LECTURE 8: RANDOM WALKS IN UNDIRECTED GRAPHS

Aditya Bhaskara®

CS 5968/6968: Techniques in Algorithms and Approximation

th

February 4", 2016

Abstract
We introduce the notion of a random walk in an undirected graph.

What happens after we take T random steps in the walk? We show how
to analyze walks and their convergence properties.

1 WALKS IN GRAPHS

Suppose we have an undirected graph G. For the next couple of lectures, we
will consider graphs that aren’t necessarily regular. A random walk in G is
the following random procedure:

A particle starts at some vertex 1(?) in the graph (this could either be fixed, or
itself sampled from some given start distribution p(?)). At time t, the particle

moves from u(t=1) to a uniformly-random neighbor of u(t=1),

A simple example is a walk on an n x n grid (chessboard). Say the particle
starts at the bottom left corner, and at every step, moves in one of the four
possible directions with equal probability. This is sometimes referred to as
Brownian motion, used in physics to model the movement of a particle in a
fluid.

We are interested in how the walk evolves. In particular, we are interested in
the likelihood that the particle is at some vertex v at time f. How can we
compute such quantities? The key is to do it recursively: for the particle to be
at v at time ¢, it must have been at one of the neighbors of v at time (t — 1), and
must have chosen the edge to v. Thus if we denote the probability of interest
by pt)(v), we have
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This gives a clean way to compute p(*) (v) for all v, by computing p{*=1) (v) for
all v, which in turn can be done by computing p'! ~2)(+), and so on.

2 TRANSITION MATRIX

Let define p(*) as a vector in R” whose ith entry is p{*)(i). We can use Eq. (1)
to write down p*) in terms of p(!=1). The transition matrix M will be defined
so that we have

p(0) = Mp(t-1).
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Recall that we know the start distribution

p (o)
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Le., D(i,i) = deg(i) and D(i,j) = 0 for
i#j.

Note that B(i,j) = 1/+/deg(i)deg(j) =
B(j,i). Also, D2 and D~'/2 are the di-
agonal matrices whose (i,i)th entries are

\/deg(i) and 1/ +/deg(i) respectively.

The notion of similar matrices is a standard
one in linear algebra.

3. EIGENVALUES OF M

(1) tells us what the entries of M should be. Considering the vth row of the
output, we get

P(t) (v) = ZMuvP(tfl) ().
u

Comparing with (1), we must set M, = 0 if there is no edge uv, and M, =

ﬁ when uv is an edge. If all the degrees are equal to d, this is precisely the
g (1)

adjacency matrix scaled by a factor d. Otherwise, a bit of thought shows that

M is the adjacency matrix with its ith column scaled by 1/deg(i).

Let us write A to denote the adjacency matrix, and D to denote the diagonal
matrix of degrees Then the discussion above implies that

M =AD"
We can thus write p!) in a simple way:
p(t) — Mp(t_l) = sz(t_z) — cee = Mtp(o)

What if we repeat this process forever? Does the distribution p(*) coverge
to some vector? Does it cycle between a small number of vectors? If it does
converge, at what rate?

We now develop machinery to answer questions of this kind. The key obser-
vation is that the vector p{!) evolves exactly like the power method we saw in
the last lecture. This suggests the connection to eigenvalues of M. Further, if
the process does converge, it must be to some vector p that satisifes p = Mp,
or equivalently, p must be an eigenvector of M, with eigenvalue 1.

3 EIGENVALUES OF M

The first thing to notice about M is that it is not symmetric. Thus it is not
immediately clear that it even has real eigenvalues. Luckily, our matrix has
the following special form:

M =PBP!, where B=DY2AD V2 and P = DV/2

The matrix B is simply the normalized adjacency matrix we encountered ear-
lier, which is a symmetric matrix. The equation above implies that M and B
are similar, i.e., they have the same eigenvalues. In fact, if v is an eigenvector
of B satisfying Bv = Av, then Pv is an eigenvector M,

M(Pv) = PBP1Pv = APo.

Now, the eigenvalues of B are something we understand! As we saw earlier,
they all lie between —1 and 1, and the multiplicity of 1 is precisely the number
of connected components in G. We also saw that the smallest eigenvalue is —1
if and only if G is bipartite.

Suppose G is connected. This means that B has a unique eigenvector u of
eigenvalue 1 (up to scaling), and we also know its entries — the ith entry is
\/deg(i). Thus the corresponding eigenvector of M is D'/2u, whose ith entry
is deg(i). Let us scale it so that the entries sum to 1, and denote this vector by



7t. The ith entry of 7t is thus

o _deg(i) _ deg(i)
"= Fdeg() ~ 2m

where m is the number of edges in G.

4 STATIONARY DISTRIBUTION

The stationary distribution for a random walk is a distribution that remains
unchanged upon taking a step of the walk. Le., a vector u with nonnegative
entries that sum up to 1, and which satisfies Mu = u. Observe that this is
exactly what we saw with 7t above. Thus 7 is one stationary distribution for
the random walk M.

Is it the only stationary distribution? If G is connected, the uniqueness of
the top eigenvector implies that this is indeed the case. Furthermore, the key
property of the stationary distribution is that for any start distribution p(©),
taking sufficiently many steps of the random walk converges to the stationary
distribution, as long as the graph is not bipartite.

To see this, suppose we start with p(®) and repeatedly apply M. Thus we
have p() = M!p(9). From the analysis of the power iteration we saw last
class, we have that as long as (p), ) > 0 and the gap between the largest
and the second largest (in magnitude) eigenvalues is > 0, the power method
converges. The first condition is true because for any distribution p(?), we have
(p\), 7r) > min; 77(i) > 0 (because degrees are all > 0). The second condition
follows because in any graph that is not bipartite, we have a non-zero gap
1 — max; 4, [ (M)).

5 CONVERGENCE TO STATIONARITY

We can also quantify the convergence analysis above.

5.1 DEFINITION. The time T for which ||p(T) — 7||; < 1/4 is called the mixing
time for the random walk M.

Suppose G is connected. Then we know that 1 —|A,_1| > 1/ n3, as a conse-
quence of one of the problems on HW2. Further, if we have a graph that is not
bipartite, we can show that 1 — |A{| > 1/n5.

Finally, since min; (i) > 1/m > 1/n?, we have that for t = O(logn/n?), we
will have ||t — p) ||, < 1/n. A mild technicality here is that in the last class,
we measured closeness in the ¢/, norm, while in the definition of the mixing
time, we care about /1 norm. To go from one bound to the other, we use the
inequality that for any n dimensional vector x,

Ixll2 < flxll < Val|x]l2-
Thus the above reasoning shows that the mixing time in any connected, n-
vertex non-bipartite graph is O(n>logn).

In the next class, we will see how to get rid of the non-bipartite assumption,
by looking at a simple modification of the random walk.

The exercise was for d-regular graphs, and
had a bound 1/n? for the Laplacian. When
we consider the normalized Laplacian, we
get a bound 1/n®, since the max degree is
<n



	Walks in graphs
	Transition matrix
	Eigenvalues of M
	Stationary distribution
	Convergence to stationarity

