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Abstract

We give algorithms with provable guarantees that learn a class of deep nets
in the generative model view popularized by Hinton and others. Our generative
model is an n node multilayer neural net that has degree at most nγ for some
γ < 1 and each edge has a random edge weight in [−1, 1]. Our algorithm learns
almost all networks in this class with polynomial running time. The sample
complexity is quadratic or cubic depending upon the details of the model.

The algorithm uses layerwise learning. It is based upon a novel idea of
observing correlations among features and using these to infer the underlying
edge structure via a global graph recovery procedure. The analysis of the
algorithm reveals interesting structure of neural networks with random edge
weights. 1

1 Introduction

Can we provide theoretical explanation for the practical success of deep nets? Like
many other ML tasks, learning deep neural nets is NP-hard, and in fact seems “badly
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1The first 18 pages of this document serve as an extended abstract of the paper, and a long
technical appendix follows.
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provable bounds for learning deep representations: extended abstract

NP-hard”because of many layers of hidden variables connected by nonlinear opera-
tions. Usually one imagines that NP-hardness is not a barrier to provable algorithms
in ML because the inputs to the learner are drawn from some simple distribution and
are not worst-case. This hope was recently borne out in case of generative models
such as HMMs, Gaussian Mixtures, LDA etc., for which learning algorithms with
provable guarantees were given [HKZ12, MV10, HK13, AGM12, AFH+12]. However,
supervised learning of neural nets even on random inputs still seems as hard as crack-
ing cryptographic schemes: this holds for depth-5 neural nets [JKS02] and even ANDs
of thresholds (a simple depth two network) [KS09].

However, modern deep nets are not “just”neural nets (see the survey [Ben09]).
The underlying assumption is that the net (or some modification) can be run in
reverse to get a generative model for a distribution that is a close fit to the empirical
input distribution. Hinton promoted this viewpoint, and suggested modeling each
level as a Restricted Boltzmann Machine (RBM), which is “reversible”in this sense.
Vincent et al. [VLBM08] suggested using many layers of a denoising autoencoder, a
generalization of the RBM that consists of a pair of encoder-decoder functions (see
Definition 1). These viewpoints allow a different learning methodology than classical
backpropagation: layerwise learning of the net, and in fact unsupervised learning.
The bottom (observed) layer is learnt in unsupervised fashion using the provided
data. This gives values for the next layer of hidden variables, which are used as
the data to learn the next higher layer, and so on. The final net thus learnt is also
a good generative model for the distribution of the bottom layer. In practice the
unsupervised phase is followed by supervised training2.

This viewpoint of reversible deep nets is more promising for theoretical work
because it involves a generative model, and also seems to get around cryptographic
hardness. But many barriers still remain. There is no known mathematical condition
that describes neural nets that are or are not denoising autoencoders. Furthermore,
learning even a a single layer sparse denoising autoencoder seems at least as hard as
learning sparse-used overcomplete dictionaries (i.e., a single hidden layer with linear
operations), for which there were no provable bounds at all until the very recent
manuscript [AGM13]3.

The current paper presents both an interesting family of denoising autoencoders as
well as new algorithms to provably learn almost all models in this family. Our ground
truth generative model is a simple multilayer neural net with edge weights in [−1, 1]
and simple threshold (i.e., > 0) computation at the nodes. A k-sparse 0/1 assignment
is provided at the top hidden layer, which is computed upon by successive hidden

2Recent work suggests that classical backpropagation-based learning of neural nets together with
a few modern ideas like convolution and dropout training also performs very well [KSH12], though
the authors suggest that unsupervised pretraining should help further.

3The parameter choices in that manuscript make it less interesting in context of deep learning,
since the hidden layer is required to have no more than

√
n nonzeros where n is the size of the

observed layer —in other words, the observed vector must be highly compressible.
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layers in the obvious way until the “observed vector”appears at the bottommost
layer. If one makes no further assumptions, then the problem of learning the network
given samples from the bottom layer is still harder than breaking some cryptographic
schemes. (To rephrase this in autoencoder terminology: our model comes equipped
with a decoder function at each layer. But this is not enough to guarantee an efficient
encoder function—this may be tantamount to breaking cryptographic schemes.)

So we make the following additional assumptions about the unknown “ground
truth deep net”(see Section 2): (i) Each feature/node activates/inhibits at most nγ

features at the layer below, and is itself activated/inhibited by at most nγ features in
the layer above, where γ is some small constant; in other words the ground truth net
is not a complete graph. (ii) The graph of these edges is chosen at random and the
weights on these edges are random numbers in [−1, 1].

Our algorithm learns almost all networks in this class very efficiently and with
low sample complexity; see Theorem 1. The algorithm outputs a network whose
generative behavior is statistically indistinguishable from the ground truth net. (If
the weights are discrete, say in {−1, 1} then it exactly learns the ground truth net.)

Along the way we exhibit interesting properties of such randomly-generated neural
nets. (a) Each pair of adjacent layers constitutes a denoising autoencoder in the
sense of Vincent et al.; see Lemma 2. Since the model definition already includes
a decoder, this involves showing the existence of an encoder that completes it into
an autoencoder. (b) The encoder is actually the same neural network run in reverse
by appropriately changing the thresholds at the computation nodes. (c) The reverse
computation is stable to dropouts and noise. (d) The distribution generated by a
two-layer net cannot be represented by any single layer neural net (see Section 8),
which in turn suggests that a random t-layer network cannot be represented by any
t/2-level neural net4.

Note that properties (a) to (d) are assumed in modern deep net work: for example
(b) is a heuristic trick called “weight tying”. The fact that they provably hold for
our random generative model can be seen as some theoretical validation of those
assumptions.
Context. Recent papers have given theoretical analyses of models with multiple lev-
els of hidden features, including SVMs [CS09, LSSS13]. However, none of these solves
the task of recovering a ground-truth neural network given its output distribution.

Though real-life neural nets are not random, our consideration of random deep
networks makes some sense for theory. Sparse denoising autoencoders are reminis-
cent of other objects such as error-correcting codes, compressed sensing, etc. which
were all first analysed in the random case. As mentioned, provable reconstruction of
the hidden layer (i.e., input encoding) in a known autoencoder already seems a non-
linear generalization of compressed sensing, whereas even the usual (linear) version

4Formally proving this for t > 3 is difficult however since showing limitations of even 2-layer
neural nets is a major open problem in computational complexity theory. Some deep learning papers
mistakenly cite an old paper for such a result, but the result that actually exists is far weaker.

3



provable bounds for learning deep representations: extended abstract

of compressed sensing seems possible only if the adjacency matrix has “random-like”
properties (low coherence or restricted isoperimetry or lossless expansion). In fact our
result that a single layer of our generative model is a sparse denoising autoencoder
can be seen as an analog of the fact that random matrices are good for compressed
sensing/sparse reconstruction (see Donoho [Don06] for general matrices and Berinde
et al. [BGI+08] for sparse matrices). Of course, in compressed sensing the matrix of
edge weights is known whereas here it has to be learnt, which is the main contribution
of our work. Furthermore, we show that our algorithm for learning a single layer of
weights can be extended to do layerwise learning of the entire network.

Does our algorithm yield new approaches in practice? We discuss this possibility
after sketching our algorithm in the next section.

2 Definitions and Results

Our generative neural net model (“ground truth”) has ` hidden layers of vectors of
binary variables h(`), h(`−1), .., h(1) (where h(`) is the top layer) and an observed layer
y at bottom. The number of vertices at layer i is denoted by ni, and the set of
edges between layers i and i + 1 by Ei. In this abstract we assume all ni = n; in
appendix we allow them to differ.5 (The long technical appendix serves partially as a
full version of the paper with exact parameters and complete proofs). The weighted
graph between layers h(i) and h(i+1) has degree at most d = nγ and all edge weights
are in [−1, 1]. The generative model works like a neural net where the threshold at
every node6 is 0. The top layer h(`) is initialized with a 0/1 assignment where the set
of nodes that are 1 is picked uniformly7 among all sets of size ρ`n. For i = ` down to
2, each node in layer i − 1 computes a weighted sum of its neighbors in layer i, and
becomes 1 iff that sum strictly exceeds 0. We will use sgn(x) to denote the threshold
function that is 1 if x > 0 and 0 else. (Applying sgn() to a vector involves applying
it componentwise.) Thus the network computes as follows: h(i−1) = sgn(Gi−1h(i)) for
all i > 0 and h(0) = G0h

(1) (i.e., no threshold at the observed layer)8. Here Gi stands

5When the layer sizes differ the sparsity of the layers are related by ρi+1di+1ni+1/2 = ρini.
Nothing much else changes.

6It is possible to allow these thresholds to be higher and to vary between the nodes, but the
calculations are harder and the algorithm is much less efficient.

7It is possible to prove the result when the top layer has not a random sparse vector and has
some bounded correlations among them. This makes the algorithm more complicated.

8 It is possible to stay with a generative deep model in which the last layer also has 0/1 values.
Then our calculations require the fraction of 1’s in the lowermost (observed) layer to be at most
1/ log n. This could be an OK model if one assumes that some handcoded net (or a nonrandom
layer like convolutional net) has been used on the real data to produce a sparse encoding, which is
the bottom layer of our generative model.

However, if one desires a generative model in which the observed layer is not sparse, then we can
do this by allowing real-valued assignments at the observed layer, and remove the threshold gates
there. This is the model described here.
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for both the weighted bipartite graph at a level and its weight matrix.

y

h(`−1)

h(1)

h(`)

random neural net G`−1

random linear function G0 y = G0h
(1)

h(`−1) = sgn(G`−1h(`))

(observed layer)

random neural nets h(i−1) = sgn(Gi−1h(i))

Figure 1: Example of a deep network

Random deep net assumption: We assume that in this ground truth the edges
between layers are chosen randomly subject to expected degree d being9 nγ, where
γ < 1/(` + 1), and each edge e ∈ Ei carries a weight that is chosen randomly in
[−1, 1]. This is our model R(`, ρl, {Gi}). We also consider —because it leads to a
simpler and more efficient learner—a model where edge weights are random in {±1}
instead of [−1, 1]; this is called D(`, ρ`, {Gi}). Recall that ρ` > 0 is such that the 0/1
vector input at the top layer has 1’s in a random subset of ρ`n nodes.

It can be seen that since the network is random of degree d, applying a ρ`n-sparse
vector at the top layer is likely to produce the following density of 1’s (approximately)
at the successive layers: ρ`d/2, ρ`(d/2)2, etc.. We assume the density of last layer
ρ`d

`/2` = O(1). This way the density at the last-but-one layer is o(1), and the last
layer is real-valued and dense.

Now we state our main result. Note that 1/ρ` is at most n.

Theorem 1
When degree d = nγ for 0 < γ ≤ 0.2, density ρ`(d/2)l = C for some large constant
C10, the network model D(`, ρ`, {Gi}) can be learnt using O(log n/ρ2`) samples and
O(n2`) time. The network model R(`, ρ`, {Gi}) can be learnt in polynomial time and
using O(n3`2 log n/η2) samples, where η is the statistical distance between the true
distribution and that generated by the learnt model.

Algorithmic ideas. We are unable to analyse existing algorithms. Instead, we give
new learning algorithms that exploit the very same structure that makes these ran-
dom networks interesting in the first place i.e., each layer is a denoising autoencoder.
The crux of the algorithm is a new twist on the old Hebbian rule [Heb49] that “Things
that fire together wire together.” In the setting of layerwise learning, this is adapted
as follows: “Nodes in the same layer that fire together a lot are likely to be connected

9In the appendix we allow degrees to be different for different layers.
10In this case the output is dense
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(with positive weight) to the same node at the higher layer.” The algorithm consists
of looking for such pairwise (or 3-wise) correlations and putting together this infor-
mation globally. The global procedure boils down to the graph-theoretic problem
of reconstructing a bipartite graph given pairs of nodes that are at distance 2 in it
(see Section 6). This is a variant of the GRAPH SQUARE ROOT problem which is
NP-complete on worst-case instances but solvable for sparse random (or random-like)
graphs.

Note that current algorithms (to the extent that they are Hebbian, roughly speak-
ing) can also be seen as leveraging correlations. But putting together this information
is done via the language of nonlinear optimization (i.e., an objective function with
suitable penalty terms). Our ground truth network is indeed a particular local op-
timum in any reasonable formulation. It would be interesting to show that existing
algorithms provably find the ground truth in polynomial time but currently this seems
difficult.

Can our new ideas be useful in practice? We think that using a global reconstruc-
tion procedure to leverage local correlations seems promising, especially if it avoids
the usual nonlinear optimization. Our proof currently needs that the hidden layers
are sparse, and the edge structure of the ground truth network is “random like”(in
the sense that two distinct features at a level tend to affect fairly disjoint-ish sets of
features at the next level). Finally, we note that random neural nets do seem useful
in so-called reservoir computing, so perhaps they do provide useful representational
power on real data. Such empirical study is left for future work.

Throughout, we need well-known properties of random graphs with expected de-
gree d, such as the fact that they are expanders; these properties appear in the
appendix. The most important one, unique neighbors property, appears in the next
Section.

3 Each layer is a Denoising Auto-encoder

As mentioned earlier, modern deep nets research often assumes that the net (or at
least some layers in it) should approximately preserve information, and even allows
easy going back/forth between representations in two adjacent layers (what we earlier
called “reversibility”). Below, y denotes the lower layer and h the higher (hidden)
layer. Popular choices of s include logistic function, soft max, etc.; we use simple
threshold function in our model.

Definition 1 (Denoising autoencoder) An autoencoder consists of a decoding
function D(h) = s(Wh+b) and an encoding function E(y) = s(W ′y+b′) where W,W ′

are linear transformations, b, b′ are fixed vectors and s is a nonlinear function that
acts identically on each coordinate. The autoencoder is denoising if E(D(h) + η) = h
with high probability where h is drawn from the distribution of the hidden layer, η is a

6
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noise vector drawn from the noise distribution, and D(h)+η is a shorthand for “D(h)
corrupted with noise η.” The autoencoder is said to use weight tying if W ′ = W T .

In empirical work the denoising autoencoder property is only implicitly imposed
on the deep net by minimizing the reconstruction error ||y−D(E(y+η))||, where η is
the noise vector. Our definition is slightly different but is actually stronger since y is
exactly D(h) according to the generative model. Our definition implies the existence
of an encoder E that makes the penalty term exactly zero. We show that in our
ground truth net (whether from model D(`, ρ`, {Gi}) or R(`, ρ`, {Gi})) every pair of
successive levels whp satisfies this definition, and with weight-tying.

We show a single-layer random network is a denoising autoencoder if the input
layer is a random ρn sparse vector, and the output layer has density ρd/2 < 1/20.

Lemma 2
If ρd < 0.1 (i.e., the assignment to the observed layer is also fairly sparse) then the
single-layer network above is a denoising autoencoder with high probability (over the
choice of the random graph and weights), where the noise distribution is allowed to
flip every output bit independently with probability 0.1. It uses weight tying.

The proof of this lemma highly relies on a property of random graph, called the
strong unique-neighbor property.

For any node u ∈ U and any subset S ⊂ U , let UF (u, S) be the sets of unique
neighbors of u with respect to S,

UF (u, S) , {v ∈ V : v ∈ F (u), v 6∈ F (S \ {u})}

Property 1 In a bipartite graph G(U, V,E,w), a node u ∈ U has (1 − ε)-unique
neighbor property with respect to S if

∑

v∈UF (u,S)

|w(u, v)| ≥ (1− ε)
∑

v∈F (u)

|w(u, v)| (1)

The set S has (1 − ε)-strong unique neighbor property if for every u ∈ U , u has
(1− ε)-unique neighbor property with respect to S.

When we just assume ρd� n, this property does not hold for all sets of size ρn.
However, for any fixed set S of size ρn, this property holds with high probability over
the randomness of the graph.

Now we sketch the proof for Lemma 2 (details are in Appendix).For convenience
assume the edge weights are in {−1, 1}.

First, the decoder definition is implicit in our generative model: y = sgn(Wh).
(That is, b = ~0 in the autoencoder definition.) Let the encoder be E(y) = sgn(W Ty+

7
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b′) for b′ = 0.2d×~1.In other words, the same bipartite graph and different thresholds
can transform an assignment on the lower level to the one at the higher level.

To prove this consider the strong unique-neighbor property of the network. For
the set of nodes that are 1 at the higher level, a majority of their neighbors at the
lower level are adjacent only to them and to no other nodes that are 1. The unique
neighbors with a positive edge will always be 1 because there are no −1 edges that
can cancel the +1 edge (similarly the unique neighbors with negative edge will always
be 0). Thus by looking at the set of nodes that are 1 at the lower level, one can easily
infer the correct 0/1 assignment to the higher level by doing a simple threshold of say
0.2d at each node in the higher layer.

4 Learning a single layer network

Our algorithm, outlined below (Algorithm 1), learns the network layer by layer start-
ing from the bottom. Thus the key step is that of learning a single layer network,
which we now focus on.11 This step, as we noted, amounts to learning nonlinear dic-
tionaries with random dictionary elements. The algorithm illustrates how we leverage
the sparsity and the randomness of the support graph, and use pairwise or 3-wise cor-
relations combined with our graph recovery procedure of Section 6. We first give a
simple algorithm and then outline one that works with better parameters.

Algorithm 1. High Level Algorithm

Input: samples y’s generated by a deep network described in Section 2
Output: the network/encoder and decoder functions

1: for i = 1 TO l do
2: Construct correlation graph using samples of h(i−1)

3: Call RecoverGraph to learn the positive edges E+
i

4: Use PartialEncoder to encode all h(i−1) to h(i)

5: Use LearnGraph/LearnDecoder to learn the graph/decoder between layer i and
i− 1.

6: end for

For simplicity we describe the algorithm when edge weights are {−1, 1}, and sketch
the differences for real-valued weights at the end of this section.

The hidden layer and observed layer each have n nodes, and the generative model
assumes the assignment to the hidden layer is a random 0/1 assignment with ρn
nonzeros.

Say two nodes in the observed layer are related if they have a common neighbor
in the hidden layer to which they are attached via a +1 edge.

11Learning the bottom-most (real valued) layer is mildly different and is done in Section 7.
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Step 1: Construct correlation graph: This step is a new twist on the classical Hebbian
rule (“things that fire together wire together”).

Algorithm 2. PairwiseGraph

Input: N = O(log n/ρ) samples of y = sgn(Gh),
Output: Ĝ on vertices V , u, v connected if related

for each u, v in the output layer do
if ≥ ρN/3 samples have yu = yv = 1 then

connect u and v in Ĝ
end if

end for

Claim In a random sample of the output layer, related pairs u, v are both 1 with
probability at least 0.9ρ, while unrelated pairs are both 1 with probability at most
(ρd)2.
(Proof Sketch): First consider a related pair u, v, and let z be a vertex with +1 edges
to u, v. Let S be the set of neighbors of u, v excluding z. The size of S cannot be
much larger than 2d. Under the choice of parameters, we know ρd� 1, so the event
hS = ~0 conditioned on hz = 1 has probability at least 0.9. Hence the probability of
u and v being both 1 is at least 0.9ρ. Conversely, if u, v are unrelated then for both
u, v to be 1 there must be two different causes, namely, nodes y and z that are 1, and
additionally, are connected to u and v respectively via +1 edges. The chance of such
y, z existing in a random sparse assignment is at most (ρd)2 by union bound.

Thus, if ρ satisfies (ρd)2 < 0.1ρ, i.e., ρ < 0.1/d2, then using O(log n/ρ2) samples
we can recover all related pairs whp, finishing the step.
Step 2: Use graph recover procedure to find all edges that have weight +1. (See
Section 6 for details.)
Step 3: Using the +1 edges to encode all the samples y.

Algorithm 3. PartialEncoder

Input: positive edges E+, y = sgn(Gh), threshold θ
Output: the hidden variable h

Let M be the indicator matrix of E+ (Mi,j = 1 iff (i, j) ∈ E+)
return h = sgn(MTy − θ~1)

Although we have only recovered the positive edges, we can use PartialEncoder
algorithm to get h given y!

Lemma 3
If support of h satisfies 11/12-strong unique neighbor property, and y = sgn(Gh),
then Algorithm 3 outputs h with θ = 0.3d.

9
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This uses the unique neighbor property: for every z with hz = 1, it has at least
0.4d unique neighbors that are connected with +1 edges. All these neighbors must
be 1 so [(E+)Ty]z ≥ 0.4d. On the other hand, for any z with hz = 0, the unique
neighbor property (applied to supp(h) ∪ {z}) implies that z can have at most 0.2d
positive edges to the +1’s in y. Hence h = sgn((E+)Ty − 0.3d~1).
Step 4: Recover all weight −1 edges.

Algorithm 4. Learning Graph

Input: positive edges E+, samples of (h, y)
Output: E−

1: R← (U × V ) \ E+.
2: for each of the samples (h, y), and each v do
3: Let S be the support of h
4: if yv = 1 and S ∩B+(v) = {u} for some u then
5: for s ∈ S do
6: remove (s, v) from R.
7: end for
8: end if
9: end for

10: return R

Now consider many pairs of (h, y), where h is found using Step 3. Suppose in
some sample, yu = 1 for some u, and exactly one neighbor of u in the +1 edge graph
(which we know entirely) is in supp(h). Then we can conclude that for any z with
hz = 1, there cannot be a −1 edge (z, u), as this would cancel out the unique +1
contribution.

Lemma 4
Given O(log n/(ρ2d)) samples of pairs (h, y), with high probability (over the random
graph and the samples) Algorithm 4 outputs the correct set E−.

To prove this lemma, we just need to bound the probability of the following event
for any non-edge (x, u): hx = 1, |supp(h) ∩B+(u)| = 1, supp(h)∩B−(u) = ∅ (B+, B−

are positive and negative parents). These three events are almost independent, the
first has probability ρ, second has probability ≈ ρd and the third has probability
almost 1.

Leveraging 3-wise correlation: The above sketch used pairwise correlations to
recover the +1 weights when ρ < 1/d2, roughly. It turns out that using 3-wise
correlations allow us to find correlations under a weaker requirement ρ < 1/d3/2.
Now call three observed nodes u, v, s related if they are connected to a common node
at the hidden layer via +1 edges. Then we can prove a claim analogous to the one
above, which says that for a related triple, the probability that u, v, s are all 1 is at

10
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least 0.9ρ, while the probability for unrelated triples is roughly at most (ρd)3. Thus
as long as ρ < 0.1/d3/2, it is possible to find related triples correctly. The graph
recover algorithm can be modified to run on 3-uniform hypergraph consisting of
these related triples to recover the +1 edges.

The end result is the following theorem. This is the learner used to get the bounds
stated in our main theorem.

Theorem 5
Suppose our generative neural net model with weights {−1, 1} has a single layer and

the assignment of the hidden layer is a random ρn-sparse vector, with ρ � 1/d3/2.
Then there is an algorithm that runs in O(n(d3 + n)) time and uses O(log n/ρ2)
samples to recover the ground truth with high probability over the randomness of the
graph and the samples.

When weights are real numbers. We only sketch this and leave the details to
the appendix. Surprisingly, steps 1, 2 and 3 still work. In the proofs, we have only
used the sign of the edge weights – the magnitude of the edge weights can be arbitrary.
This is because the proofs in these steps relies on the unique neighbor property, if
some node is on (has value 1), then its unique positive neighbors at the next level
will always be on, no matter how small the positive weights might be. Also notice in
PartialEncoder we are only using the support of E+, but not the weights.

After Step 3 we have turned the problem of unsupervised learning of the hidden
graph to a supervised one in which the outputs are just linear classifiers over the
inputs! Thus the weights on the edges can be learnt to any desired accuracy.

5 Correlations in a Multilayer Network

We now consider multi-layer networks, and show how they can be learnt layerwise
using a slight modification of our one-layer algorithm at each layer. At a technical
level, the difficulty in the analysis is the following: in single-layer learning, we as-
sumed that the higher layer’s assignment is a random ρn-sparse binary vector. In
the multilayer network, the assignments in intermediate layers (except for the top
layer) do not satisfy this, but we will show that the correlations among them are
low enough that we can carry forth the argument. Again for simplicity we describe
the algorithm for the model D(`, ρl, {Gi}), in which the edge weights are ±1. Also
to keep notation simple, we describe how to bound the correlations in bottom-most
layer (h(1)). It holds almost verbatim for the higher layers. We define ρi to be the
“expected” number of 1s in the layer h(i). Because of the unique neighbor property,
we expect roughly ρl(d/2) fraction of h(`−1) to be 1. So also, for subsequent layers,
we obtain ρi = ρ` · (d/2)`−i. (We can also think of the above expression as defining
ρi).

11
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Lemma 6
Consider a network from D(`, ρl, {Gi}). With high probability (over the random

graphs between layers) for any two nodes u, v in layer h(1),

Pr[h(1)u = h(1)v = 1]

{
≥ ρ2/2 if u, v related
≤ ρ2/4 otherwise

Proof:(outline) The first step is to show that for a vertex u in level i, Pr[h(i)(u) = 1]
is at least 3ρi/4 and at most 5ρi/4. This is shown by an inductive argument (details
in the full version). (This is the step where we crucially use the randomness of the
underlying graph.)

Now suppose u, v have a common neighbor z with +1 edges to both of them.
Consider the event that z is 1 and none of the neighbors of u, v with −1 weight edges
are 1 in layer h(2). These conditions ensure that h(1)(u) = h(1)(v) = 1; further, they
turn out to occur together with probability at least ρ2/2, because of the bound from
the first step, along with the fact that u, v combined have only 2d neighbors (and
2dρ2n� n), so there is good probability of not picking neighbors with −1 edges.

If u, v are not related, it turns out that the probability of interest is at most 2ρ21
plus a term which depends on whether u, v have a common parent in layer h(3) in the
graph restricted to +1 edges. Intuitively, picking one of these common parents could
result in u, v both being 1. By our choice of parameters, we will have ρ21 < ρ2/20, and
also the additional term will be < ρ2/10, which implies the desired conclusion. 2

Then as before, we can use graph recovery to find all the +1 edges in the graph
at the bottom most layer. This can then be used (as in Step 3) in the single layer
algorithm to encode h(1) and obtain values for h(2). Now as before, we have many
pairs (h(2), h(1)), and thus using precisely the reasoning of Step 4 earlier, we can obtain
the full graph at the bottom layer.

This argument can be repeated after ‘peeling off’ the bottom layer, thus allowing
us to learn layer by layer.

6 Graph Recovery

Graph reconstruction consists of recovering a graph given information about its sub-
graphs [BH77]. A prototypical problem is the Graph Square Root problem, which
calls for recovering a graph given all pairs of nodes whose distance is at most 2. This
is NP-hard.

Definition 2 (Graph Recovery) Let G1(U, V,E1) be an unknown random bipar-
tite graph between |U | = n and |V | = n vertices where each edge is picked with
probability d/n independently.
Given: Graph G(V,E) where (v1, v2) ∈ E iff v1 and v2 share a common parent in G1

(i.e. ∃u ∈ U where (u, v1) ∈ E1 and (u, v2) ∈ E1).
Goal: Find the bipartite graph G1.

12
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Some of our algorithms (using 3-wise correlations) need to solve analogous problem
where we are given triples of nodes which are mutually at distance 2 from each other,
which we will not detail for lack of space.

We let F (S) (resp. B(S)) denote the set of neighbors of S ⊆ U (resp. ⊆ V ) in G1.
Also Γ(·) gives the set of neighbors in G. Now for the recovery algorithm to work, we
need the following properties (all satisfied whp by random graph when d3/n� 1):

1. For any v1, v2 ∈ V ,
|(Γ(v1) ∩ Γ(v2))\(F (B(v1) ∩B(v2)))| < d/20.

2. For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d.

3. For any u ∈ U , v ∈ V and v 6∈ F (u), |Γ(v) ∩ F (u)| < d/20.

4. For any u ∈ U , at least 0.1 fraction of pairs v1, v2 ∈ F (u) does not have a
common neighbor other than u.

The first property says “most correlations are generated by common cause”: all
but possibly d/20 of the common neighbors of v1 and v2 in G, are in fact neighbors
of a common neighbor of v1 and v2 in G1.

The second property basically says the sets F (u)’s should be almost disjoint, this
is clear because the sets are chosen at random.

The third property says if a vertex v is not related to the cause u, then it cannot
have correlation with all many neighbors of u.

The fourth property says every cause introduces a significant number of correla-
tions that is unique to that cause.

In fact, Properties 2-4 are closely related from the unique neighbor property.

Lemma 7
When graph G1 satisfies Properties 1-4, Algorithm 5 successfully recovers the graph
G1 in expected time O(n2).

Proof: We first show that when (v1, v2) has more than one unique common cause,
then the condition in the if statement must be false. This follows from Property 2.
We know the set S contains F (B(v1) ∩B(v2)). If |B(v1) ∩B(v2)| ≥ 2 then Property
2 says |S| ≥ 1.5d, which implies the condition in the if statement is false.

Then we show if (v1, v2) has a unique common cause u, then S ′ will be equal to
F (u). By Property 1, we know S = F (u) ∪ T where |T | ≤ d/20.

For any vertex v in F (u), it is connected to every other vertex in F (u). Therefore
|Γ(v) ∩ S| ≥ |Γ(v) ∩ F (u)| ≥ 0.8d− 1, and v must be in S ′.

For any vertex v′ outside F (u), by Property 3 it can only be connected to d/20
vertices in F (u). Therefore |Γ(v) ∩ S| ≤ |Γ(v) ∩ F (u)|+ |T | ≤ d/10. Hence v′ is not
in S ′.

Following these arguments, S ′ must be equal to F (u), and the algorithm success-
fully learns the edges related to u.

13
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The algorithm will successfully find all vertices u ∈ U because of Property 4: for
every u there are enough number of edges in G that is only caused by u. When one
of them is sampled, the algorithm successfully learns the vertex u.

Finally we bound the running time. By Property 4 we know that the algorithm
identifies a new vertex u ∈ U in at most 10 iterations in expectation. Each iteration
takes at most O(n) time. Therefore the algorithm takes at most O(n2) time in
expectation. 2

Algorithm 5. RecoverGraph

Input: G given as in Definition 2
Output: Find the graph G1 as in Definition 2.

repeat
Pick a random edge (v1, v2) ∈ E.
Let S = {v : (v, v1), (v, v2) ∈ E}.
if |S| < 1.3d then
S ′ = {v ∈ S : |Γ(v) ∩ S| ≥ 0.8d− 1} {S ′ should be a clique in G}
In G1, create a vertex u and connect u to every v ∈ S ′.
Mark all the edges (v1, v2) for v1, v2 ∈ S ′.

end if
until all edges are marked

7 Learning the lowermost (real-valued) layer

Note that in our model, the lowest (observed) layer is real-valued and does not have
threshold gates. Thus our earlier learning algorithm cannot be applied as is. However,
we see that the same paradigm – identifying correlations and using Graph recover
– can be used.

The first step is to show that for a random weighted graph G, the linear decoder
D(h) = Gh and the encoder E(y) = sgn(GTy+ b) form a denoising autoencoder with
real-valued outputs, as in Bengio et al. [BCV13].

Lemma 8
If G is a random weighted graph, the encoder E(y) = sgn(GTy − 0.4d~1) and linear
decoder D(h) = Gh form a denoising autoencoder, for noise vectors γ which have
independent components, each having variance at most O(d/ log2 n).

The next step is to show a bound on correlations as before. For simplicity we
state it assuming the layer h(1) has a random 0/1 assignment of sparsity ρ1. In the
full version we state it keeping in mind the higher layers, as we did in the previous
sections.

14
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Theorem 9
When ρ1d = O(1), d = Ω(log2 n), with high probability over the choice of the weights
and the choice of the graph, for any three nodes u, v, s the assignment y to the bottom
layer satisfies:

1. If u, v and s have no common neighbor, then |Eh[yuyvys]| ≤ ρ1/3

2. If u, v and s have a unique common neighbor, then |Eh[yuyvys]| ≥ 2ρ1/3

8 Two layers cannot be represented by one layer

In this section we show that a two-layer network with ±1 weights is more expressive
than one layer network with arbitrary weights. A two-layer network (G1, G2) consists
of random graphs G1 and G2 with random ±1 weights on the edges. Viewed as
a generative model, its input is h(3) and the output is h(1) = sgn(G1 sgn(G2h

(3))).
We will show that a single-layer network even with arbitrary weights and arbitrary
threshold functions must generate a fairly different distribution.

Lemma 10
For almost all choices of (G1, G2), the following is true. For every one layer net-

work with matrix A and vector b, if h(3) is chosen to be a random ρ3n-sparse vector
with ρ3d2d1 � 1, the probability (over the choice of h(3)) is at least Ω(ρ23) that
sgn(G1 sgn(G1h

(3))) 6= sgn(Ah(3) + b).

The idea is that the cancellations possible in the two-layer network simply cannot
all be accomodated in a single-layer network even using arbitrary weights. More
precisely, even the bit at a single output node v cannot be well-represented by a
simple threshold function.

First, observe that the output at v is determined by values of d1d2 nodes at the
top layer that are its ancestors. It is not hard to show in the one layer net (A, b),
there should be no edge between v and any node u that is not its ancestor. Then
consider structure in Figure 2. Assuming all other parents of v are 0 (which happen
with probability at least 0.9), and focus on the values of (u1, u2, u3, u4). When these
values are (1, 1, 0, 0) and (0, 0, 1, 1), v is off. When these values are (1, 0, 0, 1) and
(0, 1, 1, 0), v is on. This is impossible for a one layer network because the first two
ask for

∑
Aui,v

+2bv ≤ 0 and the second two ask for
∑

Aui,v
+2bv < 0.

9 Conclusions

Rigorous analysis of interesting subcases of any ML problem can be beneficial for
triggering further improvements: see e.g., the role played in Bayes nets by the rigorous
analysis of message-passing algorithms for trees and graphs of low tree-width. This is
the spirit in which to view our consideration of a random neural net model (though
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u4
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Figure 2: Two-layer network(G1, G2)

note that there is some empirical work in reservoir computing using randomly wired
neural nets).

The concept of a denoising autoencoder (with weight tying) suggests to us a graph
with random-like properties. We would be very interested in an empirical study of the
randomness properties of actual deep nets learnt in real life. (For example, in [KSH12]
some of the layers use convolution, which is decidedly nonrandom. But other layers do
backpropagation starting with a complete graph and may end up more random-like.)

Network randomness is not so crucial for single-layer learning. But for provable
layerwise learning we rely on the support (i.e., nonzero edges) being random: this is
crucial for controlling (i.e., upper bounding) correlations among features appearing
in the same hidden layer (see Lemma 6). Provable layerwise learning under weaker
assumptions would be very interesting.
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Provable Bounds for Learning Some Deep
Representations: Long Technical Appendix∗

Sanjeev Arora Aditya Bhaskara Rong Ge Tengyu Ma

A Preliminaries and Notations

Here we describe the class of randomly chosen neural nets that are learned by our
algorithm. A networkR(`, ρl, {Gi}) has ` hidden layers of binary variables h(`), h(`−1),
.., h(1) from top to bottom and an observed layer x at bottom. The set of nodes at
layer h(i) is denoted by Ni, and |Ni| = ni. For simplicity of analysis, let n = maxi ni,
and assume each ni > nc for some positive constant c.

y

h(`−1)

h(1)

h(`)

random neural net G`−1

random linear function G0 y = G0h
(1)

h(`−1) = sgn(G`−1h(`))

(observed layer)

random neural nets h(i−1) = sgn(Gi−1h(i))

Figure 1: Example of a deep network

The edges between layers i and i − 1 are assumed to be chosen according to a
random bipartite graph Gi(Ni+1, Ni, Ei, w) that includes every pair (u, v) ∈ Ni+1×Ni

in Ei with probability pi. We denote this distribution by Gni+1,ni,pi . Each edge e ∈ Ei
∗This appendix is self-contained in terms of technicality, though the readers are encouraged to

read the extended abstract first, which contains abstract, introduction, reference, etc. Also note
that the notations, numbering in this appendix are also independent with the extended abstract.
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carries a weight w(e) in [−1, 1] that is randomly chosen.The set of positive edges are
denoted by E+

i = {(u, v) ∈ Ni+1 × Ni : w(u, v) > 0}. Define E− to be the negative
edges similarly. Denote by G+ and G− the corresponding graphs defined by E+ and
E−, respectively.

The generative model works like a neural net where the threshold at every node
is 0. The top layer h(`) is initialized a 0/1 assignment where the set of nodes that are
1 is picked uniformly among all sets of size ρlnl. Each node in layer `− 1 computes a
weighted sum of its neighbors in layer `, and becomes 1 iff that sum strictly exceeds
0. We will use sgn(·) to denote the threshold function:

sgn(x) = 1 if x > 0 and 0 else. (1)

Applying sgn() to a vector involves applying it componentwise. Thus the network
computes as follows: h(i−1) = sgn(Gi−1h

(i)) for all i > 0 and h(0) = G0h
(1) (i.e., no

threshold at the observed layer)1. Here (with slight abuse of notation) Gi stands for
both the bipartite graph and the bipartite weight matrix of the graph at layer i.

We also consider a simpler case when the edge weights are in {±1} instead of
[−1, 1]. We call such a network D(`, ρl, {Gi}).

Throughout this paper, by saying “with high probability” we mean the probability
is at least 1−n−C for some large constant C. Moreover, f � g means f ≥ Cg , f � g
means f ≤ g/C for large enough constant C (the constant required is determined
implicitly by the related proofs).

More network notations. The expected degree from Ni to Ni+1 is di, that is,
di , pi|Ni+1| = pini+1, and the expected degree from Ni+1 to Ni is denoted by
d′i , pi|Ni| = pini. The set of forward neighbors of u ∈ Ni+1 in graph Gi is denoted
by Fi(u) = {v ∈ Ni : (u, v) ∈ Ei}, and the set of backward neighbors of v ∈ Ni in Gi

is denoted by Bi(v) = {u ∈ Ni+1 : (u, v) ∈ Ei}. We use F+
i (u) to denote the positive

neighbors: F+
i (u) , {v, : (u, v) ∈ E+

i } (and similarly for B+
i (v)). The expected

density of the layers are defined as ρi−1 = ρidi−1/2 (ρ` is given as a parameter of the
model).

Our analysis works while allowing network layers of different sizes and different
degrees. For simplicity, we recommend first-time readers to assume all the ni’s are
equal, and di = d′i for all layers.

Basic facts about random graphs We will assume that in our random graphs
the expected degree d′, d� log n so that most events of interest to us that happen in
expectation actually happen with high probability (see Appendix J): e.g., all hidden
nodes have backdegree d±√d log n. Of particular interest will be the fact (used often

1We can also allow the observed layer to also use threshold but then our proof requires the output
vector to be somewhat sparse. This could be meaningful in modeling practical settings where each
datapoint has been represented as a somewhat sparse 0/1 vector via a sparse coding algorithm.
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in theoretical computer science) that random bipartite graphs have a unique neighbor
property. This means that every set of nodes S on one layer has |S| (d′ ± o(d′))
neighbors on the neighboring layer provided |S| d′ � n, which implies in particular
that most of these neighboring nodes are adjacent to exactly one node in S: these
are called unique neighbors. We will need a stronger version of unique neighbors
property which doesn’t hold for all sets but holds for every set with probability at
least 1 − exp(−d′) (over the choice of the graph). It says that every node that is
not in S shares at most (say) 0.1d′ neighbors with any node in S. This is crucial for
showing that each layer is a denoising autoencoder.

B Main Results

In this paper, we give an algorithm that learns a random deep neural network.

Theorem 1
For a network D(`, ρl, {Gi}), if all graphs Gi’s are chosen according to Gni+1,ni,pi , and
the parameters satisfy:

1. All di � log2 n, d′i � log2 n.

2. For all but last layer (i ≥ 1), ρ3
i � ρi+1.

3. For all layers, n3
i (d
′
i−1)8/n8

i−1 � 1.

4. For last layer, ρ1d0 = O(1), d
3/2
0 /d1d2 < O(log−3/2 n),

√
d0/d1 < O(log−3/2 n),

d5
1 < n, d0 � log3 n.

Then there is an algorithm usingO(log n/ρ2
`) samples, running in timeO(

∑`
i=1 ni((d

′
i)

3+
ni−1)) that learns the network with high probability on both the graph and the sam-
ples.

Remark 1 We include the last layer whose output is real instead of 0/1, in order
to get fully dense outputs. We can also learn a network without this layer, in which
case the last layer needs to have density at most 1/poly log(n), and condition 4 is no
long needed.

Remark 2 If a stronger version of condition 2, ρ2
i � ρi+1 holds, there is a faster and

simpler algorithm that runs in time O(n2).

Although we assume each layer of the network is a random graph, we are not
using all the properties of the random graph. The properties of random graphs we
need are listed in Section J.

We can also learn a network even if the weights are not discrete.
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Theorem 2
For a network R(`, ρl, {Gi}), if all graphs Gi’s are chosen according to Gni+1,ni,pi , and
the parameters satisfy the same conditions as in Theorem 1, there is an algorithm
using O(n2

l nl−1l
2 log n/η2) samples, running in time poly(n) that learns a network

R′(`, ρl, {G′i}). The observed vectors of network R′ agrees with R(`, ρl, {Gi}) on
(1− η) fraction of the hidden variable h(l).

C Each layer is a Denoising Auto-encoder

Experts feel that deep networks satisfy some intuitive properties. First, intermediate
layers in a deep representation should approximately preserve the useful information
in the input layer. Next, it should be possible to go back/forth easily between the
representations in two successive layers, and in fact they should be able to use the
neural net itself to do so. Finally, this process of translating between layers should be
noise-stable to small amounts of random noise. All this was implicit in the early work
on RBM and made explicit in the paper of Vincent et al. [VLBM08] on denoising
autoencoders. For a theoretical justification of the notion of a denoising autoencoder
based upon the ”manifold assumption” of machine learning see the survey of Ben-
gio [Ben09].

Definition 1 (Denoising autoencoder) An autoencoder consists of an decod-
ing function D(h) = s(Wh + b) and a encoding function E(y) = s(W ′y + b′) where
W,W ′ are linear transformations, b, b′ are fixed vectors and s is a nonlinear function
that acts identically on each coordinate. The autoencoder is denoising if E(D(h)+η) =
h with high probability where h is drawn from the input distribution, η is a noise vector
drawn from the noise distribution, and D(h) + η is a shorthand for “E(h) corrupted
with noise η.” The autoencoder is said to use weight tying if W ′ = W T .

The popular choices of s includes logistic function, soft max, etc. In this work we
choose s to be a simple threshold on each coordinate (i.e., the test > 0, this can be
viewed as an extreme case of logistic function). Weight tying is a popular constraint
and is implicit in RBMs. Our work also satisfies weight tying.

In empirical work the denoising autoencoder property is only implicitly imposed
on the deep net by minimizing the reconstruction error ||y − D(E(ỹ))||, where ỹ is
a corrupted version of y; our definition is very similar in spirit that it also enforces
the noise-stability of the autoencoder in a stronger sense. It actually implies that the
reconstruction error corresponds to the noise from ỹ, which is indeed small. We show
that in our ground truth net (whether from model D(`, ρ`, {Gi}) or R(`, ρ`, {Gi}))
every pair of successive levels whp satisfies this definition, and with weight-tying.

We will show that each layer of our network is a denoising autoencoder with very
high probability. (Each layer can also be viewed as an RBM with an additional energy
term to ensure sparsity of h.) Later we will of course give efficient algorithms to learn
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such networks without recoursing to local search. In this section we just prove they
satisfy Definition 1.

The single layer has m hidden and n output (observed) nodes. The connection
graph between them is picked randomly by selecting each edge independently with
probability p and putting a random weight on it in [−1, 1]. Then the linear transfor-
mation W corresponds simply to this matrix of weights. In our autoencoder we set
b = ~0 and b′ = 0.2d′ × ~1, where d′ = pn is the expected degree of the random graph
on the hidden side. (By simple Chernoff bounds, every node has degree very close to
d′.) The hidden layer h has the following prior: it is given a 0/1 assignment that is
1 on a random subset of hidden nodes of size ρm. This means the number of nodes
in the output layer that are 1 is at most ρmd′ = ρnd, where d = pm is the expected
degree on the observed side. We will see that since b = ~0 the number of nodes that
are 1 in the output layer is close to ρmd′/2.

Lemma 3
If ρmd′ < 0.05n (i.e., the assignment to the observed layer is also fairly sparse) then
the single-layer network above is a denoising autoencoder with high probability (over
the choice of the random graph and weights), where the noise distribution is allowed
to flip every output bit independently with probability 0.01.

Remark: The parameters accord with the usual intuition that the information content
must decrease when going from observed layer to hidden layer.
Proof: By definition, D(h) = sgn(Wh). Let’s understand what D(h) looks like. If
S is the subset of nodes in the hidden layer that are 1 in h, then the unique neighbor
property (Corollary 30) implies that (i) With high probability each node u in S has
at least 0.9d′ neighboring nodes in the observed layer that are neighbors to no other
node in S. Furthermore, at least 0.44d′ of these are connected to u by a positive edge
and 0.44d′ are connected by a negative edge. All 0.44d′ of the former nodes must
therefore have a value 1 in D(h). Furthermore, it is also true that the total weight
of these 0.44d′ positive edges is at least 0.21d′. (ii) Each v not in S has at most 0.1d′

neighbors that are also neighbors of any node in S.
Now let’s understand the encoder, specifically, E(D(h)). It assigns 1 to a node in

the hidden layer iff the weighted sum of all nodes adjacent to it is at least 0.2d′. By
(i), every node in S must be set to 1 in E(D(h)) and no node in S is set to 1. Thus
E(D(h)) = h for most h’s and we have shown that the autoencoder works correctly.
Furthermore, there is enough margin that the decoding stays stable when we flip 0.01
fraction of bits in the observed layer. 2

D Learning a single layer network

We first consider the question of learning a single layer network, which as noted
amounts to learning nonlinear dictionaries. It perfectly illustrates how we leverage
the sparsity and the randomness of the support graph.
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The overall algorithm is illustrated in Algorithm 1.

Algorithm 1. High Level Algorithm

Input: samples y’s generated by a deep network described in Section A
Output: Output the network/encoder and decoder functions

1: for i = 1 TO l do
2: Call LastLayerGraph/PairwiseGraph/3-Wise Graph on h(i−1) to construct the

correlation structure
3: Call RecoverGraphLast/RecoverGraph/RecoverGraph3Wise to learn the posi-

tive edges E+
i

4: Use PartialEncoder to encode all h(i−1) to h(i)

5: Call LearnGraph/LearnDecoder to learn the graph/decoder between layer i and
i− 1.

6: end for

In Section D.1.1 we start with the simplest subcase: all edge weights are 1
(nonedges may be seen as 0-weight edges). First we show how to use pairwise or
3-wise correlations of the observed variables to figure out which pairs/triples “wire
together”(i.e., share a common neighbor in the hidden layer). Then the correlation
structure is used by the Graph Recovery procedure (described later in Section F) to
learn the support of the graph.

In Section D.1.2 we show how to generalize these ideas to learn single-layer net-
works with both positive and negative edge weights.

In Section D.2 we show it is possible to do encoding even when we only know the
support of positive edges. The result there is general and works in the multi-layer
setting.

Finally we give a simple algorithm for learning the negative edges when the edge
weights are in {±1}. This algorithm needs to be generalized and modified if we are
working with multiple layers or real weights, see Section G for details.

D.1 Hebbian rule: Correlation implies common cause

D.1.1 Warm up: 0/1 weights

In this part we work with the simplest setting: a single level network with m hidden
nodes, n observed nodes, and a random (but unknown) bipartite graph G(U, V,E)
connecting them where each observed node has expected backdegree degree d. All
edge weights are 1, so learning G is equivalent to finding the edges. Recall that we
denote the hidden variables by h (see Figure 2) and the observed variables by y, and
the neural network implies y = sgn(Gh).

Also, recall that h is chosen uniformly at random among vectors with ρm 1’s. The
vector is sparse enough so that ρd� 1.
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Figure 2: Single layered network

Algorithm 2. PairwiseGraph

Input: N = O(log n/ρ) samples of y = sgn(Gh), where h is unknown and chosen
from uniform ρm-sparse distribution

Output: Graph Ĝ on vertices V , u, v are connected if u, v share a positive neighbor
in G
for each u, v in the output layer do

if there are at least 2ρN/3 samples of y satisfying both u and v are fired then
connect u and v in Ĝ

end if
end for

The learning algorithm requires the unknown graph to satisfy some properties
that hold for random graphs with high probability. We summarize these properties
as Psing and Psing+, see Section J.

Theorem 4
Let G be a random graph satisfying properties Psing. Suppose ρ � 1/d2, with

high probability over the samples, Algorithm 2 construct a graph Ĝ, where u, v are
connected in Ĝ iff they have a common neighbor in G.

As mentioned, the crux of the algorithm is to compute the correlations between
observed variables. The following lemma shows pairs of variables with a common
parent fire together (i.e., both get value 1) more frequently than a typical pair. Let
ρy = ρd be the approximate expected density of output layer.

Lemma 5
Under the assumptions of Theorem 4, if two observed nodes u, v have a common
neighbor in the hidden layer then

Pr
h

[yu = 1, yv = 1] ≥ ρ

otherwise,
Pr
h

[yu = 1, yv = 1] ≤ 3ρ2
y
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Proof: When u and v has a common neighbor z in the input layer, as long as z is
fired both u and v are fired. Thus Pr[yu = 1, yv = 1] ≥ Pr[hz = 1] = ρ.

On the other hand, suppose the neighbor of u (B(u)) and the neighbors of v (B(v))
are disjoint. Since yu = 1 only if the support of h intersect with the neighbors of u,
we have Pr[yu = 1] = Pr[supp(h) ∩ B(u) 6= ∅]. Similarly, we know Pr[yu = 1, yv =
1] = Pr[supp(h) ∩B(u) 6= ∅, supp(h) ∩B(v) 6= ∅].

Note that under assumptions Psing B(u) andB(v) have size at most 1.1d. Lemma 38
implies Pr[supp(h) ∩B(u) 6= ∅, supp(h) ∩B(u) 6= ∅] ≤ 2ρ2|B(u)| · |B(v)| ≤ 3ρ2

y. 2

The lemma implies that when ρ2
y � ρ(which is equivalent to ρ� 1/(d2)), we can

find pairs of nodes with common neighbors by estimating the probability that they
are both 1.

In order to prove Theorem 4 from Lemma 5, note that we just need to estimate
the probability Pr[yu = yv = 1] up to accuracy ρ/4, which by Chernoff bounds can
be done using by O(log n/ρ2) samples.

Algorithm 3. 3-WiseGraph

Input: N = O(log n/ρ) samples of y = sgn(Gh), where h is unknown and chosen
from uniform ρm-sparse distribution

Output: Hypergraph Ĝ on vertices V . {u, v, s} is an edge if and only if they share
a positive neighbor in G
for each u, v, s in the observed layer of y do

if there are at least 2ρN/3 samples of y satisfying all u, v and s are fired then
add {u, v, s} as an hyperedge for Ĝ

end if
end for

The assumption that ρ� 1/d2 may seem very strong, but it can be weakened using
higher order correlations. In the following Lemma we show how 3-wise correlation
works when ρ� d−3/2.

Lemma 6
For any u, v, s in the observed layer,

1. Prh[yu = yv = ys = 1] ≥ ρ, if u, v, s have a common neighbor

2. Prh[yu = yv = ys = 1] ≤ 3ρ3
y + 50ρyρ otherwise.

Proof: The proof is very similar to the proof of Lemma 5.
If u,v and s have a common neighbor z, then with probability ρ, z is fired and so

are u, v and s.
On the other hand, if they don’t share a common neighbor, then Prh[u, v, s are all fired] =

Pr[supp(h) intersects with B(u), B(v), B(s)]. Since the graph has property Psing+,
B(u), B(v), B(s) satisfy the condition of Lemma 40, and thus we have that Prh[u, v, s are all fired] ≤
3ρ3

y + 50ρyρ. 2
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D.1.2 General case: finding common positive neighbors

In this part we show that Algorithm 3 still works even if there are negative edges.
The setting is similar to the previous parts, except that the edges now have a random
weights. We will only be interested in the sign of the weights, so without loss of
generality we assume the nonzero weights are chosen from {±1} uniformly at random.
All results still hold when the weights are uniformly random in [−1, 1].

A difference in notation here is ρy = ρd/2. This is because only half of the edges
have positive weights. We expect the observed layer to have “positive” density ρy
when the hidden layer has density ρ.

The idea is similar as before. The correlation Pr[yu = 1, yv = 1, ys = 1] will be
higher for u, v, s with a common positive cause; this allows us to identify the +1 edges
in G.

Recall that we say z is a positive neighbor of u if (z, u) is an +1 edge, the set of
positive neighbors are F+(z) and B+(u).

We have a counterpart of Lemma 6 for general weights.

Lemma 7
When the graph G satisfies properties Psing and Psing+ and when ρy � 1, for any
u, v, s in the observed layer,

1. Prh[yu = yv = ys = 1] ≥ ρ/2, if u, v, s have a common positive neighbor

2. Prh[yu = yv = ys = 1] ≤ 3ρ3
y + 50ρyρ, otherwise.

Proof: The proof is similar to the proof of Lemma 6.
First, when u, v, s have a common positive neighbor z, let U be the neighbors of

u, v, s except z, that is, U = B(u) ∪ B(v) ∪ B(s) \ {z}. By property Psing, we know
the size of U is at most 3.3d, and with at least 1 − 3.3ρd ≥ 0.9 probability, none of
them is fired. When this happens (supp(h) ∩ U = ∅), the remaining entries in h are
still uniformly random ρm sparse. Hence Pr[hz = 1| supp(h) ∩ U = ∅] ≥ ρ. Observe
that u, v, s must all be fired if supp(h) ∩ U = ∅ and hz = 1, therefore we know

Pr
h

[yu = yv = ys = 1] ≥ Pr[supp(h) ∩ U = ∅] Pr[hz = 1| supp(h) ∩ U = ∅] ≥ 0.9ρ.

On the other hand, if u, v and s don’t have a positive common neighbor, then
we have Prh[u, v, s are all fired] ≤ Pr[supp(h) intersects with B+(u), B+(v), B+(s)].
Again by Lemma 40 and Property Pmul+, we have Prh[yu = yv = ys = 1] ≤ 3ρ3

y+50ρyρ
2

D.2 Paritial Encoder: Finding h given y

Suppose we have a graph generated as described earlier, and that we have found all
the positive edges (denoted E+). Then, given y = sgn(Gh), we show how to recover h
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as long as it possesses a “strong” unique neighbor property (definition to come). The
recovery procedure is very similar to the encoding function E(·) of the autoencoder
(see Section C) with graph E+.

Consider a bipartite graph G(U, V,E). An S ⊆ U is said to have the (1−ε)-strong
unique neighbor property if for each u ∈ S, (1−ε) fraction of its neighbors are unique
neighbors with respect to S. Further, if u 6∈ S, we require that |F+(u)∩F+(S)| < d′/4.
Not all sets of size o(n/d′) in a random bipartite graph have this property. However,
most sets of size o(n/d′) have this property. Indeed, if we sample polynomially many
S, we will not, with high probability, see any sets which do not satisfy this property.
See Property 1 in Appendix J for more on this.

How does this property help? If u ∈ S, since most of F (u) are unique neighbors,
so are most of F+(u), thus they will all be fired. Further, if u 6∈ S, less than d′/4 of
the positive neighbors will be fired w.h.p. Thus if d′/3 of the positive neighbors of u
are on, we can be sure (with failure probability exp−Ω(d′) in case we chose a bad S),
that u ∈ S. Formally, the algorithm is simply (with θ = 0.3d′):

Algorithm 4. PartialEncoder

Input: positive edges E+, sample y = sgn(Gh), threshold θ
Output: the hidden variable h

return h = sgn((E+)Ty − θ~1)

Lemma 8
If the support of vector h has the 11/12-strong unique neighbor property in G, then
Algorithm 4 returns h given input E+ and y = sgn(Gh).

Proof: As we saw above, if u ∈ S, at most d′/6 of its neighbors (in particular that
many of its positive neighbors) can be shared with other vertices in S. Thus u has at
least (0.3)d′ unique positive neighbors (since u has d(1 ± d−1/2) positive neighbors),
and these are all “on”.

Now if u 6∈ S, it can have an intersection at most d′/4 with F (S) (by the definition
of strong unique neighbors), thus there cannot be (0.3)d′ of its neighbors that are 1.
2

Remark 3 Notice that Lemma 8 only depends on the unique neighbor property,
which holds for the support of any vector h with high probability over the randomness
of the graph. Therefore this ParitialEncoder can be used even when we are learning
the layers of deep network (and h is not a uniformly random sparse vector). Also
the proof only depends on the sign of the edges, so the same encoder works when the
weights are random in {±1} or [−1, 1].
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D.3 Learning the Graph: Finding −1 edges.

Now that we can find h given y, the idea is to use many such pairs (h, y) and the
partial graph E+ to determine all the non-edges (i.e., edges of 0 weight) of the graph.
Since we know all the +1 edges, we can thus find all the −1 edges.

Consider some sample (h, y), and suppose yv = 1, for some output v. Now suppose
we knew that precisely one element of B+(v) is 1 in h (recall: B+ denotes the back
edges with weight +1). Note that this is a condition we can verify, since we know
both h and E+. In this case, it must be that there is no edge between v and S \B+,
since if there had been an edge, it must be with weight −1, in which case it would
cancel out the contribution of +1 from the B+. Thus we ended up “discovering” that
there is no edge between v and several vertices in the hidden layer.

We now claim that observing polynomially many samples (h, y) and using the
above argument, we can discover every non-edge in the graph. Thus the complement
is precisely the support of the graph, which in turn lets us find all the −1 edges.

Algorithm 5. Learning Graph

Input: positive edges E+, samples of (h, y), where h is from uniform ρm-sparse
distribution, and y = sgn(Gh)

Output: E−

1: R← (U × V ) \ E+.
2: for each of the samples (h, y), and each v do
3: Let S be the support of h
4: if yv = 1 and S ∩B+(v) = {u} for some u then
5: for s ∈ S do
6: remove (s, v) from R.
7: end for
8: end if
9: end for

10: return R

Note that the algorithm R maintains a set of candidate E−, which it initializes
to (U × V ) \ E+, and then removes all the non-edges it finds (using the argument
above). The main lemma is now the following.

Lemma 9
Suppose we have N = O(log n/(ρ2d)) samples (h, y) with uniform ρm-sparse h, and
y = sgn(Gh). Then with high probability over choice of the samples, Algorithm 5
outputs the set E−.

The lemma follows from the following proposition, which says that the probability
that a non-edge (z, u) is identified by one sample (h, y) is at least ρ2d/3. Thus the
probability that it is not identified after O(log n/(ρ2d)) samples is < 1/nC . All non-
edges must be found with high probability by union bound.

29



provable bounds for learning deep representations: technical appendix

Proposition 10
Let (z, u) be a non-edge, then with probability at least ρ2d/3 over the choice of
samples, all of the followings hold: 1. hz = 1, 2. |B+(u) ∩ supp(h)| = 1, 3.
|B−(u) ∩ supp(h)| = 0.

If such (h, y) is one of the samples we consider, (z, u) will be removed from R by
Algorithm 5.

Proof: The latter part of the proposition follows from the description of the algo-
rithm. Hence we only need to bound the probability of the three events.

Event 1 (hz = 1) happens with probability ρ by the distribution on h. Condi-
tioning on 1, the distribution of h is still ρm− 1 uniform sparse on m− 1 nodes. By
Lemma 39, we have that Pr[Event 2 and 3 | Event 1] ≥ ρ|B+(u)|/2 ≥ ρd/3. Thus all
three events happen with at least ρ2d/3 probability. 2

E Correlations in a Multilayer Network

We show in this section that Algorithm PairwiseGraph/3-WiseGraph also work in
the multi-layer setting. Consider graph Gi in this case, the hidden layer h(i+1) is no
longer uniformly random ρi+1 sparse unless i + 1 = `.2 In particular, the pairwise
correlations can be as large as ρi+2, instead of ρ2

i+1. The key idea here is that although
the maximum correlation between two nodes in z, t in layer h(i+1) can be large, there
are only a few pairs with such high correlation. Since the graph Gi is random and
independent of the upper layers, we don’t expect to see a lot of such pairs in the
neighbors of u, v in h(i).

We make this intuition formal in the following Theorem:

Theorem 11
For any 1 ≤ i ≤ ` − 1, and if the network satisfies Property Pmul+ with parameters
ρ3
i+1 � ρi, then given O(log n/ρi+1) samples, Algorithm 3 3-WiseGraph constructs a

hypergraph Ĝ, where (u, v, s) is an edge if and only if they share a positive neighbor
in Gi.

Lemma 12
Flor any i ≤ `− 1 and any u, v, s in the layer of h(i) , if they have a common positive

neighbor(parent) in layer of h(i+1)

Pr[h(i)
u = h(i)

v = h(i)
s = 1] ≥ ρi+1/3,

otherwise
Pr[h(i)

u = h(i)
v = h(i)

s = 1] ≤ 2ρ3
i + 0.2ρi+1

2Recall that ρi = ρi+1di/2 is the expected density of layer i.
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Proof: Consider first the case when u, v and s have a common positive neighbor z in
the layer of h(i+1). Similar to the proof of Lemma 7, when h

(i+1)
z = 1 and none of other

neighbors of u, v and s in the layer of h(i+1) is fired, we know h
(i)
u = h

(i)
v = h

(i)
s = 1.

However, since the distribution of h(i+1) is not uniformly sparse anymore, we cannot
simply calculate the probability of this event.

In order to solve this problem, we go all the way back to the top layer. Let
S = supp(h(`)), and let event E1 be the event that S ∩B(`)

+ (u)∩B(`)
+ (v)∩B(`)

+ (s) 6= ∅,
and S ∩ (B(`)(u)∪B(`)(v)∪B(`)(s)) = S ∩B(`)

+ (u)∩B(`)
+ (v)∩B(`)

+ (s) (that is, S does

not intersect at any other places except B
(`)
+ (u)∩B(`)

+ (v)∩B(`)
+ (s)). By the argument

above we know E1 implies h
(i)
u = h

(i)
v = h

(i)
s = 1.

Now we try to bound the probability of E1. Intuitively, B
(`)
+ (u)∩B(`)

+ (v)∩B(`)
+ (s)

contains B
(`)
+ (z), which is of size roughly di+1 . . . d`−1/2

`−i−1 = ρi+1/ρ`. On the other
hand, B(`)(u) ∪ B(`)(v) ∪ B(`)(s) is of size roughly 3di . . . d`−1 ≈ 2`−iρi/ρ`. These
numbers are still considerably smaller than 1/ρ` due to our assumption on the sparsity

of layers (ρi � 1). Thus by applying Lemma 39 with T1 = B
(`)
+ (z) and T2 = B(`)(u)∪

B(`)(v) ∪B(`)(s), we have

Pr[h(i)
u = h(i)

v = h(i)
s = 1] ≥ Pr[S ∩ T1 6= ∅, S ∩ (T2 − T1) = ∅] ≥ ρ`|T1|/2 ≥ ρi+1/3,

the last inequality comes from Property Pmul.
On the other hand, if u, v and s don’t have a common positive neighbor in

layer of h(i+1), consider event E2: S intersects each of B
(`)
+ (u), B

(`)
+ (v), B

(`)
+ (s).

Clearly, the target probability can be upperbounded by the probability of E2. By
the graph properties we know each of the sets B

(`)
+ (u), B

(`)
+ (v), B

(`)
+ (s) has size at

most A = 1.2di . . . d`−1/2
`−i = 1.2ρi/ρ`. Also, we can bound the size of their inter-

sections by graph property Pmul and Pmul+:
∣∣∣B(`)

+ (u) ∩B(`)
+ (v)

∣∣∣ ≤ B = 10ρi+1/ρ`,∣∣∣B(`)
+ (u) ∩B(`)

+ (v) ∩B(`)
+ (s)

∣∣∣ ≤ C = 0.1ρi+1/ρ`. Applying Lemma 40 with these

bounds, we have

Pr[E2] ≤ ρ3
`A

3 + 3ρ2
`AB + ρ`C ≤ 2ρ3

i + 0.2ρi+1,

2

F Graph Recovery

Graph reconstruction consists of recovering a graph given information about its sub-
graphs.A prototypical problem is the Graph Square Root problem, which calls for
recovering a graph given all pairs of nodes whose distance is at most 2. This is NP-
hard. Our setting is a subcase of Graph Square root, whereby there is an unknown
bipartite graph and we are told for all pairs of nodes on one side whether they have
distance 2. This is also NP-hard in general but is solvable when the bipartite graph
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is random or “random-like”. Recall that we apply this algorithm to all positive edges
between the hidden and observed layer.

Definition 2 (Graph Recovery Problem) There is an unknown random bipar-
tite graph G1(U, V,E1) between |U | = m and |V | = n vertices. Every edge is chosen
with probability d′/n.
Given: Graph Ĝ(V,E) where (v1, v2) ∈ E iff v1 and v2 share a common parent in G1

(i.e. ∃u ∈ U where (u, v1) ∈ E1 and (u, v2) ∈ E1).
Goal: Find the bipartite graph G1.

Since U and V are just the last two layers in the deep network, we adapt the
notations in previous sections. We use F (u) to denote the forward neighbors {v ∈
V : (u, v) ∈ E1} and B(v) to denote the backward neighbors {u ∈ U : (u, v) ∈ E1}.
For sets of vertices, let F (S) = ∪u∈SF (u) and B(S) = ∪v∈SB(v). We use Γ(v) to
denote the neighbors of V in Ĝ. In particular, the construction of graph Ĝ implies
Γ(v) = F (B(v)).

Notice that the graph Ĝ is the union of cliques on F (u)’s. This problem can be
thought of as a “community finding” problem: vertices in U are communities and
vertices in V are people; two people are connected if they are in the same community.

We shall give an algorithm that works when m2d′3/n3 � 1 and show how to
improve the guarantee using three-wise correlations.

F.1 Graph Recovery from Pairwise Correlations

Algorithm 6. RecoverGraph

Input: Ĝ given as in Definition 2
Output: Find the graph G1 as in Definition 2.

repeat
Pick a random edge (v1, v2) ∈ E.
Let S = {v : (v, v1), (v, v2) ∈ E}.
if |S| < 1.3d′ then
S ′ = {v ∈ S : |Γ(v) ∩ S| ≥ 0.8d′ − 1} {S ′ should be a clique in Ĝ}
In G1, create a vertex u and connect u to every v ∈ S ′.
Mark all the edges (v1, v2) for v1, v2 ∈ S ′.

end if
until all edges are marked

The idea of the algorithm is simple: since the graph G1 is randomly generated,
and the size of neighborhoods are small, the communities should have very small
intersections. In particular, if we pick two random vertices within a community, the
intersection of their neighborhoods will almost be equal to this community.
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The algorithm uses this idea to find most vertices S of the community that both
v1 and v2 belong to, and applies a further refinement to get S ′. By properties of the
graph S ′ should be exactly equal to the community.

We make these intuitions precise in the following theorem.

Theorem 13
Graph Recovery When the graph is chosen randomly according to Definition 2, and
when m2d′3/n3 � 1, with high probability (over the choice of the graph), Algorithm 6
solves Graph Recovery Problem. The expected running time (over the algorithm’s
internal randomness) is O(mn).

In order to prove the theorem, we need the following properties from the random
graph:

1. For any v1, v2 ∈ V , |(Γ(v1) ∩ Γ(v2))\(F (B(v1) ∩B(v2)))| < d′/20.

2. For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d′.

3. For any u ∈ U , v ∈ V and v 6∈ F (u), |Γ(v) ∩ F (u)| < d′/20.

4. For any u ∈ U , at least 0.1 fraction of pairs v1, v2 ∈ F (u) does not have a
common neighbor other than u.

5. For any u ∈ U , its degree is in [0.8d′, 1.2d′]

The first property says “most correlations are generated by common cause”: every
vertex v in F (B(v1) ∩ B(v2)) is necessarily a neighbor of both v1 and v2 by the
definition of graph Ĝ, because they have a common cause u ∈ U . The first property
asserts except this case, the number of common neighbors of v1 and v2 is very small.

The second property basically says the sets F (u)’s should be almost disjoint, this
is clear because the sets are chosen at random.

The third property says if a vertex v is not related to the cause u, then it cannot
have correlation with all many neighbors of u.

The fourth property says every cause introduces a significant number of correla-
tions that is unique to that cause.

In fact, Properties 2-4 all follow from the unique neighbor property in Lemma 29.
The last property is very standard because d′ � log n

Lemma 14
When the graph is chosen randomly according to Definition 2, and when m2d′3/n3 �
1, with probability e−Ω(d′) Properties 1-5 holds.

Proof: Property 1: Fix any v1 and v2, Consider the graph G1 to be sampled in
the following order. First fix the degrees (the degrees are arbitrary between 0.8d′ and
1.2d′), then sample the edges related to v1 and v2, finally sample the rest of the graph.
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At step 2, let S1 = B(v1)\B(v2), S2 = B(v1)\B(v2). By the construction of the
graph Ĝ, every vertex in (Γ(v1)∩Γ(v2))\(F (B(v1)∩B(v2))) must be in F (S1)∩F (S2).
With high probability (e−Ω(d′)) we know |S1| ≤ |B(v1)| ≤ 2md/n (this is by Chernoff
bound, because each vertex u is connected to v with probability du/n < 1.2d′/n).
Similar things hold for S2.

Now F (S1) and F (S2) are two random sets of size at most 3m(d′)2/n, thus again
by Chernoff bound we know their intersection has size smaller than 10(md′2/n)2/n,
which is smaller than d′/20 by assumption.

Property 2: This is easy, for any two vertices u1 and u2, F (u1) and F (u2) are two
random sets of size at most 1.2d′. Their expected intersection is less than 2(d′)2/n
and the probability that their intersection is larger than 0.1d′ is at most n−Ω(0.1d′).
Therefore |F (u1) ∪ F (u2)| = |F (u1)|+ |F (u2)| − |F (u1) ∩ F (u2)| ≥ 1.5d′.

Property 3: Consider we sample the edges related to u in the last step. Before
sampling F (u) we know v 6∈ F (u), and Γ(v) is already a fixed set of size at most
3md′2/n. The probability that F (u) has more than d′/20 elements in Γ(v) is at most
e−Ω(d′) by Chernoff bounds.

Property 4: Again change the sampling process: first sample all the edges not
related to u, then sample 1/2 of the edges connecting to u, and finally sample the
second half.

Let S1 be the first half of F (u). For a vertex outside S1, similar to property 3 we
know every v 6∈ S1 has at most d′/20 neighbors in S1, therefore any new sample in
the second half is going to introduce 0.8d′/2− d′/20 new correlations that are unique
to u. The total number of new correlations is at least (0.8d′/2−d′/20)du/2 > 0.1

(
du
2

)
.

Property 5 follows from simple concentration bounds. 2

Now we show that when the graph satisfies all these properties, the algorithm
works.
Lemma 15
When graph G1 satisfies Properties 1-5, Algorithm 6 successfully recovers the graph
G1 in expected time O(mn).

Proof: We first show that when (v1, v2) has more than one unique common cause,
then the condition in the if statement must be false. This follows from Property 2.
We know the set S contains F (B(v1) ∩B(v2)). If |B(v1) ∩B(v2)| ≥ 2 then Property
2 says |S| ≥ 1.5d′, which implies the condition in the if statement is false.

Then we show if (v1, v2) has a unique common cause u, then S ′ will be equal to
F (u). By Property 1, we know S = F (u) ∪ T where |T | ≤ d′/20.

For any vertex v in F (u), it is connected to every other vertex in F (u). Therefore
|Γ(v) ∩ S| ≥ |Γ(v) ∩ F (u)| ≥ 0.8d′ − 1, and v must be in S ′.

For any vertex v′ outside F (u), by Property 3 it can only be connected to d′/20
vertices in F (u). Therefore |Γ(v) ∩ S| ≤ |Γ(v) ∩ F (u)|+ |T | ≤ d′/10. Hence v′ is not
in S ′.

Following these arguments, S ′ must be equal to F (u), and the algorithm success-
fully learns the edges related to u.
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The algorithm will successfully find all vertices u ∈ U because of Property 4: for
every u there are enough number of edges in Ĝ that is only caused by u. When one
of them is sampled, the algorithm successfully learns the vertex u.

Finally we bound the running time. By Property 4 we know that the algorithm
identifies a new vertex u ∈ U in at most 10 iterations in expectation. Each iteration
takes at most O(n) time. Therefore the algorithm takes at most O(mn) time in
expectation. 2

F.2 Graph Recovery with Higher-Order Correlations

When d becomes larger, it becomes harder to recover the graph from only pairwise
correlations because more and more pairs of nodes on the other side are at distance
2. In particular if d′2 > n then almost all pairs are at distance 2 and the graph Ĝ
given to us is simply a complete graph and thus reveals no information about G1.

We show how to use higher-order correlations in order to improve the dependency
on d. For simplicity we only use 3-wise correlation, but this can be extended to higher
order correlations.

Definition 3 (Graph Recovery with 3-wise Correlation) There is an un-
known random bipartite graph G1(U, V,E1) between |U | = m and |V | = n vertices.
Every edge is chosen randomly with probability d′/n.
Given: Hypergraph Ĝ(V,E) where (v1, v2, v3) ∈ E iff there exists u ∈ U where
(u, v1), (u, v2) and (u, v3) are all in E1.
Goal: Find the bipartite graph G1.

Algorithm 7. RecoverGraph3Wise

Input: Hypergraph Ĝ in Definition 3
Output: Graph G1 in Defintion 3

repeat
Pick a random hyperedge (v1, v2, v3) in E
Let S = {v : (v, v1, v2), (v, v1, v3), (v, v2, v3) ∈ E}
if |S| < 1.3d′ then

Let S ′ = {v ∈ S : v is correlated with at least
(

0.8d′−1
2

)
pairs in S}

In G1, create a vertex u and connect u to every v ∈ S ′.
Mark all hyperedges (v1, v2, v3) for v1, v2, v3 ∈ S ′

end if
until all hyperedges are marked

The intuitions behind Algorithm 7 are very similar to Algorithm 6: since 3-wise
correlations are rare, not many vertices should have 3-wise correlation with all three
pairs (v1, v2), (v1, v3) and (v2, v3) unless they are all in the same community. The
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performance of Algorithm 7 is better than the previous algorithm because 3-wise
correlations are rarer.

Theorem 16
When the graph is chosen according to Definition 3, and when m3d′8/n8 � 1, with
high probability over the randomness of the graph, Algorithm 7 solves Graph Recov-
ery with 3-wise Correlation. The expected running time is O(m(d′3 + n)) over the
randomness of the algorithm.

The theorem uses very similar properties as Theorem 13, but the pairwise corre-
lations are replaced by three-wise correlations:

1’ For any (v1, v2, v3) ∈ E, if S is the set defined as in the algorithm, then
|S\F (B(v1) ∩B(v2) ∩B(v3))| < d′/20.

2’ For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d′.

3’ For any u ∈ U , v ∈ V and v 6∈ F (u), v is correlated with at most d′2/40 pairs
in F (u).

4’ For any u ∈ U , at least 0.1 fraction of triples v1, v2, v3 ∈ F (u) does not have a
common neighbor other than u.

5’ For any u ∈ U , its degree is in [0.8d′, 1.2d′]

We can use concentration bounds to show all these properties hold for a random
graph.

Lemma 17
When the graph is chosen randomly according to Definition 3, and when m3d′8/n8 �
1, with probability e−Ω(d′), graph G1 satisfies property 1′ − 5′.

Now the following lemma implies the theorem.

Lemma 18
When the graph G1 satisfies properties 1′−5′, Algorithm 7 finds G1 in expected time
O(m(d′3 + n)).

Proof: The idea is again very similar to the pairwise case (Lemma 15).
If (v1, v2, v3) has more than one common neighbor, then Property 2′ shows the

condition in if statement must be false (as |S| ≥ |F (B(v1) ∩B(v2) ∩B(v3))| ≥ 1.5d′.
When (v1, v2, v3) has only one common neighbor u, then Property 1′ shows S =

F (u) ∪ T where |T | ≤ d′/20.
Now consider S ′, for any v ∈ F (u), it is correlated with all other pairs in F (u).

Hence it must be correlated with at least
(

0.8d′−1
2

)
pairs in S, which implies v is in S.
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For any v′ 6∈ F (u), by Property 3′ it can only be correlated with d′2/40 pairs in
F (u). Therefore, the total number of correlated pairs it can have in S is bounded by
|T | |F (u)|+

(|T |
2

)
+ d′2/40 <

(
0.8d′−1

2

)
. This implies v′ is not in S.

The argument above shows S ′ = F (u), so the algorithm correctly learns the edges
related to u.

Finally, to bound the running time, notice that Property 4′ shows the algorithm
finds a new vertex u in 10 iterations in expectation. Each iteration takes at most
n+ d′3 time. Therefore the algorithm takes O(m(d′3 + n)) expected time. 2

G Learning the graph

In this section we show how to learn the graph Gt (t = 1, 2, ..., `). For simplicity, we
focus on the layer above the bottommost layer (the last layer with discrete output).
Recall the graph G(U, V,E,w) is chosen from the distribution Gm,n,p (m = n2 and
n = n1). The vector h on the U side is the h(2) in the original network, and is
generated according to the distribution D2. The vector y on V side is h(1) in the
original network, and y = sgn(Gh). As usual, we denote the expected degree of nodes
in U as d′ = pn, and the expected degree of nodes in V as d = pm. Let ρ be the
sparsity on the U side, ρy be the sparsity on the V side. The V side is also relatively
sparse in the sense that ρyd� 1.

At this step, we have already applied PartialEncoder to y, and Lemma 8 ensures
we get the correct vector h. Hence in this Section we assume we are given pairs (h, y).

G.1 Learning the graph for D(`, ρl, {Gi})
If the edges have weights ±1, we have shown how to learn the negative edges E− in
Section D. The only difference here is that h is chosen from D2 instead of random
ρ2n2 sparse vectors. We prove the following Lemma that replaces Lemma 9.

Lemma 19
Suppose ρyd� 1, using O(log n/(ρ2d)) samples, with high probability over the choice
of the samples, Algorithm 5 returns E−.

Proof: Similar as in Lemma 9, it suffices to prove the following Proposition 20. Once
this Proposition is true, any (s, v) 6∈ E will be removed from R with high probability.
By union bound all non-edges are removed, and the remaining pairs are the edges
E−.

Proposition 20
Suppose h is from D2 as defined in beginning of this Section, for any (x, u) 6∈ E, with
probability Ω(ρ2d) over the choice of h, the following events happen simultaneously:
1. x ∈ supp(h), 2. |B+(u) ∩ supp(h)| = 1, 3. |B−(u) ∩ supp(h)| = 0.

When these events happen, (x, u) is removed from R by Algorithm 5.
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Proof: The idea is very similar to the case when h is chosen from uniformly ρ2n2

sparse vectors. Note that event 1 happens with roughly probability ρ the expected
fractions of 1’s in h is ρ. More precisely, for any z in the second layer, Pr[hz =

1] ≥ ρ`|B(`)
+ (z)| = ρ2 = ρ. Similarly, event 2 happens if for some nodes t ∈ B+(u),∣∣∣supp(h(`)) ∩B(`)

+ (t)
∣∣∣ ≥ 1, and event 3 happens when B

(`)
+ (B−(u)) ∩ supp(h(`)) = ∅.

Using Property Pmul and Lemma 39, one can show that actually h behaves very
similarly to ρ2n2-sparse vector, where the probability that both the three events
happen is Ω(ρ2d).

2

2

G.2 Learning a Decoder for R(`, ρ, {Gi})
When the weights on the edges are continuous (in [−1, 1]), learning the decoder
becomes harder. In particular, later in Section I we show it is hard to learn the
weights exactly. Here we give an algorithm that achieves a slightly weaker guarantee:
the decoder learned by this algorithm is correct with probability 1− η.

The key observation here is that every coordinate of y is a half-plane on the
h vector, so learning the decoder actually reduces to the famous Support Vector
Machines.

The hypothesis class for coordinate yv is simply all the halfplanes sgn((Gh)v). By
VC-dimension theory, since the V C-dimension of a halfplane is m+1, any hypothesis
that is consistent with all N samples has generalization error O(

√
(m+ 1) logN/N).

Once we have enough samples, finding a consistent halfplane is a linear program. The
full algorithm is given in Algorithm 8

Lemma 21
Given N = O(`2mn2 log n/η2) samples of (h, y), where h is chosen from distribution
D2 and y = sgn(Gh), with high probability over the choice of samples, Algorithm 8
outputs a matrix G′ that satisfies yi = sgn(G′hi) for all samples (yi, hi). Furthermore,

Pr
h∼Dt

[sgn(G′h) 6= sgn(Gh)] < η/`.

Proof: It is clear that the LP in Algorithm 8 is feasible, because G is a feasible
solution. On the other hand, every feasible solution G′ of the LP are consistent with
all the samples.

For each output node v, since the family of m-dimensional half-planes has VC-
dimension m+1, we know with high probability any row vector G′v that is consistent
with all the N i.i.d. samples has small generalization error

Pr
h∼Dh

[sgn(G′vh) 6= sgn(Gvh)] ≤
√

2m log(eN/d)

N
+O(

√
log(n)

2N
) ≤ η/n`
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Taking a union bound for all coordinates of y, we have

Pr
h∼Dt

[sgn(G′h) 6= sgn(Gh)] < η/`.

2

Algorithm 8. LearnDecoder

Input: N = O(nl2m2 log n/η2) samples (h1, y1), (h2, y2), . . . , (hN , yN), where h is
from distribution Dt and y = sgn(Gh)

Output: A graph G′ such that Prh∼Dt [sgn(G′h) 6= sgn(Gh)] ≤ ε.
Solve the linear program

∀j,
{
G′hj ≤ 0 if yj = 0
G′hj > 0 if yj = 1

Here ≤ and > are coordinate-wise.
return a feasible solution G′, the decoder is y = D(h) = sgn(G′h).

When decoders for all layers are learned by Algorithm 8, the deep network com-
posed by the decoders generates a distribution that is close to the original deep
network:
Theorem 22
Given a deep network R(`, ρ, {Gi}), suppose decoders D2, D3, ..., Dl are learned for

layers G2, G3, ..., G`, then for a random ρn` sparse vector h(l),

Pr
h

[D2(D3(· · ·Dl(h(l)) · · · ) 6= h(1)] ≤ `− 1

`
· η.

In particular, let R′ be the network generated by stacking the decoders, the out-
puts of the two networks are `−1

`
· η-close in statistical distance.

Proof: Let bad event Badi be the event h(t) = Dt+1(· · ·Dl(h(l)) · · · ) for all t ≥ i,
and h(i−1) 6= Di(· · ·Dl(h(l)) · · · ). Clearly the events are disjoint, and the event of
interest is the union of Bad2, Bad3, ..., Badl. By Lemma 21, each Badi happens with
probability at most η/`. Union bound gives the result.

2

H Layer with Real-valued Output

In previous sections, we considered hidden layers with sparse binary input and out-
put. However, in most of applications of deep learning, the observed vector is dense
and real-valued. Bengio et al.[BCV13] suggested a variant auto-encoder with linear
decoder, which is particularly useful in this case.

We first show for a random weighted graph G, the linear decoder function D(h) =
Gh and the encoder function E(y) = sgn(GTy + b) form a denoising autoencoder.
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Theorem 23
If G is a random graph with random weights in either {+1,−1} or [−1, 1], the encoder

E(y) = sgn(GTy−0.1d′~1) and linear decoder D(h) = Wh form an sparse autoencoder:
that is, for any vector h of support size at most k, E(D(h)) = h.

Further, the autoencoder satisfy the denoising property E(D(h)+η) = h when the
noise vector η has independent components each with variance at most o(d′0/ log2 n).

Proof: When there is no noise, we know E(D(~h)) = sgn(GTG~h − 0.2d′0~1). With
high probability the matrix GTG has value at least 0.9d′0 on diagonals (for {+1,−1}
weights, for [−1, 1] weights this is at least 0.2d′0). For any fixed ~h, the support of the

i-th row of GTG and the support of ~h have a intersection of size at most d′0 log2 n with
high probability. Also, at all these intersections, the entries of GTG has random signs,
and variance bounded by O(1). Hence if ~hi = 1 (GTG~h)i ≥ 0.9d′0 − O(

√
d′0 log2 n)

(or 0.2d′0 − O(
√
d′0 log2 n) for [−1, 1] weights) ; if ~hi = 0 (GTG~h)i ≤ O(

√
d′0 log2 n).

Setting the threshold at 0.1d′0 easily distinguishes between these two cases.
Even if we add noise, since the inner product of Gi and the noise vector is bounded

by o(d0) with high probability, the autoencoder still works.2
We use similar ideas as in Section D to learn the last layer. The algorithm col-

lects the correlation-structure of the observed variables, and use this information to
reconstruct E+. We inherent most of the notations used in Section C. Formally, the
last layer consists of a graph G(U, V,E,w), chosen randomly from distribution Gm,n,p.
The weights w are chosen uniform randomly from ±1. Although our result extends to
the distribution on h generated by the deep network, and the weights are in [−1, 1] for
simplicity, we restrict to the uniform ρm sparse distribution and random ±1 weights.

H.1 Learning network using correlation

When we observe real-valued output in the last layer, we can learn whether three
nodes u,v and s have a common cause from their correlation measured by E[xuxvxs],
even if the output vector is fully dense. Note that compared to Theorem 4 in Sec-
tion D, the main difference here is that we allow ρpm to be any constant (before
ρpm� 1/d).

Theorem 24
When ρpm = O(1), pn = Ω(log3 n), and the input h is a uniformly random ρm-sparse
vector, then with high probability over the choice of the weights and the choice of the
graph, for any three nodes u, v, s at the output side (side of y)

1. If u, v and s have no common neighbor, then |Eh[yuyvys]| ≤ ρ/3

2. If u, v and s have a unique common neighbor, then |Eh[yuyvys]| ≥ 2ρ/3

The rigorous proof of Theorem 24 is similar to Lemma 7. We defer the proof in
Appendix L.

40



provable bounds for learning deep representations: technical appendix

Although the hypergraph given by Theorem 24 is not exactly the same as the
hypergraph given by Theorem 11, the same Algorithm 7 can find the edges of the
graph. Notice that in this case we get the support of all edges (instead of just positive
edges). Using the sign of Eh[yuyvys], we can easily distinguish positive and negative
edges (see Appendix L for more details). This idea can be generalized to [−1, 1]
weights, and we prove the following theorem in Appendix L.

Theorem 25
If h is from the distribution D1, with parameters satisfying ρ1d = O(1), d� log3 n),

d3/2/(d1d2) � log−3/2 n and
√
d/d1 � log−3/2 n, then with high probability over the

choice of the weights and choice of the graph, there is an algorithm such that given
O(log2 n/ρ2

1) samples of the output y, learns the network exactly in time O(m(d3 +
n) + log2 n/ρ2

1).

Real weights from [−1, 1] Finally, the above results can be extended to the case
when edge weights are uniformly random from [−1, 1]. In this case there are several
differences:

1. The correlation is large only if the three vertices share a parent with relatively
large edge weights. A slight variant of Algorithm 7 learns the large weights.

2. It is still possible to use PartialEncoder even if we only have the large weights.

3. After applying PartialEncoder, we get (h, y) pairs. By solving the system of
linear equations yi = Ghi we learn G.

Theorem 26
If the weight of the network is chosen independently from [−1, 1], and all the others
parameters satisfy the same condition as in Theorem 25 (but with different univer-
sal constant), there is an algorithm that learns the graph and the weights using
O(log2 n/ρ2

1) samples and O(log2 n/ρ2
1 +m(d3 + n)) time.

I Lower bound

I.1 Improper learning is necessary when weights are reals

In this section, we showcase an example of real weights in which we cannot hope to
recover either the weights (even approximately), or to find some set of weights that
agrees with the true one on all the inputs, using less than exp(Ω(d)) samples. This
justifies the necessity of the improper/PAC learning of the real weights.

Lemma 27
There exist two vectors w,w′ ∈ {0, 1}d such that the two functions f = sgn(wTh) and

f ′ = sgn(w′Th) for h ∈ {0, 1}d only differ at the point h = ~1. Thus it is necessary to

41



provable bounds for learning deep representations: technical appendix

have exp(Ω(d)) samples of h from uniform ρ-sparse distribution to recover the true
value of function f = sgn(wTh) at point h = ~1.

Proof: We construct the following w and w′. WLOG, let d be an odd number
with d = 2s + 1. Let z be the vector with first s coordinates being 1/(s + 1),
and the remaining coordinates being 1/s. Let w = z + ε~1 and w′ = z − ε~1, where
0 ≤ ε < (s(s+ 1)(2s+ 1))−1. Note that zTh is away from zero by at least (s(s+ 1))−1

if h 6= ~1 and zTh = 0 if h = ~1. Therefore, wTh and w′Th agree on the sign for all h
but h = ~1. 2

I.2 Representational power: One layer net can’t do two lay-
ers net

In this section we show that a two-layer network with ±1 weights is more expressive
than one layer network with arbitrary weights. A two-layer network (G1, G2) consists
of random graphs G1 and G2 with random ±1 weights on the edges. Viewed as
a generative model, its input is h(3) and the output is h(1) = sgn(G1 sgn(G2h

(3))).
We will show that a single-layer network even with arbitrary weights and arbitrary
threshold functions must generate a fairly different distribution.

Lemma 28
For almost all choices of (G1, G2), the following is true. For every one layer net-

work with matrix A and vector b, if h(3) is chosen to be a random ρ3n-sparse vector
with ρ3d2d1 � 1, the probability (over the choice of h(3)) is at least Ω(ρ2

3) that
sgn(G1 sgn(G1h

(3))) 6= sgn(Ah(3) + b).

The idea is that the cancellations possible in the two-layer network simply cannot
all be accomodated in a single-layer network even using arbitrary weights. More
precisely, even the bit at a single output node v cannot be well-represented by a
simple threshold function.

First, observe that the output at v is determined by values of d1d2 nodes at the
top layer that are its ancestors. Wlog, in the one layer net (A, b), there should be no
edge between v and any node u that is not its ancestor. The reason is that these edges
between v and its ancestors in (A, b) can be viewed collectively as a single random
variables that is not correlated with values at v’s ancestors, and either these edges
are “influential” with probability at least ρ2

3/4 in which case it causes a wrong bit at
v; or else it is not influential and removing it will not change the function computed
on ρ2

3/4 fraction of probability mass. Similarly, if there is a path from u to v then
there must be a corresponding edge in the one-layer network. The question is what
weight it should have, and we show that no weight assignment can avoid producing
erroneous answers.

The reason is that with probability at least ρ3/2, among all ancestors of v in the
input layer, only u is 1. Thus in order to produce the same output in all these cases,
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in the one-layer net the edge between u and v should be positive iff the path from u
to v consists of two positive edges. But now we show that with high probability there
is a cancellation effect involving a local structure in the two layer net whose effect
cannot be duplicated by such a single-layer net (See the Figure 3 and 4).

h(1)

h(2)

v

+1 -1

+1

u1 u2 u3
h(3)

+1

+1

G2

G1

s s′

u4

-1

Figure 3: Two-layer network(G1, G2)

h(1)

v

u1 u2 u3
h(3)

Au1v > 0 < 0 > 0

u4

< 0

Figure 4: Single-layer network (A, b)

As drawn in Figure 3, suppose the nodes u1, u2 connect to s in h(2) via +1 and
−1 edge, and s connects to v via a +1 edge. Similarly, the nodes u3, u4 connect to s′

in h(2) via +1 and −1 edge, and s connects to v via a +1 edge.
Now assume all other ancestors of v are off, and consider the following four values

of (u1, u2, u3, u4): (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 1), (0, 1, 1, 0). In the two-layer net-
work, h(1)

v should be 0 for the first two inputs and 1 for the last two inputs. Now
we are going to see the contradiction. For single-layer network, these values imply
constraints Au1,v + Au2,v + bv ≤ 0, Au3,v + Au4,v + bv ≤ 0, Au1,v + Au4,v + bv > 0,
Au2,v + Au3,v + bv > 0. However, there can be no choices of (A, b) that satisfies all
four constraints! To see that, simply add the first two and the last two, the left-
hand-sides are all

∑4
i=1Aui,v + 2bv, but the right-hand-sides are ≤ 0 and > 0. The

single-layer network cannot agree on all four inputs. Each of the four inputs occurs
with probability at least Ω(ρ2

3). Therefore the outputs of two networks must disagree
with probability Ω(ρ2

3).

Remark: It is well-known in complexity theory that such simple arguments do not
suffice to prove lowerbounds on neural nets with more than one layer.

J Random Graph Properties

In this Section we state the properties of random graphs that are used by the al-
gorithm. We first describe the unique-neighbor property, which is central to our
analysis. In the next part we list the properties required by different steps of the
algorithm.

J.1 Unique neighbor property

Recall that in bipartite graph G(U, V,E,w), the set F (u) denotes the neighbors of
u ∈ U , and the set B(v) denotes the neighbors of v ∈ V .
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For any node u ∈ U and any subset S ⊂ U , let UF (u, S) be the sets of unique
neighbors of u with respect to S,

UF (u, S) , {v ∈ V : v ∈ F (u), v 6∈ F (S \ {u})}

Property 1 In a bipartite graph G(U, V,E,w), a node u ∈ U has (1 − ε)-unique
neighbor property with respect to S if

∑

v∈UF (u,S)

|w(u, v)| ≥ (1− ε)
∑

v∈F (u)

|w(u, v)| (2)

The set S has (1 − ε)-strong unique neighbor property if for every u ∈ U , u has
(1− ε)-unique neighbor property with respect to S.

Remark 4 Notice that in our definition, u does not need to be inside S. This is not
much stronger than the usual definition where u has to be in S: if u is not in S we
are simply saying u has unique neighbor property with respect to S ∪ {u}. When
all (or most) sets of size |S|+ 1 have the “usual” unique neighbor properties, all (or
most) sets of size |S| have the unique neighbor property according to our definition.

Lemma 29
If G(U, V,E) is from distribution Gm,n,p, and for any u ∈ U , the weight vector w(u, ·)
(i.i.d. on edges) satisfies that |w(u, ·)|21 ≥ C · ‖w(u, ·)‖2

2 for some C. Then for every
subset S of U with (1 − p)|S| > 1 − ε/2 (note that p|S| = d′|S|/n is the expected
density of F (S)), with probability 1 − 2m exp(−ε2C) over the randomness of the
graph, S has the (1− ε)-strong unique neighbor property.

Note: The weights usually comes from one of the following: 1. all weights are 1;
2. weights are random in {±1}; 3. weights are random in [−1, 1]. In all these cases
C is Θ(d′).
Proof:

Fix the vertex u, first sample the edges incident to u. Without loss of generality
assume u has neighbors v1, . . . , vk (where k ≈ pn). Now sample the edges incident to
the vi’s. For each vi, with probability (1− p)|S| ≥ 1− ε/2, vi is a unique neighbor of
u. Call this event Goodi (and we also use Goodi as the indicator for this event).

By the construction of the graph we know Goodi’s are independent, hence by
Hoeffding inequality (see Theorem 45), we have that with probability

1−2 exp(−
ε2(
∑

v∈F (u) w(u, v))2

∑
v∈F (u) w(u, v)2

) = 1−2 exp(−ε2|w(u, ·)|21/‖w(u, ·)‖2
2) = 1−2 exp(−ε2C),

the following holds
∑

v∈F (u)

w(u, v)Goodi ≥ (1− ε)
∑

v∈F (u)

w(u, v).
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By union bound, every u satisfies this property with probability at least 1 −
2m exp(−ε2C). 2

Corollary 30
IfG(U, V,E) is chosen from Gm,n,p and all the weights w(u, v) have the same magnitude
for (u, v) ∈ E , then for fixed S with p|S| < ε/2, with probability 1− exp(−Ω(d′)), S
has the (1− ε)-strong unique neighbor property.

J.2 Properties required by each steps

We now list the properties required in our analysis. These properties hold with high
probability for random graphs.

J.2.1 Single layer

The algorithm PairwisGraph requires the following properties Psing

1. For any u in the observed layer, |B(u)| ∈ [0.9d, 1.1d], (if G has negative weights,
we also need |B+(u)| ∈ [0.9d/2, 1.1d/2])

2. For any z in the hidden layer, |F (z)| ∈ [0.9d′, 1.1d′], (if G has negative weights,
we also need |F+(z)| ∈ [0.45d′, 0.55d′])

The algorithm 3-WiseGraph needs Psing, and additionally Psing+
1. For any u, v in the observed layer, |B+(u) ∪B+(v)| ≤ 10.

Lemma 31
If graph G is chosen from Gm,n,p with expected degrees d, d′ � log n, with high

probability over the choice of the graph, Psing is satisfied. If in addition d2 ≤ n4/5,
the property Psing+ is also satisfied with high probability.

J.2.2 Multi-layer

For the multi-layer setting, the algorithm PairwisGraph requires the following expan-
sion properties Pmul.

1. For any node u at the layer i, |Fi−1(u)| ∈ [0.9d′i−1, 1.1d
′
i−1], |Bi(u)| ∈ [0.9di, 1.1di],∣∣F+

i−1(u)
∣∣ ∈ [0.45d′i−1, 0.55d′i−1],

∣∣B+
i (u)

∣∣ ∈ [0.45di, 0.55di]

2. For any node u at the layer i, |B(t)
+ (u)| ≥ 0.8ρi/ρt, and |B(`)(u)| ≤ 2`−i+1ρi/ρ`.

3. For any pair of nodes u, v at layer i,

∣∣∣B(`)
+ (u) ∩B(`)

+ (v)
∣∣∣ ≤ 2ρi+1/ρ` ·

(
log n/di+1 + 1/(ρ`n`) +

∣∣∣B(i+1)
+ (u) ∩B(i+1)

+ (v)
∣∣∣
)
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In particular, if u and v have no common positive parent at layer i+1 (
∣∣∣B(i+1)

+ (u) ∩B(i+1)
+ (v)

∣∣∣ =

0), then ∣∣∣B(`)
+ (u) ∩B(`)

+ (v)
∣∣∣ ≤ o(ρi+1/ρ`)

The algorithm 3-WiseGraph needs property Pmul+:

1. Properties 1 and 2 in Pmul

2. For any pair of nodes u, v at layer i,
∣∣∣B(`)

+ (u) ∩B(`)
+ (v)

∣∣∣ ≤ 10ρi+1/ρ`

3. For any three nodes u, v and s at layer i, if they don’t have a common positive
neighbor in layer i+ 1,

∣∣∣B(`)
+ (u) ∩B(`)

+ (v) ∩B(`)
+ (s)

∣∣∣
≤ 2ρi+1/ρ` ·

(
log n/di+1 + ρ`/(ρ`n`) + 1/(ρ2

`n
2
`)
)
≤ o(ρi+1/ρ`)

Lemma 32
If the network D(`, ρ`, {Gi}) have parameters satisfying di � log n, and ρ2

i � ρi+1,
then with high probability over the randomness of the graphs, {Gi}’s satisfy Pmul.
Additionally, if di � log n and ρ3

i � ρi+1, then {Gi}’s satisfy Pmul+ with high
probability.

In order to prove Lemma 32 we need the following claim:

Claim 33
If the graph G ∼ Gm,n,p with d = pm being the expected back degree, and d� log n.
For two arbitrary sets T1 and T2, with d|T1| � m, d|T2| � m, we have with high
probability

|B(T1) ∩B(T2)| ≤ (1 + ε)d|T1 ∩ T2|+ (1 + ε)d2|T1||T2|/m+ 5 log n

This Claim simply follows from simple concentration bounds. Now we are ready
to prove Lemma 32.
Proof:[Proof of Lemma 32] Property 1 in Pmul follows directly from di � log n.

Property 2 in Pmul follows from unique neighbor properties (when we view the
bipartite graph from Ni to Ni+1).

For Property 3, we prove the following proposition by induction on t:

Proposition 34
For any two nodes u, v at layer 1,

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ ≤ (1+ε)ttρ2

1/(ρ
2
tnt)+6t(1+ε)tρ3 log n/ρt+(1+ε)tρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt
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This is true for t = 2 (by Claim 33). Suppose it is true for all the values less than
t − 1. By Claim 33, we know with high probability (notice that we only need to do
union bound on n2 pairs)

∣∣∣B(t+1)
+ (u) ∩B(t+1)

+ (v)
∣∣∣ ≤ (1 + ε)dt/2 · ρ2

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ /ρt

+(1 + ε)d2
t/4 · |B(t)

+ (u)||B(t)
+ (v)|+ 5 log n

≤ (1 + ε)t+1ρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt+1 + 6t(1 + ε)t+1ρ3 log n/ρt+1

+(1 + ε)ttρ2
1/(ρ

2
tnt) + (1 + ε)d2

t/4 · ρ2
1/(ρ

2
tnt+1) + 5 log

≤ (1 + ε)t+1ρ2

∣∣∣B(2)
+ (u) ∩B(2)(v)

∣∣∣ /ρt+1 + 6(t+ 1)(1 + ε)t+1ρ3 log n/ρt+1

+2(1 + ε)t+1(t+ 1)ρ2
1/(ρ

2
t+1nt+1),

where the last inequality uses the fact that ρ2
1/(ρ

2
tnt) ≤ d2

t/4 · ρ2
1/(ρ

2
tnt+1). This is

because ntdt/nt+1 = d′t � 1.
Proposition 34 implies that when ρ2

1 � ρ2, and ` is a constant,

∣∣∣B(t)
+ (u) ∩B(t)

+ (v)
∣∣∣ ≤ 2ρi+1/ρ` ·

(
1/di+1 + 1/(ρ`n`) +

∣∣∣B(i+1)
+ (u) ∩B(i+1)

+ (v)
∣∣∣
)

Property 3 in Pmul+ is similar but more complicated. 2

J.2.3 Properties for Graph Reovery

For the algorithm RecoverGraph3Wise to work, the hypergraph generated from the
random graph should have the following properties Precovery+.

1’ For any (v1, v2, v3) ∈ E, if S is the set defined as in the algorithm, then
|S\F (B(v1) ∩B(v2) ∩B(v3))| < d′/20.

2’ For any u1, u2 ∈ U , |F (u1) ∪ F (u2)| > 1.5d′.

3’ For any u ∈ U , v ∈ V and v 6∈ F (u), v is correlated with at most d′2/40 pairs
in F (u).

4’ For any u ∈ U , at least 0.1 fraction of triples v1, v2, v3 ∈ F (u) does not have a
common neighbor other than u.

5’ For any u ∈ U , its degree is in [0.8d′, 1.2d′]

J.2.4 Properties for Partial Encoder

For the Partial Encoder algorithm to work, we only need the support of h satisfying
the strong unique-neighbor property.
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J.2.5 Properties for Learning the graph

In order to learn the −1 weights, the conditions we need are similar to Pmul and
Pmul+.

In the case with real weights, we don’t need any assumptions on the graph, because
we are relying on VC-dimension arguments.

K Auxiliary Lemmas for uniform ρ`n` sparse vec-

tors

In this subsection, we provide lemmas about the uniform ρn-sparse vector of dimen-
sion n.

These Lemmas suggest that when looking at intersections with relatively small
sets, uniform ρn sparse vector behaves like i.i.d. Bernoulli variables with probability
ρ. Also, in this section the sparse vector is identified by its support S.

Lemma 35
If S is a uniformly random ρn-sparse subset of [n], then for any fix set T with ρ|T | � 1
and |T | � n,

1− ρ|T |/2 ≥ Pr[T ∩ S = ∅] ≥ 1− ρ|T |

Proof: For each t ∈ T , Pr[t ∈ S] = ρ. By union bound, Pr[T ∩ S = ∅] ≥
1−∑t∈S Pr[t ∈ S] = 1− ρ|T |.

On the other hand, let ρn = k, we have,

Pr[T ∩ S = ∅] = (1− k

n
) · (1− k

n− 1
) . . . (1− k

n− |T |) ≤ (1− k

n
)|T | ≤ 1− ρ|T |/2

2

Lemma 36
If S is a uniformly random ρn-sparse subset of [n], then for any fix set T with ρ|T | � 1
and |T | � n, ρ|T | ≥ Pr[|S ∩ T | = 1] ≥ ρ|T |/2

Proof: For any t ∈ T , we compute Pr[S ∩ T = {t}]. Conditioned on t ∈ T , S \ {t}
is uniform (ρn− 1)-sparse subset of [n] \ {t}, thus by the Lemma above,

Pr[S ∩ T = {t}] = Pr[t ∈ S] · Pr[S ∩ (T \ {t}) = ∅] ∈ [ρ/2, ρ]

All the events S ∩ T = {t} for t ∈ T are disjoint, thus ρ|T | ≥ Pr[|S ∩ T | = 1] ≥
ρ|T |/2 2

Lemma 37
If S is uniform random ρn-sparse subset of [n], then for any fix set T with ρ|T | � 1
and |T | � n,

Pr[|T ∩ S| > ρn/2] < (2ρ|T |)ρn/2
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Proof: Let k = ρn. For any subsets M of T of size k, Pr[M ⊂ S] = k
n
·

k
n−1

. . . k
n−(k/2)

≤ (2ρ)k/2. Taking a union bound over all M , we have Pr[|T ∩ S| ≥
k/2] ≤

( |T |
k/2

)
(2ρ)k/2 ≤ (2ρ|T |)k/2. 2

Lemma 38
If S is a uniformly random ρn-sparse set, then for any two disjoint sets T1 and T2

with ρ|T1| � 1, ρ|T2| � 1 and |T1|, |T2| � n,

ρ2|T1||T2|/5 ≤ Pr[S ∩ T1 6= ∅, S ∩ T2 6= ∅] ≤ 2ρ2|T1||T2|
Proof: From Lemma 36 we know Pr[|S ∩ T1| = 1] ∈ [ρ|T1|/2, ρ|T1|].Conditioned on
|S ∩ T1| = 1, S \ T1 is a random ρn − 1 sparse vector in n − |T1| dimension. Apply
Lemma 36 with ρ′ = (ρn − 1)/(n − |T1|) we have Pr[|S ∩ T2| = 1 | |S ∩ T1| = 1] =
Θ(ρ′|T2|).

On the other hand, ρ|T1| is an upperbound on Pr[S ∩ T1 6= ∅], ρ′|T2| is an upper-
bound on Pr[S ∩ T2 6= ∅|S ∩ T1 6= ∅], so we get the other direction. 2

Lemma 39
If S is a uniformly random ρn-sparse subset of [n], then for two disjoint sets T1, T2

with ρ|T1|, ρ|T2| � 1 and |T1|, |T2| � n,

ρ|T1|/2 ≤ Pr[S ∩ T1 6= ∅, S ∩ T2 = ∅] ≤ 2ρ|T1|

The proof is very similar to Lemma 38.

Lemma 40
If S is a uniform random ρn-sparse subset of [n], then for any three sets T1, T2 and T3

with ρ|T1|, ρ|T2|, ρ|T3| � 1 and |T1|, |T2|, |T3| � n. Let max{|Ti|} ≤ A,max1≤i<j≤3 |Ti∩
Tj| = B, and |T1 ∩ T2 ∩ T3| = C, then

Pr[(S ∩ Ti 6= ∅) for i = 1, 2, 3] ≤ O(ρ3A3 + ρ2AB + ρC)

Proof: The proof is not hard but tedious. It enumerates all the possible ways S
can intersect with all three Ti’s.

Let K1 = T1 − T2 ∪ T3, K2 = T2 − T1 ∪ T3, K3 = T3 − T1 ∪ T2. Also, let
K12 = T1 ∩ T2 − T3 (similarly define K23, K31). Finally let K123 = T1 ∩ T2 ∩ T3.

Let E be the event that S ∩ K1 6= ∅, S ∩ K2 6= ∅, S ∩ K3 6= ∅; E ′ be the event
that S ∩K123 6= ∅; E12 be the event that S ∩K12 6= ∅, S ∩K3 6= ∅ (similarly define
E23 and E31). The event S ∩ Ti 6= ∅ for all i = 1, 2, 3 is contained in the union of
these events E ∪ E ′ ∪ E12 ∪ E23 ∪ E31. By previous Lemmas it is easy to bound
Pr[E] ≤ 2ρ3|T1||T2||T3| ≤ 2ρ3A3, Pr[E ′] ≤ ρC, and Pr[E12] ≤ 2ρ2|K12||K3| ≤ 2ρ2AB.
Hence Pr[(S ∩ Ti 6= ∅) for i = 1, 2, 3] ≤ O(ρ3A3 + ρ2AB + ρC) 2

L Omitted Proofs in Section H

In this Section we shall prove Theorem 24 and Theorem 25.
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Proving Theorem 24 By the structure of the network we know

E[yuyvys] =
∑

i∈B(u),j∈B(v),k∈B(s)

wi,uwj,vwk,s E[hihjhk] (3)

Observe that wi,u and wj,v are different random variables, no matter whether i is equal
to j. Thus by 3-order Hoeffding inequality stated in Lemma 47, with high probability
over the choice of the weights

|E[yuyvys]| ≤
√ ∑

i∈B(u),j∈B(v),k∈B(s)

E[hihjhk]2 log3 n (4)

Let V be the main term in the bound:

V ,
∑

i∈B(u),j∈B(v),k∈B(s)

E[hihjhk]
2.

Define Buv = B(u) ∩ B(v), Bvs = B(v) ∩ B(s), Bsu = B(s) ∩ B(u). Similar to
Property Psing+, for a random graph we know all these sets have size at most 10.

The following claim gives bound on the variance term (so we know E[yuyvys] has
small absolute value when they don’t share a common neighbor):

Claim 41
If h is uniform random ρm-sparse vector, and B(u)∩B(v)∩B(s) = ∅, and |Buv| ≤ 10,
|Bvs| ≤ 10 and |Bsu| ≤ 10, then

V =
∑

i∈B(u),j∈B(v),k∈B(s)

E[hihjhk]
2 ≤ O(ρ6d3 + ρ4d)

Proof:First of all, for any triple (i, j, k) such that i, j, k are distinct, the expectation

E[hihjhk] ≤ ρ3. The total number of such triples is at most O(d3). The contribution
to the sum V is O(d3ρ6)

Then we count the triples (i, j, k) with i = j, and i 6= k (i ∈ Buv and k ∈ B(s)).
The total number of such triples (i, j, k) is bounded by 10d. In this case, E[hihjhk] ≤
ρ2. Thus the total contribution to the V is O(dρ4). The other two symmetric cases
have similar contribution to the V as well.

Hence the total sum is bounded by O(ρ6d3 + ρ4d). 2

When u, v, s share a common neighbor, the following claim shows E[yuyvys] has a
large absolute value.

Claim 42
If h is uniform random ρm-sparse vector , and B(u) ∩ B(v) ∩ B(s) = {z}, and
|Buv| ≤ 10, |Bvs| ≤ 10 and |Bsu| ≤ 10, then with high probability over the choice of
the weights

|E[yuyvys]| ≥ ρ−O(

√
(ρ6d3 + ρ4d) log3 n)
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Proof: Let Az,z,z = 0, and Ai,j,k = E[hihjhk] when (i, j, k) 6= (z, z, z). Thus

E[yuyvys] =
∑

i∈B(u),j∈B(v),k∈B(s)

wi,uwj,vwk,s E[hihjhk]

= wz,uwz,vwz,s E[hz] +
∑

i∈B(u),j∈B(v),k∈B(s)

wi,uwj,vwk,sAi,j,k (5)

Similar to the previous case, we know that
∑

i∈B(u),j∈B(v),k∈B(s)

A2
i,j,k ≤ O(ρ6d3 + ρ4d)

and thus with high probability,

|
∑

i∈B(u),j∈B(v),k∈B(s)

wi,uwj,vwk,sAi,j,k| ≤
√ ∑

i∈B(u),j∈B(v),k∈B(s)

A2
i,j,k log3 n

≤ O(

√
(ρ6d3 + ρ4d) log3 n)

By Equation (5), the expectation can be bounded by

E[yuyvys] = wz,uwz,vwz,s E[hz]±O(

√
(ρ6d3 + ρ4d) log3 n),

which implies

|E[yuyvys]| ≥ ρ−O(

√
(ρ6d3 + ρ4d) log3 n)

2

The Theorem follows directly from these two claims.

Extending Theorem 24 to distribution D1 Using similar ideas, and the bounds
from Section E, we can prove Theorem 25.

We shall first extend Theorem 25 to the setting when h is generated by the upper
levels of the network (call the distribution D1). In order to do this we need to bound

E[hihjhk] carefully. Following similar ideas as Lemma 12, we have

Proposition 43
If h ∼ D1, then

E[hihjhk] is

{
≤ O(ρ3

1 + ρ2ρ1 + ρ2) if B+(i) ∩B+(j) ∩B+(k) 6= ∅,
≤ O(ρ3

1 + ρ2ρ1 + ρ3) if B+(i) ∩B+(j) ∩B+(k) = ∅,

and

E[hihj] is

{
≤ O(ρ2

1 + ρ2) if B+(i) ∩B+(j) 6= ∅,
≤ O(ρ2

1 + ρ3) if B+(i) ∩B+(j) = ∅,
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Basically, most pairs/triples still have small expectation. The following Proposi-
tion shows there are only a very small number of pairs that are highly correlated.

Proposition 44
For a fixed set T of size at most 3d in layer 1, when d5

1 < n, with high probability,
the number of pairs i, j ∈ T, i 6= j such that B+(i) ∩B+(j) 6= ∅ is at most 10.

Proof: For any node q in layer 2, let Cq =
∣∣{(i, j) : i, j ∈ T, (q, i), (q, j) ∈ E+

1

}∣∣. By
randomness of the graph we know E[Cq] ≤ d4/n2. Summing over all nodes in layer
2, we have E[

∑
q Cq] ≤ d4/n ≤ n−0.2. With high probability,

∑
q Cq ≤ 10. (Note that

Cq are independent variables.) 2

With Proposition 43 and 44, we are ready to extend Theorem 24 to the more
general distribution.

As before we need to bound the variance. When B(u) ∩ B(v) ∩ B(s) = ∅, we
bound the variance V =

∑
i∈B(u),j∈B(v),k∈B(s) E[hihjhk]

2 as follows:

First of all, there are at most O(d3) triples of (i, j, k) such that i, j, k are distinct.
Typically, each one contribute to V with E[hihjhk] ≤ O((ρ3

1 + ρ2ρ1 + ρ3)2). However,
there might be at most 10 triples with higher expectation (by Proposition 44), so the
final bound is O((ρ3

1 + ρ2ρ1 + ρ2)2). The total contribution of these triples is

v1 = O(d3(ρ3
1 + ρ2ρ1 + ρ3)2) +O((ρ3

1 + ρ2ρ1 + ρ2)2)

There are at most 10d triples of (i, j, k) such that i = j ∈ Buv and i 6= k. The
contribution of these triples is at most ρ2

1 +ρ2. Thus the total contribution is at most

v2 ≤ 10d(ρ2
1 + ρ2)2).

Combining all these we know
√
V ≤ √v1 + v2 ≤ d3/2(ρ3

1 +ρ2ρ1 +ρ3)+(ρ3
1 +ρ2ρ1 +

ρ2) + 10d1/2(ρ2
1 + ρ2).

Under the assumption of Theorem 25,
√
V log3 n ≤ ρ1/3. With high probabil-

ity, when u, v, s do not share a common neighbor, we know |E[yuyvys]| ≤ ρ1/3 ;
when u, v, s share a unique neighbor z, we know |E[yuyvys]| ≥ 2ρ1/3. Therefore the
algorithm can distinguish them.

Modifications in Graph Recovery If edge weights are {±1}, the same algorithm
works because with high probability there are no more than a constant number of
triples u, v, s in the observed layer that share more than 1 neighbor (this is implied
by Proposition 43).

When edge weights are in [−1, 1], the hypergraph only satisfy the following ap-
proximate conditions: if u, v, s share a common parent z and the edges from z to
u, v, s all have weight outside [−0.01, 0.01], (u, v, s) is an edge in the hypergraph; if
u, v, s do not share a common parent, then (u, v, s) is not an edge. All other cases
are ambiguous. Graph Recovery in this case can again be done by the same algo-
rithm, because there are only a small constant fraction of ambiguous edges, and the
thresholds in the algorithm tolerates a small constant fraction of error.
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Modifications in PartialEncoder Note that in this case graph recovery gives all
edges, instead of positive edges, so we cannot directly use those for PartialEncoder.
However, the expectation E[yuyvys] is positive and large, even if they share a common
parent z and there are even number of positive edges from z to u, v, s. Using this
information it is easy to separate the positive and negative edges, see Algorithm 9.

Algorithm 9. LearnLastLayer

Input: E, the set of edges
Output: E+, E−, the set of positive and negative edges

for each node x ∈ h(1) do
Pick u, v in F (x)
Let S be the set {s : Eh[yuyvys] > 0}.
for each t : (x, t) ∈ E do

if most triples (t, u′, v′)(u′, v′ ∈ S) have positive Eh[ytyu′yv′ ] then
add (x, t) to E+

else
add (x, t) to E−

end if
end for

end for

When weights are {+1,−1} we are already done.
When the weights are in [−1, 1] we don’t find all the positive edges (1% of the

edges are missing because they have small weights), but this is again OK because the
PartialEncoder can tolerate small constant fraction of error.

Modifications in Learning Decoder For learning decoder, since we do not have
thresholds at the last layer, we only need to solve a system of linear equations.

M Standard Concentration Bounds

We use the following version of Hoeffding’s inequality.

Theorem 45
[Hoe63] X1, . . . , Xn are independent random variables such that Xi ∈ [ai, bi] almost
surely. Let S = X1 + · · ·+Xn. Then

Pr[|S − E[S]| ≥ t] ≤ 2 exp(
−2t2∑n

i=1(ai − bi)2
)

Using this (and with union bound) it is easy to prove the following bilinear and
trilinear bounds (these are not tight but we don’t mind losing log n factors).
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Lemma 46
If w, w′ are independent random vectors in {−1, 1}d, then with high probability

|
∑

i,j

wiw
′
jAi,j| ≤ O



√∑

i,j

A2
i,j log2 n




Proof: We are going to bound xTAy, which is equal to

xTAy =
d∑

i=1

xi

(∑

j

Ai,jyj

)

With high probability over the choice of y, for any i,
∑

j Ai,jyj ≤ O(
√∑

j Ai,j
2 log n).

When these events happen, we have that

xTAy =
d∑

i=1

xi

(∑

j

Ai,jyj

)
≤
∑

i

xiO(

√∑

j

Ai,j
2 log n).

By Hoeffding inequality again, we have that with high probability over the choice
of x,

xTAy ≤
∑

i

xiO



√∑

j

Ai,j
2 log n


 ≤ O



√∑

i,j

Ai,j
2 log2 n




2

Lemma 47
If w, w′, w′′ are independent random vectors in {−1, 1}d, then with high probability

|
∑

i,j,k

wiw
′
jw
′′
kAi,j,k| ≤ O



√∑

i,j,k

A2
i,j,k log3 n




The proof is very similar to Lemma 46.

54


	1 Introduction
	2 Definitions and Results
	3 Each layer is a Denoising Auto-encoder
	4 Learning a single layer network
	5 Correlations in a Multilayer Network
	6 Graph Recovery
	7 Learning the lowermost (real-valued) layer
	8 Two layers cannot be represented by one layer
	9 Conclusions

