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Lecture 6: Cheeger’s inequality

In this lecture we prove Cheeger’s inequality.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Expansion and λ2(LG)

Recall our definitions of the Laplacian, LG = dI −AG and expansion,

Φ(G) = min
|S|≤n/2

φ(S) = min
|S|≤n/2

E(S, S)

d|S| .

We saw that λ1(LG) = 0, and

λ2(LG) = min∑
i xi=0

∑
ij∈E(xi − xj)2∑

i x
2
i

.

We also saw that

Φ(G) ≥ 1

4d
λ2(LG).

Next, we stated Cheeger’s inequality, which states that λ2 is not too much smaller than Φ(G):

Theorem 1. Let G be a d-regular graph. Then we have

Φ(G) ≤
√

2λ2(LG)

d
.

The theorem was proved in the context of manifolds by Cheeger, and was proved for graphs by Alon

and Milman in 1985. This is the proof we will present. First, let us try to get a better feel for the quantity

λ2(LG).

Embedding a graph on a line. Consider the following problem: we have a graph G, and we would like

to map the vertices to points on the real line, such that pairs (i, j) that are adjacent in the graph are close.

Formally, we want an f : V 7→ R, such that
∑
u f(u) = 0, not all f(u) are zero, and it minimizes the ratio∑
ij∈E(f(i)− f(j))2∑

i f(i)2
.

Exercise. Show that we do not need to impose the condition
∑
u f(u) = 0, i.e., minimizing the ratio

subject to the requirement that not all f(i) are equal has the same optimum value.

Note that the optimal solution to the line embedding problem is f(u) = xu, where x is the eigenvector

of LG corresponding to λ2. This formulation often gives intuition about λ2.

For instance, consider the case when G is a cycle with n vertices. It is easy to argue that Φ(G) ≥ Ω(1/n).
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Now, let us try to embed the vertices onto the line such that
∑
ij∈E(xi−xj)2 is small. One obvious embedding

is

0 1−1

. . .
x2x1 xn

For this embedding, the average magnitude of xi is Θ(1), thus we have
∑
i x

2
i = Θ(n). Further,∑

ij∈E(xi − xj)2 = (n− 1) 4
n2 + 4 = Θ(1). Thus the ratio is Θ(1/n). However, note that in this embedding,

one edge contributes 4 to the numerator, while the rest of the edges together contribute ≤ 4/n.

Can we embed so that no edge is long? A little thought reveals that the following does it (we move right

at twice the rate, and then cycle back):

0 1−1

. . .
x2x1 xn xn/2

For this embedding, every edge has (xi−xj)2 ≤ 16/n2, thus the sum over edges is Θ(1/n). Thus the ratio is

Θ(1/n2). Recall that for the cycle, Φ(G) is Θ(1/n), thus it is an instance in which Cheeger’s inequality is tight,

up to constants.

It is instructive to work out the examples of the 2-dimensional grid and the complete graph on n vertices.

Next, let us turn to the proof of Theorem 1.

Proof outline. Given a vector x such that

1. Not all xi are equal, and

2.
∑

ij∈E(xi−xj)
2

xT x
= θ,

we would like to show that there exists a set S ⊂ V with |S| ≤ n/2 such that φ(S) ≤
√

2θ/d. It will be

important to note that the proof does not rely on
∑
i xi = 0.

Once again, the intuition behind the proof is the line embedding viewpoint. Suppose we have an embed-

ding in which all pairs ij with an edge are close by. Then if we pick a threshold τ , and partition the vertices

into those that are to the left of the threshold and those to the right, we do not expect to see too many

edges crossing from left to right (at least, if the vertices themselves are spread out, and we weren’t unlucky

with the choice of the threshold).

We can actually formalize this intuition. We will show that there exists a threshold such that a cut as

above has expansion at most
√

2θ/d. Formally, given a τ , define Lτ = {i : xi ≤ τ}, and Rτ = {i : xi > τ}.

Lemma 2. There exists a τ such that

E(Lτ , Rτ )

d ·min{|Lτ |, |Rτ |}
≤
√

2θ

d
. (1)

Proof. The proof uses the probabilistic method (Lecture 3). I.e., what if we pick a threshold at random?
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We prove the lemma by assuming that x satisfies two additional properties. In the HW, we will see how

these assumptions can be removed. But first, note that without loss of generality (renumbering the vertices),

we may assume that x1 ≤ x2 ≤ · · · ≤ xn. The two assumptions we will make are the following

1. xn/2 = 0, i.e., half the vertices are on the left of the origin and half to the right, and

2. |x1|+ |xn| = 1 (in particular, this implies that all the xi lie in [−1, 1]).

The first condition is a technical one, and helps us deal with the min{. . . } in the denominator of (1).

Now, suppose we pick the threshold τ uniformly at random in the interval [−1, 1]. The goal will be to try to

show that
Eτ [E(Lτ , Rτ )]

Eτ [min{|Lτ |, |Rτ |}]
≤ δ, (2)

for δ =
√

2θd (note that (1) had an extra d factor in the denominator of the LHS). As we will see in the

homework, this implies that there exists a τ such that (1) holds.1

Let us analyze the numerator and denominator separately. Let us write NUMτ = |E(Lτ , Rτ )| and

DENτ = min{|Lτ |, |Rτ |}, for convenience. Now what is Eτ [NUMτ ]? If we denote Xe the indicator variable

for whether edge e is cut or not, this is simply Eτ [
∑
eXe] =

∑
e Eτ [Xe]. For an edge e = ij, it is easy to

analyze when it is cut by our procedure – it is cut iff τ lies between xi and xj , which from our distribution

for τ , happens with probability |xi − xj |/2. Thus

Eτ [NUMτ ] =
∑
ij∈E

|xi − xj |
2

.

We can also analyze Eτ [DENτ ], this time by introducing an indicator variable Yi for every vertex, which

indicates if i is on the smaller side of the cut. From our assumption xn/2 = 0, we have that Yi = 1 iff τ lies in

the interval [0, xi] (or [xi, 0], as the case may be), for any i. Thus we have E[DENτ ] = E[
∑
i Yi] =

∑
i |xi|/2.

Thus we have that
Eτ [NUMτ ]

Eτ [DENτ ]
=

∑
ij∈E |xi − xj |∑

i |xi|
.

We would like to say that this is at most
√

2θd. While certainly similar looking to the definition of θ, we see

that the expression is missing squares! In fact, in general, it is not possible to bound the above expression

by
√

2θd. The question thus is, can we pick a different distribution for τ (instead of uniform over [−1, 1]),

which helps us relate the bound we get to θ?

A natural starting point is to try to get the denominator right. Let us define a distribution for τ such

that the probability that it takes a value in [xi, 0] or [0, xi] is proportional to x2i . One way to achieve this is

to pick τ as follows:

1. first pick a sign σ = {+1,−1} uniformly at random.

2. then pick a magnitude γ according to a distribution over [0, 1] whose p.d.f. is 2t at point t.

3. output τ = σ · γ.

1This is simply a generalized form of the simple fact that if a1, a2, b1, b2 are all non-negative reals, and a1+a2
b1+b2

≤ δ, then

either a1
b1
≤ δ or a2

b2
≤ δ.
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For this choice of distribution for τ , we have Eτ [DENτ ] =
∑
i x

2
i /2. What is Eτ [NUMτ ]? Again, we can

look at some edge ij. The probability that it is cut is now |x2i − x2j |/2 if xi and xj are the same sign, and

|x2i + x2j |/2 if they are of different signs.

The trick here is to observe that in either case, we can upper bound the probability that edge ij is cut

by |xi − xj |(|xi|+ |xj |)/2. (This can be done by simple case analysis.) Thus we have that

Eτ [NUMτ ]

Eτ [DENτ ]
≤
∑
ij∈E |xi − xj |(|xi|+ |xj |)∑

i |xi|2
.

Finally, we can use Cauchy-Schwartz inequality,2 to conclude that

( ∑
ij∈E
|xi − xj |(|xi|+ |xj |)

)2
≤

∑
ij∈E

(xi − xj)2
∑

ij∈E
(|xi|+ |xj |)2

 .

The second term on the RHS is at most
∑
ij∈E 2(x2i +x2j ) = 2d ·∑i x

2
i . The first term of the RHS, using

the definition of θ, is precisely θ ·∑i x
2
i . Thus the RHS of the above can be bounded by

2dθ
(∑

i

x2i

)2
.

Taking square roots, this implies
Eτ [NUMτ ]

Eτ [DENτ ]
≤
√

2θd,

which completes the proof of the Lemma, assuming the vector x we started with has the two properties we

stated. As we will see in the homework, these properties can be assumed, and this completes the proof of

the Lemma.

The lemma immediately yeilds Theorem 1, as we have discussed earlier.

2This is a basic inequality which will appear many times in the course. For any real numbers {ai, bi}ni=1, it states that
(
∑

i aibi)
2 ≤ (

∑
i a

2
i )(

∑
i b

2
i ). It can be viewed as saying that for vectors a, b ∈ Rn, we have 〈a, b〉2 ≤ ‖a‖2‖b‖2.
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