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Lecture 4: Graph partitioning, basic linear algebra

We introduce two natural objectives for graph partitioning. Then we will see how these objectives

have eigenvalue problems as a natural relaxation. We then review some basic linear algebra, and introduce

the notions of the adjacency matrix and the Laplacian of a graph.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Graph partitioning – the objectives

Dividing a graph into two sets of vertices with not much interaction between them is a fundamental problem.

Applications include community finding in social networks, designing divide and conquer algorithms, chip

design, finding bottlenecks in communication networks, etc.

Broadly, we would like to divide the graph into two parts, such that each part is not too small, and

the number of edges that go between the parts is small. There are many ways to formalize this, so we will

motivate one by an application.

Routing with small congestion. Suppose we have an n vertex graph (V,E), and the goal is to design a

communication path for every pair of vertices, i.e., for every u, v ∈ V , we want to construct a path Puv that

starts from u, ends at v, and consists of edges in the graph. The goal is to ensure that no edge is used in

too many paths. Formally, the congestion of an edge e is defined to be the number of pairs (u, v) such that

Puv contains e. The aim is to construct a set of paths Puv so as to minimize the maximum congestion.

Given a graph, is there a way to say that no matter how the paths are chosen, the max congestion has to

be large? A little thought reveals that this is true if there are two large sets of vertices with too few edges

between them – i.e., a communication bottleneck in the graph. Formally, suppose we divide the graph into

S and V \ S, and find that there are only K edges that go across. Then, any path Puv with u ∈ S and

v ∈ V \S must use one of the K edges. Since there are |S||V \S| such pairs, the max congestion, no matter

how Puv’s look like, is at least
|S||V \ S|

K
.

The inverse of this quantity is defined as the sparsity of the cut (S, V \ S):

σ(S) :=
|E(S, V \ S)|
|S||V \ S| .

In the routing application, we would like to find the S that minimizes σ(S), as that gives the best lower

bound for the congestion. This is referred to as the sparsest cut problem, minS⊆V σ(S).

A related quantity is the expansion of a set of vertices S. It is defined as

φ(S) :=
|E(S, V \ S)|∑

u∈S deg(u)
,

where deg(u) denotes the degree of the vertex u. Expansion measures the fraction of the edges incident on

the set S that leave the set S. In some applications, expansion turns out to be a more natural measure than
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sparsity.

However for regular graphs (all vertices have degree d, for some d), the expansion and sparsity are closely

related. For sets of size ≤ n/2, we have

σ(S)

2
≤ d

n
φ(S) ≤ σ(S).

The least expanding set is another useful parameter of a graph. I.e., we wish to find minS⊂V,|S|≤n/2 φ(S).1

This quantity is often called the expansion of the graph, denoted Φ(G).

The hardness. Both the formulations above, finding the sparsest cut, and finding the expansion of a

graph are known to be NP-hard. However, thier approximability is not completely settled – it is one of the

big open problems in theory research. The best known algorithms have an approximation factor O(
√

log n),

obtained via semidefinite programming.

Remark 1. Note that without the denominator, minimizing E(S, V \ S) is simply the Min-Cut problem,

which can be solved in polynomial time.

Examples. It is instructive to work out the expansion and sparsest cut in the following graphs:

1. A cycle on n vertices

2. An
√
n×√n grid

3. A three dimensional grid (n1/3 × n1/3 × n1/3)

4. A complete graph on n vertices

A relaxation for the sparsest cut

Assumption. For the rest of this lecture, let us restrict ourselves to d-regular graphs, for some parameter

d. This will make all our arguments clean.

Let us begin by writing the sparsest cut problem as a 0/1 optimization problem. We observe that

min
S⊆V

E(S, V \ S)

|S||V \ S| = min
x∈{0,1}n

∑
{ij}∈E |xi − xj |∑

i,j |xi − xj |
.

The sum in the numerator is over edges, and the one in the denominator is over all pairs i, j. To see the

equality, note that there is a one-one correspondence between S ⊆ V and x ∈ {0, 1}n, and that |xi − xj | is

zero if i, j are assigned the same value (0 or 1) and 1 otherwise.

Since |xi − xj | takes only 0/1 values, we can write our minimization problem as

min
x∈{0,1}n

∑
{ij}∈E(xi − xj)2∑

i,j(xi − xj)2
.

1Why the condition |S| ≤ n/2? Because the numerator remains the same whether we pick S or its complement, and it only
makes sense to use the smaller side.
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Consider the continuous relaxation of the problem, in which we replace x ∈ {0, 1}n by x ∈ Rn. Let us

call this quantity λ(G). (By definition, λ(G) ≤ minS σ(S).)

λ(G) := min
x∈Rn

∑
{ij}∈E(xi − xj)2∑

i,j(xi − xj)2
.

Now, note that both the numerator and the denominator of this expression are shift invariant, i.e., do

not change if every xi is replaced with xi + c, for some c. Thus we can shift the xi such that they are

centered, i.e.,
∑

i xi = 0. (Formally, think of picking c = −(x1+x2+···+xn)
n .) Doing this gives a clean form for

the denominator: ∑
i,j

(xi − xj)2 =
∑
i,j

x2i + x2j − 2xixj (1)

=
∑
i,j

x2i + x2j −
∑
i

∑
j

2xixj (2)

= n ·
(∑

i

x2i +
∑
j

x2j

)
− 2

∑
i

xi

(∑
j

xj

)
(3)

= (2n)
∑
i

x2i . (4)

The last equality is because
∑

j xj = 0. Thus we can rewrite

λ(G) =
1

2n
· min
x∈Rn,

∑
i xi=0

∑
{i,j}∈E(xi − xj)2∑

i x
2
i

.

This is essentially the problem of minimizing, subject to
∑

i xi = 0, the ratio xTMx
xT x

, for some matrix M ,

which is an eigenvalue problem! (See below for a quick linear algebra recap.) Thus a natural relaxation of

the sparsest cut problem gives an eigenvalue problem. A fundamental inequality (called Cheeger’s inequality,

which we will see next class) in spectral graph theory says that the relaxation indeed leads to a good way to

find an S with a small value of σ(S).

Review of Basic Linear Algebra

We will throughout deal with matrices that are real and symmetric, i.e., n× n matrices M with MT = M .

Every such matrix has n real eigenvalues, and n orthogonal eigenvectors. Let us denote by λ1 ≤ λ2 ≤ · · · ≤ λn
the eigenvalues and v1, v2, . . . , vn the corresponding eigenvectors (which we may assume are of unit norm).

Then we have 〈vi, vj〉 = 0. The vectors vi thus form an orthonormal basis for Rn. Further, we have that

we can write

M =
∑
i

λiviv
T
i .

Since vi form an orthonormal basis, any vector x of unit length can be written as
∑

i αivi, for some αi

(in fact, αi = 〈x, vi〉), where
∑

i α
2
i = 1. A useful consequence of the above is that

Mx =
∑
i

λiαivi.
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This can easily be verified, noting that vTi vj = 0 for i 6= j. Thus if a vector x has components αi in the

basis v1, . . . , vn, then Mx has components αiλi (coefficients get multiplied by the corresponding eigenvalue).

Furthermore, we can see that xTMx (a scalar) is

xTMx =
∑
i

λiα
2
i .

Since we are working with a unit vector x, i.e.
∑

i α
2
i = 1, we can think of xTMx as a weighted average of

the eigenvalues. This immediately leads us to an alternate definition of eigenvalues, which is quite useful.

Eigenvalues of a real symmetric matrix. Let M be an n× n real, symmetric matrix. Then we have

λ1 = min
x∈Rn

xTMx

xTx
.

Further, the vector x at which the minimum is attained is the corresponding eigenvector, say v1. Then

λ2 = min
x∈Rn

x⊥v1

xTMx

xTx
.

Again, the vector x that attains this minimum is the corresponding eigenvector v2. In general, we have

λk+1 = min
x∈Rn

x⊥span(v1,v2,...,vk)

xTMx

xTx
.

Non-symmetric matrices. For non-symmetric (and non-square) matrices, a useful analog of eigenvalues

are the singular values. We will encounter them at a later point in the course.

For more links on Linear Algebra, please refer to the excellent texbook by Gilbert Strang. His video

lectures on MIT’s OpenCourseWare are also a great resource.

Linear Algebra of Graphs

Let us now see some elementary connections between graphs and properties of matrices associated with

them. The first matrix we associate with an n vertex graph is its so-called adjacency matrix:

The adjacency matrix of a graph G, denoted AG is an n× n matrix whose ijth entry is 1 if {ij} is an edge,

and 0 otherwise.

Note that for an undirected graph, the adjacency matrix is symmetric. If the graph is d-regular, then every

row and every column have precisely d non-zero entries. Thus scaling the matrix down by a factor d gives

what is called a doubly stochastic matrix. We will see applications of it a couple of lectures later.

Let us try to understand a little about the eigenvalues of AG. First, what is the largest eigenvalue of

AG?

Lemma 1. For a d-regular graph G, we have λmax(AG) = d.

Proof. First, let us see why it should be at most d. Let λ be an eigenvalue. Thus by definition, we have

AGx = λx. Pictorially, we have Now, suppose the largest coordinate in x, in magnitude, is xi, for some i.
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= λ ·AG x x

Then the equality above implies that

λxi =
∑
j

Aijxj .

Taking absolute values, we have |λ||xi| ≤
∑

j |Aij ||xj | ≤
∑

j |Aij ||xi| ≤ d|xi| (where we used the fact that

|xj | ≤ |xi| for all j, and that there are precisely d 1’s in the ith row of A).

This implies that |λ| ≤ d, or −d ≤ λ ≤ d. This is true for every eigenvalue, and so λmax ≤ d.

Now, it is easy to see that we can arrange for equality in the above: suppose we set all xi’s equal – say

to 1. Then we have Ax = dx. Thus λmax = d.

In the next class, we will see that in any connected graph, there is exactly one eigenvalue which is d.

Furthermore, the multiplicity of the eigenvalue d tells us precisely the number of connected components in

a graph!

This is one of the first of many connections between the eigenvalues of a graph and its combinatorial

properties (such as connectivity, bipartiteness, etc.) we will see in the course.
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