o(1)) |Sj |σ.

By Assumption 2, for any k 6= j, the number of edges in Gτ between k and Sj is bounded by
κ, so βk,Sj ≤ τ |Sj |+ κΛ ≤ σ2 |Sj | /∆ log n.

4Note that any subset of Klarge also satisfies equation (3), thus we don’t have to worry about the other range of
the solution of (3)
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B.9 Proof of Lemma 11

First, if T is a signature set of xj where j > k, then by Lemma 6 T̃ must satisfy β̂j,T̃ < 0.2σd, so
it will compete for the set with largest empirical bias.

Also, since β̂j,T̃ < 0.2σd, we know the coefficients in βj,T̃ must have j > k. Leveraging this
observation in the proof of Lemma 7 gives the result.

C Detailed Lemmas from Section 4

Lemma 16 (General Version of Lemma 3). Suppose T of size t is a general signature set for xj
with t = ω(

√
log n). Let E1 be the event that xj = 1 and E2 be the event that βT ≥ E[βT ] + 0.9σt if

βj,T ≥ σt, and the event βT ≤ E[βT ]− 0.9σt if βj,T ≤ −σt. Then for large constant C (depending
on ∆)

1. Pr[E1] + n−2C ≥ Pr[E2] ≥ Pr[E1]− n−2C .

2. Pr[E2|E1] ≥ 1− n−2C , and Pr[E2|Ec1] ≤ n−2C .

3. Pr[E1|E2] ≥ 1− n−C .

Proof. It is a straightforward modification of the proof of Lemma 3. First of all, |E[βj,Txj ]| =
o(σt),and thus mean of

∑
k 6=j βk,Txk only differs from that of βT by at most o(σt). Secondly,

Bernstein inequality requires the largest coefficients and the total variance be bounded, which
correspond to exactly property (b) and (c) of a general signature set. The rest of the proof follows
as in that for Lemma 3.

Lemma 17 (General version of Lemma 7). Let T̃ ∗ be the set with largest general empirical bias
B̂T̃ ∗ among all the expanded sets T̃ . The set T̃ ∗ has the weak signature property for some xj.

Proof. We first prove an analog of Claim 8. Let W = σ4d/2∆Λ3 logn. Let’s redefine Klarge :=

{k ∈ [m] :
∣∣∣{i ∈ T̃ : |A(i)

k | ≥ τ}
∣∣∣ ≥ W} be the subset of nodes in [m] which connect to at least W

nodes in T̃ in the subgraph Gτ .Note that this implies that if k 6∈ Klarge, then |βk,T̃ | ≤ dτ +WΛ ≤
dσ4/∆Λ2 logn. Let Qk = {i ∈ T̃ : |A(i)

k | ≥ τ}. By definition, we have for k ∈ Klarge, |QK | ≥W . Then
similarly as in the proof of Claim 8, using the fact that |Qk ∩Qk′ | ≤ κ, and inclusion-exclusion, we
have that |Klarge| ≤ O(∆Λ3 log n/σ4).

Then we prove an analog of Claim 9. Let βsmall,T̃ and βlarge,T̃ be defined as in the proof of
Claim 9 (with the new definition of Klarge). By Lemma 13, the variance of βsmall,T̃ is bounded

by 2dW + 2d2γ ≤ 2d2σ4/∆Λ2 logn. Therefore by Bernstein’s inequality we have that for sufficiently
large ∆, with probability at least 1−n−2 over the choice of x, |βsmall,T̃ −E[βsmall,T̃ ]| ≤ 0.05dσ2/Λ.
It follows from the same argument of Claim 9 that with high probability over the choice of N
samples, |B̂T −maxk βk,T̃ | ≤ 0.1dσ2/Λ holds when maxk βk,T̃ ≥ 0.5dσ.

We apply almost the same argument as in the proof of Lemma 7. We know that our algorithm
must produce an expanded set of size d with bias at least 0.8σd (the expansion of any signature
set), and thus the set T̃ ∗ with largest bias must has a large coefficient j with βj,T̃ ∗ ≥ 0.7σd. If
there is some other k such that βk,T̃ ∗ ≥ 0.3σd, then |Qk| ≥ 0.3σd/Λ and therefore we could remove

those elements in T̃ ∗ − Qj , which has size larger than 0.3σd/Λ − κ by Assumption G2. Then by
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adding some other elements which are in the neighborhood of j in Gσ into the set Qj we get a set
with bias larger than T̃ ∗, which contradicts our assumption that there exists k with βk,T̃ ∗ ≥ 0.3σd.

Thus T̃ ∗ has the (general) weak signature property for xj and the proof is complete.

D Full Proofs from Section 4

D.1 Proof of Lemma 13

As sketched, we split β2
j,T into small and big ones, and bound the variance contributed by small

ones using assumption G3, while the big ones by the number of edges W and the maximum weights
Λ. Formally, we have

V[βS,T ] = ρ
∑
j∈S

β2
j,T = ρ

∑
j∈S

(∑
i∈T

A
(i)
j

)2

= ρ
∑
j∈S

 ∑
i:i∈T,(i,j)∈Gτ

A
(i)
j +

∑
i:i∈T,(i,j)6∈Gτ

A
(i)
j

2

≤ 2ρ
∑
j∈S

 ∑
i:i∈T,(i,j)∈Gτ

A
(i)
j

2

+

 ∑
i:i∈T,(i,j) 6∈Gτ

A
(i)
j

2
≤ 2ρ

∑
j∈S

W
 ∑
i:i∈T,(i,j)∈Gτ

(
A

(i)
j

)2

+ t

 ∑
i:i∈T,(i,j)6∈Gτ

(
A

(i)
j

)2


= 2ρW

∑
i∈T

∑
j∈S

(
A

(i)
j

)2
+ 2ρt

∑
i∈T

∑
j:(i,j)6∈Gτ

(
A

(i)
j

)2

≤ 2tW + 2t2γ.

In the fourth line we used Cauchy-Schwarz inequality and in the last step, we used Assumption
G3 about the total variance due to small terms being small, as well as the normalization of the
variance in each pixel.

D.2 Proof of Lemma 14

As before, we use the probabilistic method. Suppose we fix some j. By Assumption G1, in Gσ,
node xj has either at least d positive neighbors or d negative ones. W.l.o.g., let us assume there
are d negative neighbors. Let T be uniformly random subset of size t of these negative neighbors.
By definition of Gσ, we have βj,T ≤ −σt.

For k 6= j, let fk,T be the number of edges from xk to T in graph Gτ . Using the same
argument as in the proof of Lemma 4, we have fk,T ≤ 4 log n w.h.p. for all such k 6= j. Thus
|βk,T | ≤ tτ + fk,TΛ ≤ σ2t/(∆ log n). Thus it remains to bound ν−j,T .

We could apply Lemma 13 with W = 4 log n ≥ fk,T , and S = [m] \ {j} on set T : we get
ν2
−j,T ≤ 2tW + 2t2γ. Recall that γ = σ2/3∆2 logn and thus ν−j,T ≤ σt/

√
∆ logn.
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E Probability Inequalities

Lemma 18. Suppose X is a bounded random variable in a normed vector space with ||X|| ≤ M .
If event E happens with probability 1− δ for some δ < 1, then ||E[X|E]− E[X]|| ≤ 2δM

Proof. We have E[X] = E[X|E] Pr[E] + E[X|Ec] Pr[Ec] = E[X|E] + (E[X|Ec] − E[X|E]) Pr[Ec],
and therefore ||E[X|E]− E[X]|| ≤ 2δM .

Lemma 19. Suppose X is a bounded random variable in a normed vector space with ||X|| ≤
M . If events E1 and E2 have small symmetrical differences in the sense that Pr[E1|E2] ≤ δ and
Pr[E2|E1] ≤ δ. Then ||E[X|E1]− E[X|E2]|| ≤ 4δM .

Proof. Let Y = X|E2, by Lemma 18, we have ||E[Y |E1] − E[Y ]|| ≤ 2δM , that is, ||E[X|E1E2] −
E[X|E2]|| ≤ 2δM . Similarly ||E[X|E1E2]− E[X|E1]|| ≤ 2δM , and hence ||E[X|E1]− E[X|E2]|| ≤
4δM .

Theorem 20 (Bernstein Inequality[Ber27] cf. [Ben62]). Let x1, . . . , xn be independent variables
with finite variance σ2

i = V[xi] and bounded by M so that |xi −E[xi]| ≤M . Let σ2 =
∑

i σ
2
i . Then

we have

Pr

[∣∣∣∣∣
n∑
i=1

xi − E[
n∑
i=1

xi]

∣∣∣∣∣ > t

]
≤ 2 exp(− t2

2σ2 + 2
3Mt

)
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