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Lecture 5: Eigenvalues of AG and the Laplacian

We continue our study of the adjacency matrix, and show that the multiplicity of the eigenvalue d

is equal to the number of connected components. We then introduce the Laplacian of a graph. We will

see how the second smallest eigenvalue of the Laplacian is related to the expansion of the graph.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Spectrum of the Adjacency Matrix

Recall the definition of the adjacency matrix AG of the a graph G. Once again, throughout this lecture, we

will be dealing with graphs that are regular, i.e., all vertices have degree d.

We saw last time that any eigenvalue λ of AG satisfies |λ| ≤ d. Suppose we order the eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn. Then we saw that λn = d. Since all the eigenvalues have magnitude ≤ d, we have

λ1 ≥ −d.

Exercise. For a connected graph G, λ1(AG) = −d if and only if G is bipartite.

Today, we show a simple yet elegant connection between the eigenvalues and the number of connected

components.

Theorem 1. The multiplicity of the eigenvalue d is equal to the number of connected components of G.

Before proving the theorem in general, let us work out a simpler case: suppose we know that the graph

has precisely one connected component, i.e., the graph is connected. We saw that λn = d (the eigenvector is

the n dimensional vector with all entries being 1, which we shall denote by 1n). The theorem states that in

this case, λn−1 < d. This is equivalent to saying that for any non-zero vector v orthogonal to 1n, we cannot

have Av = dv.

Let us start with any vector such that Av = dv. Let i∗ be the index for which |vi| is maximized. Now,

the equality Av = dv implies that for every i,∑
j

Aijvj = dvi.

In particular, this is true for i = i∗. Thus ∑
j

Ai∗jvj = dvi∗ .

Now, the LHS has at most d nonzero terms (because the degree is d, precisely d of the Ai∗j terms are 1 and

the rest are 0). Further, each of the terms is ≤ vi∗ in magnitude (by assumption, i∗ maximizes |vi|). Thus

the only way the equality can hold is if we have d non-zero terms, and each term is precisely v∗i .

This implies that for all j that are neighbors of i∗, we must have vj = vi∗ . Now, we can apply the exact

same argument with j instead of i∗. We would obtain that for all neighbors k of j, we have vk = vj = vi∗ .

Now since the graph is connected, we can proceed this way and conclude that for all vertices i, we must have

vi = vi∗ !
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Thus v has all its coordinates equal, i.e., it is parallel to 1n (and hence cannot be orthogonal unless it is

zero). This establishes the simpler case. Let us now get to the general case.

Proof of Theorem 1. Suppose G has k connected components, say V1, V2, . . . , Vk. We need to show that the

AG has precisely k orthogonal eigenvectors of value d.

We show this by first exhibiting k orthogonal eigenvectors (which shows the multiplicity is ≥ k), and

then showing that any vector v satisfying AGv = dv is spanned by the vectors exhibited (which shows the

multiplicity is ≤ k).

The first is easy. Let u(i) be a vector whose jth entry is 1 if j ∈ Vi and 0 otherwise (i.e., it is the indicator

vector for Vi). Then for every i ≤ k, it is easy to see that

AGu
(i) = du(i).

Also, since the Vi form a partition of the vertex set, we have 〈u(i),u(j)〉 = 0 for all i 6= j. Thus there are at

least k orthogonal eigenvectors of eigenvalue d.

Now consider any v such that AGu = du. We can now use exactly the same reasoning we used in the

case we had a single connected component, to conclude that in any connected component Vi, the values of

uj : j ∈ Vi for j are all equal! (Formally, we can look at the j∗ ∈ Vi that has the largest magnitude of uj ,

and argue similarly).

Thus when restricted to connected component Vi, u is a scaling of u(i). This implies that we can write

u =
∑

i αiu
(i), for some constants αi. This implies that any vector with AGu = du is a linear combination

of the u(i), implying that the multiplicity is at most k.

This completes the proof.

Note. For graphs that are not regular, such a clean connection between the multiplicity of the top eigen-

value and connected components does not hold. However, many of the other results we will show will turn

out to hold.

Let us now go back to the question of finding sparse cuts in a graph. We recall a little bit of notation

from the previous lecture.

Partitioning objectives

Recall the definitions of the sparsity σ(S) and the expansion φ(S), for a set S ⊆ V :

σ(S) :=
E(S, S)

|S||S|
; φ(S) :=

E(S, S)

d|S|
.

From the definitions, it is easy to see that for any S of size ≤ n/2, we have

n

2d
σ(S) ≤ φ(S) ≤ n

d
σ(S).

Partitioning objectives continued on next page. . . Page 2 of 4
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In the last lecture, we also saw a relaxation for the problem of finding minS⊆V σ(S),

1

2n
· min
x∈Rn,

∑
i xi=0

∑
i∼j(xi − xj)2∑

i x
2
i

,

which we said can be formulated as an eigenvalue problem. Let us now see how.

The Graph Laplacian. The Laplacian of a graph, denoted LG, is the matrix dI −AG.a

The key property of the Laplacian matrix is that for any vector x,

xTLGx =
∑
ij∈E

(xi − xj)2. (1)

aFor graphs that are not regular, the Laplacian is defined to be D − AG, where D is a diagonal matrix whose ith entry is
the degree of the ith vertex.

To see Eq. (1), simply expand the RHS:
∑

ij∈E x
2
i + x2j − xixj − xjxi. This is equal to

∑
i dx

2
i − xTAGx,

because every x2i appears precisely d times. We can now write
∑

i dx
2
i as xT (dI)x, and thus Eq. (1) follows.

Eigenvalues of the Laplacian. By definition, the eigenvalues of the Laplacian are related to the eigen-

values of AG in a simple way. To see this, note that any eigenvector u of AG with AGu = λu is also an

eigenvector of dI − AG – in fact (dI − AG)u = (d − λ)u. Thus if the eigenvalues of AG are λ1, λ2, . . . , λn,

then the eigenvalues of LG are d− λ1, d− λ2, . . . , d− λn.

The eigenvalues of AG lie in the range [−d, d]. Thus the eigenvalues of LG lie in [0, 2d]. Theorem 1 is

equivalent to saying that the multiplicity of the eigenvalue 0 of LG is the number of connected components

of G. Also, for a connected graph, the eigenvector of LG corresponding to the eigenvalue 0 is 1n.

Let us write down what the second smallest eigenvalue of LG is, for a connected graph G. From the

characterization of eigenvalues we saw last class,

λ2(LG) = min
x⊥1n

xTLGx

xTx
.

The condition x ⊥ 1n is exactly the same as
∑

i xi = 0, and using Eq. (1), we have

λ2(LG) = min∑
i xi=0

∑
ij∈E(xi − xj)2∑

i x
2
i

.

Note that this is precisely the relaxation for minS σ(S) (without the (1/2n) factor)! Thus, we can relate

the sparsest cut value to λ2(LG) as

min
S
σS ≤

1

2n
λ2(LG).

Using the relation between minS σ(S) and min|S|≤n/2 φ(S) (which we denoted by Φ(G) in the previous

lecture), we have

Φ(G) ≥ 1

4d
λ2(LG).

This means that by finding the value λ2(LG) (which is a quantity we can efficiently compute) we obtain

a lower bound for the minimum expansion of a cut in G. In particular, if λ2(LG) happens to be large, it

means that every cut in G has many edges going across! (which, as we will see, is an important property
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in graphs). However, this inequality does not rule out the possibility that λ2(LG) is always tiny. We would

ideally like to say that λ2(LG)/d is not much smaller than Φ(G).

This is precisely what the so-called Cheeger’s inequality talks about. In the next lecture we will show

the following:

Theorem 2. Let G be a d-regular graph. Then we have

Φ(G) ≤
√

2λ2(LG)

d
.

Note that for graph that is not connected, λ2(LG) is zero. In fact, if V1 is a connected component of size

≤ n/2, we have φ(V1) = 0, thus the inequality above indeed holds in this case. We can also view Cheeger’s

inequality in general as a robust form of the above statement. (Robust in the following sense: we know it

holds when λ2 = 0; does it hold when λ2 is nearly zero?)

Non-regular graphs

For graphs that are not regular, the right matrix to look at is A′G := D−1/2AGD
−1/2. (Here D−1/2 is simply

the diagonal matrix whose (i, i)th entry is (deg(i))−1/2 – we assume there are no isolated vertices, so none

of the degrees is zero) This matrix is sometimes called the normalized adjacency matrix of a graph. Note

that it also symmetric. Now consider the vector u, whose ith entry is deg(i)1/2. Clearly, we have

D−1/2u = 1n =⇒ D−1/2AGD
−1/2u = D−1/2AG1n = u.

The last equality is because AG1n is a vector whose ith entry is deg(i). Thus u is an eigenvector with

eigenvalue 1. It turns out λmax(A′G) = 1. This is not entirely trivial. From the characterization of λmax, we

have

λmax(A′G) = max
x

xTA′Gx

xTx
= max

x

∑
ij∈E

2xixj√
deg(i)deg(j)∑
i x

2
i

.

(The factor 2 is because the sum includes ij and ji.) Now, since 2ab ≤ (a2 + b2) for any real numbers a, b,

we have ∑
ij∈E

2xixj√
deg(i)deg(j)

≤
∑
ij∈E

x2i
deg(i)

+
x2j

deg(j)
=

∑
i

x2i .

The last inequality holds because
x2
i

deg(i) appears precisely deg(i) times. Thus λmax(A′G) ≤ 1.

An analog of Theorem 1 can be proved for the matrix A′G. For general graphs, we can define the Normalized

Laplacian as L′G := I −A′G. Its eigenvalues are also 1− eigenvalues of A′G, and lie in (0, 2). It turns out that

Cheeger’s inequality also holds in terms of the second smallest eigenvalue of L′G (without the factor d in the

denominator).
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