Lecture 9 (short summary)

Date: Tuesday, 9th February, 2016

Convergence -- standard random walk

In any connected graph, the standard random walk converges (to the stationary distribution)
in time roughly

logn
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This follows from the analysis we did for power iteration. The gap  thus controls the
convergence time. If the graph is bipartite, 6 = 0, so the above does not give any guarantee
about convergence to the stationary distribution. In fact, it is easy to see that the walk
always alternates, thus it does not converge to the stationary distribution. A clean way to get
around it is to define a slightly different walk.

Lazy random walks

Again, we have a particle that moves between vertices in G. In every step, it stays put with
prob «a, and it moves to a random neighbor with the remaining probability. We can define
the “distribution at time t” as we did for standard random walks.

Now, we can write

p® = Zpt=1)

where Z is the transition matrix of the lazy random walk. We saw that
Z=al+(1—a)AD™".

The eigenvalues of AD~! lie in [-1,1], and thus those of Z lie in [=1 + 2. 1] We think of o

as a constant in (0,1), so the smallest eigenvalue is bounded away from -1. The largest
eigenvalue is still 1. For any connected graph, the gap ¢ defined as before is now simply

(1= a)(An — A1), For concreteness, let us think of o as 1/2.

Lazy random walks and sparse cuts

From the above, the convergence time of the lazy walk depends on An — An—1, which, when
translated to the eigenvalues of the normalized Laplacian, is simply the second smallest
eigenvalue -- 22(La).
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We saw earlier that Cheeger’s inequality connects A2(Lec) to the expansion of the graph --
i.e., ‘D(G), the smallest expansion over all cuts in GG.

Cheeger’s inequality states that
O(G)?/4 < Xo(Lg) < 20(Q).

The discussion above says that convergence time for the lazy random walk is roughly
logn/X2(Le). Thus if the graph has small expansion -- ®(G) is small -- walks take long to

converge, by the second part of Cheeger, and if the graph has high expansion, walks
converge quickly to the stationary distribution. (We call this phenomenon mixing).

In many situations, we will be interested in showing that walks mix fast. The typical way to
prove this is by showing that 2(G) is large. In fact, there is a name for such graphs:

Expander graph: A graph in which ®(G) = Q1) is called an expander.

Typically, the challenging step is to prove that a graph of interest is an expander. We see
methods to do this in the next class.

Directed graphs

Before completing our discussion on random walks, we discuss briefly walks in directed
graphs. Walking in a graph can be done in the same way as before -- a particle starts at

some vertex (picked possibly from some start distribution p(o)), and takes a random edge out
of its current location. One issue crops up right way -- if a vertex has out-degree 0, the
particle is stuck. We can assume there are no such vertices (or add a self loop).

Once we do this, it is possible to define the walk matrix as before:
M — AoutD;ult'

We would like to say that there exists a stationary distribution, and that every walk converges
to it.

The first problem we have is similar to that in undirected graphs -- the bipartiteness. Here,
this can manifest itself in a more sophisticated way. Suppose we have a directed triangle.
Then at step /, we are in state i (mod 3). We can fix this problem as before -- by making the

walk lazy. Thus we consider Z = af + (1 — @) A D, 1,

Can we now say that (a) there is a unique stationary distribution, and (b) all walks converge
to it? It turns out that this is true, and is a consequence of the Perron-Frobenius theorem.
This theorem -- a fundamental one in linear algebra -- states that any n x n matrix with strictly
positive entries has a strictly positive largest eigenvalue, and that the corresponding
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eigenvector has positive entries. With some caveats, this can be extended to the case when
the matrix has some zero entries. See [wiki] or [this].

We still have issues that we didn’t in the undirected case. Consider the graph
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Every vertex has non-zero out-degree. But now, note that if we start on the left, we get to the
right with some probability, and then we just cycle around (lazily) -- we never come back left!
This shows that the stationary distribution, if it exists, must have all its support on vertices 4,
5, 6.

This is why it is necessary to start with a strongly connected graph G. [[for those unfamiliar,
this basically means that for any vertices u, v, there is a path from u to v and vice-versa]].

Convergence time

Recall that in undirected graphs, we could show a lower bound on A2(Le) (homework), which
implied that a lazy random walk visits every vertex w.h.p. after poly(n) steps (a simple bound we
showed gave n?). This is not true in directed graphs. Consider the graph

Here, starting at vertex 1, we take 2" steps to reach vertex n.
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Thus, computing the stationary distribution of directed walks by simulation could be very
inefficient..
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So how do we handle directed graphs? In fact, many graphs of interest are naturally directed.
The page-rank random walk is one that has good convergence properties, and also says
something useful about the graph.

We study this briefly in the next class.



