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Abstract

We will discuss a few basic facts about the distribution of eigenvalues of
the adjacency matrix, and some applications. Then we discuss the question
of computing the eigenvalues of a symmetric matrix.

1 Eigenvalue distribution

Let us consider a d-regular graph G on n vertices. Its adjacency matrix AG is
an n× n symmetric matrix, with all of its eigenvalues lying in [−d, d].

How are the eigenvalues distributed in the interval [−d, d]? Are there always
many negative eigenvalues? What is the typical magnitude of the eigenvalues?
The key to answering these questions is the simple fact that the trace of a
matrix is the sum of its eigenvalues. Since all the diagonal entries of AG are 0 The trace, denoted Tr(·), is defined to be the

sum of the diagonal entries of a matrix.(the graph has no self loops), we have that

Tr(A) = ∑
i

λi = 0.

This means that the average of the eigenvalues is 0. Since we know that one of
the eigenvalues is d, there have to exist eigenvalues that are < 0.

What is the typical magnitude of the eigenvalues? One way to measure this is
to look at the average value of λ2

i , i.e., (1/n)∑i |λi|2. To compute this, the idea
is to come up with a matrix whose eigenvalues are λ2

i , for i = 1, . . . , n, and
compute its trace. We note that A2

G is such a matrix. This is a special case of a more general
phenomenon – for any polynomial p(), the
eigenvalues of P(A) are p(λi), where λi
are the eigenvalues of A.

What is the trace of A2
G? Let us consider the (i, i)th entry. It is precisely

〈Ai, Ai〉, where Ai is the ith row (or column) of AG. For any i, this inner
product is equal to ∑j A2

ij = d, since precisely d of the entries are 1 and the
rest are zero. Thus the trace is the sum over i of this quantity, which is nd.
Thus, we have

1
n ∑

i
λ2

i = d

Thus, we expect the typical eigenvalue to have magnitude roughly
√

d. While
this is not true of arbitrary graphs (see HW), it turns out that for random
graphs of degree d, all the eigenvalues except the top one (which is d) turn
out to lie between −2

√
d and 2

√
d. In fact, they are distributed in a very nice

way. See: https://en.wikipedia.org/wiki/Wigner semicircle distribution.
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2. Computing Eigenvalues

1.1 exercise. Show that we need not have eigenvalues that are ∼
√

d. We
could have n/d eigenvalues that are ∼ d, roughly.

1.1 Higher powers of the eigenvalues and walks

A nice combinatorial connection exists between powers of the adjacency ma-
trix and the graph. Let us consider A3

G, for concreteness.

What is the i, j’th entry of A3
G? If we write A = AG, and B = A2

G, we the
quantity we are interested in, is

AB(i, j) = ∑
k

A(i, k)B(k, j) = ∑
k,l

A(i, k)A(k, l)A(l, j).

The sum is over all the possible choices of k and l. The term in the summation
is non-zero precisely when ik, kl, l j are all edges in the graph. Thus the i, j’th
entry of A3

G measures exactly the number of walks of length 3 between i and j
in the graph.A walk is different from a simple path in

that vertices can be repeated. For instance,
we could have picked i− k− i− j, and that
is a valid walk.

One consequence of this, is the fact that Tr(A3
G) is three times the number of

triangles in the graph! Why? From the above, we know that the i, i’th entry of
A3

G is the number of walks of length-3 between i and itself. A length-3 walk
between i is exactly the number of triangles with i as one of the vertices (note
that there is no way we can have repeated vertices in a walk of length 3 from i
to itself). Every traingle is counted three times when we take the trace – once
for each of its end-points. Thus Tr(A3

G) is three times the number of triangles.

The walk interpretation of the adjacency matrix is useful – it lets us use prop-
erties of the graph to infer things about the distribution of eigenvalues and
vice-versa.

2 Computing Eigenvalues

We have so far defined eigenvalues as the roots of the characteristic polyno-
mial (the values λ such that det(A− λI) = 0), and we iteratively defined λi
as minimizers of the quadratic form xT Ax over unit vectors x.

How do we efficiently compute eigenvalues efficiently, given a matrix A. Sup-
pose for now that A is an n× n real, symmetric matrix, which implies it has
n real eigenvalues. Call them λ1, . . . , λn, and let v1, v2, . . . , vn be the corre-
sponding eigenvectors. Then, we saw that vi form an orthonormal basis for
Rn. Furthermore, we saw that we can write

(1) A = ∑
i

λivivT
i .

2.1 Power Iteration

Suppose we start with some vector x ∈ Rn, and compute

Ax, A2x, A3x, . . .

Can we analyze what happens? It turns out that the right way to see what is
going on is by writing x in terms of the eigenvectors. Suppose x = ∑i αivi, for
some αi (since the vi form an orthonormal basis, there is a unique representa-
tion of x in this manner).
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2.1. Power Iteration

Then, using (1), we observe that

Ax = ∑
i

αiλivi

A2x = ∑
i

αiλ
2
i vi

...

Arx = ∑
i

αiλ
r
i vi

Thus the coefficients of vi evolve in a very clean way when we repeatedly
multiply by A. Let us see a simple example. Suppose we have n = 3, and
suppose the eigenvalues are −1, 1, 2. Then, if we start with an x as above, we
have Arx = (−1)rα1v1 + α2v2 + 2rα3v3. Now the crucial thing to observe is
that the coefficient of v3 grows at a much faster rate than the coefficients of v1
and v2. Suppose we started with all αi being equal to 1. Then, after 10 steps, the
vector we have is v1 + v2 + 1024v3, which when normalized is almost entirely
aligned with v3!

This is a general phenomenon. As long as we have one eigenvalue that is
strictly larger than the others in magnitude, the term corresponding to that
eigenvalue dominates, for large enough r.

2.1 theorem. Suppose the eigenvalues of A satisfy maxi<n |λi| < (1− δ)|λn|, and It is important to look at the magnitudes.
Note also that sometimes the most negative
eigenvalue could be the one with the largest
magnitude.

let ε ∈ (0, 1) be the desired accuracy. Then for any vector x as above, consider Arx,
for

r ≥ log D
2δ

, where D =
∑i<n α2

i
ε2α2

n
.

Then we have ‖ Ar x
‖Ar x‖ − vn‖ < ε.

Proof. The proof easily follows from what we observed earlier, and straight-
forward calculation. For any r, we have

Arx = ∑
i

αiλ
r
i vi = αnλr

n

(
vn + ∑

i<n

αi
αn

( λi
λn

)r
vi

)
.

Let us consider the norm of the term in the summation. Since the vi are all
orthogonal, the squared-norm is

∑
i<n

α2
i

α2
n

( λi
λn

)2r
<

∑i<n α2
i

α2
n

(1− δ)log D/δ.

Using the familiar inequality 1 − δ ≤ e−δ and simplifying, we get that the
squared-norm is < ε2. Now, the vector in the summation is orthogonal to vn,
since the vi’s are all orthogonal.

Thus, we have written Arx = C(vn + v⊥n ), where v⊥n is orthogonal to vn and
has norm < ε. This implies the theorem. (Details left as an exercise.)

Now consider the following algorithm: (called power iteration)

1. start with a random x ∈ Rn

2. repeat r times: x ← (Ax)/‖Ax‖
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2. Computing Eigenvalues

What r should we choose? The theorem gives an r that works, but note that
we do not know the values αi without knowing the vi (which are what we are
after in the first place!). Here’s where the starting point being random comes in.
With good probability (at least 99%), if x is chosen randomly (say, from the n
dimensional Gaussian distribution), we will have ∑i α2

i /α2
n ≤ O(n), implyingIf you do not see this immediately, it is a

good exercise. that choosing

r =
log(n/ε)

δ

works with good probability.

The main factor determining the running time is (1/δ), which is often called
the eigenvalue gap. Power iteration with a random starting point converges
quickly if and only if the gap is large. In practice, the power method is a
common tool in computing eigenvalues and eigenvectors.

What about matrices in which there is no (or very little) eigenvalue gap? We
will see examples of this in the homework.

2.2 Beyond the top eigenvalue

What if we are interested in eigenvalues other than the top one? There are a
couple of ways of extending the power method.

The natural one is to compute λn and vn to a sufficiently high accuracy, and
then subtract it off from the matrix. Since A = ∑i λivivT

i , we will be left with
∑i<n λivivT

i (plus a small noise, which we will need to keep track of).

The second way, which is often much better, is what is called the block power
method. This works well if we are interested in the top-k eigenvalues in mag-
nitude (for a small k).

The idea is to keep an n× k matrix X (instead of a vector x), and repeatedly
compute AX, followed by an orthonormalization step (instead of simply a
normalization). It turns out that a similar analysis can be done, and now the
convergence depends on the gap between the kth largest, and the (k + 1)st
largest eigenvalues.
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