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Lecture 3: Tail bounds, Probabilistic Method

Today we will see what is known as the probabilistic method for showing the existence of combinatorial

objects. We also review basic concentration inequalities. As an example illustrating all these, we will

give a randomized construction of an Ω(logn) integrality gap instance for the Set Cover problem.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

The Probabilistic Method

A simple puzzle in graph theory is the following:

In any graph on 6 vertices, show that there is either a clique or an independent set of size 3.1

This is a simple example of the kind of questions studied in the area of Ramsey theory. One of the basic

results there says that for any integer k, there is an N(k) such that: in any graph on N(k) vertices, there is

either a clique or an independent set of size k. The first proof also gave an upper bound of 22k on N(k). The

natural question is if one can obtain a much better bound (one that is not exponential in k, for example).

Can we give an exponential in k lower bound on N(k)?

Giving a lower bound on N(k) simply means constructing a graph on a large number of vertices and

proving that there is neither a clique nor an independent set. This question remained open until Erdős came

up with a remarkable way of proving it: he proved that a random graph on roughly 2k/2 vertices has neither

a clique nor an independent set with non-zero probability. Thus it follows that there exist graphs on 2k/2

vertices without a clique or an independent set, implying N(k) ≥ 2k/2.

Note that the method is non-constructive! We cannot, in the end, come up with an explicit family of

graphs for every k.

The proof is actually rather simple. Consider the following random process:

1. Start with n vertices (n will be specified below).

2. For every pair i, j, add the edge {ij} independently with probability 1/2.

The result of this process is a graph G.

Theorem 1. Let k > 2 be any integer, and suppose n ≤ 2k/2−1. Then with high probability, the graph G
produced above has neither a clique nor an independent set of size k.

Proof. The proof is rather simple. Fix a set of k vertices (call it S). What is the probability that they form

either a clique or an independent set? It is precisely:

2

2(k
2)
,

1A clique a set of vertices in which every pair of vertices has an edge, and an independent set is a set in which no two vertices
have an edge.
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because we have 2(k
2) possibilities for edges between the k vertices, all equally likely, and precisely two

correspond to a clique and an independent set.

Now we can take a union bound over all sets S of size k, and conclude that the probability that at least

one of them is either a clique or an independent set is at most(
n

k

)
· 2

2(k
2)

< 2k log2 n+1−(k
2). (we used

(
n

k

)
< nk).

For this quantity to be < 1, we must have k log2 n + 1 <
(
k
2

)
= k(k−1)

2 . From our choice of n, we have

log2 n = k/2− 1, for which it is easy to check that the above holds for any k > 2.

This completes the proof, and thus shows that N(k) ≥ 2k/2−1.

The probabilistic method. The general technique of proving the existence of combinatorial objects with

certain properties by proving that the probability of the properties holding for a random object is non-zero,

came to be called the probabilistic method. It is used in a variety of applications, from dimension reduction

and sketching, to low-congestion routings in communication networks, to Ramsey theory.

One interesting thing to note, is that computation above (with a slightly smaller n) shows that in fact,

a random graph has neither a clique nor an independent set of size k, with extremely high probability. But

even so, constructing an explicit graph with this property for every k is rather tricky! This is a fairly general

phenomenon with probabilistic constructions, where we know that random objects possess certain properties

with very high probability, but we cannot pin down an explicit object with the property. The phrase finding

hay in a haystack was coined to illustrate to this seemingly strange situation.

Concentration Inequalities

A concentration inequality, or a tail bound for a random variable, is an inequality which says that the

probability that the random variable deviates too much from its expectation is small.

For a well written introduction, please refer to the survey of Chung and Lu:

https://projecteuclid.org/euclid.im/1175266369

Pay particular attention to the simplest case, namely the sum of independent Bernoulli trials: let Xi be

independent coin tosses, i.e., random variables that takes value 0 with probability 1/2, and 1 with probability

1/2. Now consider the sum X =
∑n

i=1 Xi.

Recall also the formal definition of independence of a collection of random variables:

0/1 random variables X1, . . . , Xn are said to be independent if for any subset of the variables Xi1 , Xi2 , . . . , Xik ,

and any assigment (a1, . . . , ak) ∈ {0, 1}k, we have

Pr[Xi1 = a1 ∧Xi2 = a2 ∧ · · · ∧Xik = ak] =

k∏
j=1

Pr[Xij = aj ].

The random variable Y = X −E[X] has a simple interpretation (scaling by a factor 2) as the position at

time n, of the natural random walk on the line (we start at the origin, and at every time step, we toss a fair
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coin, move left by one unit if heads, or right by one unit if tails).

To get a sense of how large we expect the magnitude of Y to be, a natural measure is the variance, i.e.,

E[|Y |2]. Let us evaluate this quantity. To do so, first recall that Y = Y1 + · · ·+Yn, where Yi = Xi−E[Xi] =

Xi−1/2. We also recall the linearity of expectation, a fundamental notion in analyzing probabilistic processes:

For any collection of random variables Z1, Z2, . . . , Zn (they need not be independent!), we have

E[
∑
i

Zi] =
∑
i

E[Zi].

We can use this to conclude that

E[Y 2] = E[(
∑
i

Yi)
2] = E[

∑
i

Y 2
i +

∑
i 6=j

YiYj ] =
∑
i

E[Y 2
i ] +

∑
i 6=j

E[YiYj ].

Now for any i 6= j, it is easy to see that E[YiYj ] = 0 (convince yourself if you don’t see this immediately).

Further, Y 2
i is 1/4 w.prob. 1, thus E[Y 2

i ] = 1/4. These observations imply that

E[Y 2] = n/4.

So this means that typically, we expect the value |Y | to be ∼
√
n. What is the probability that it is

much larger than say C
√
n, for some large constant C? This is precisely the question answered by Chernoff

bounds. It turns out to be < e−C
2

.

This also hints at the general format of most tail inequalities, which is the following:

Let X be a random variable that is an aggregate of several independent random variables, without

depending too strongly on any of them. Then the probability that X is more than C “standard

deviations” away from its mean is exponentially small in C.

Recall that standard deviation is simply the square root of the variance (it is the typical value of |Y |
above). The first 10 or so pages of the Chung-Lu survey give several examples of such theorems. Apart from

this, a great reference is Terry Tao’s blog post:

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/

Set Cover – An Integrality Gap

Recall the set cover problem, we have topics T1, . . . , Tn, and people P1, . . . , Pm, and each person is an expert

on a subset of the topics. The goal is to pick the smallest number of people, among whom there is an expert

on every Ti.

The ILP we considered last time is the following. For every person, we have a 0/1 variable xi that

indicates if the person is picked. We then have the constraints: for each topic Tj ,∑
i:Pi expert on Tj

xi ≥ 1.

(As we did last time, we will write i ∼ Tj to denote i being an expert on Tj .) The goal is to minimize
∑

i xi.
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The LP relaxation replaces xi ∈ {0, 1} with 0 ≤ xi ≤ 1. We now describe an instance in which the value

of the objective (
∑

i xi) is O(1) for the LP, but is at least Ω(log n) for the ILP. The instance is very simple:

for each topic Tj and person i, we make i an expert on Tj with probability 1/2, independently of other pairs

i, j.

What we show is the following:

Theorem 2. Let I be the instance of set cover generated by the above probabilistic process. With probability

at least 3/4, it satisfies the following two properties:

1. The optimal solution to the ILP is ≥ (1/4) log2 n.

2. There exists a (fractional) solution to the LP with objective value ≤ 4.

Let us now prove the theorem. We show that the probability of each of the conditions holding is ≥ 7/8,

and from there, the theorem follows (Union bound the failure events).

The first condition. Intuitively, the reason this condition holds is the following. Suppose we choose any

set of k people. Now, for a topic j, the probability that none of the chosen people is an expert on Tj is

precisely 2−k. Thus the expected number of topics that are not covered by any of the chosen people is n ·2−k
(this is exactly like tossing n coins, each having a probability 2−k of falling heads, and we want the expected

number of heads). Now as long as this number is > 1, there exists an uncovered topic. Thus, we must have

k ≥ log n in order to have a valid cover.

The reasoning above is heuristic for two reasons. First, it was in expectation. Second, it was for a “fixed”

set of k people. We now make the argument formal. Let us fix some k-subset of people S. The probability

that S does not cover some Tj is 2−k, as we have seen. These events for different j are independent, because

of the way we picked the graph. Hence, the probability that they cover all the n topics is equal to(
1− 1

2k

)n

, which is ≤ e−n/2k

.

Now, what is the probability there exists a k-element subsets of [n] that covers all the topics? This is

tricky to compute exactly, but we can upper bound the probability by
(
n
k

)
times the probability that any

given S covers all the elements (union bound). From the calculation above, this is at most(
n

k

)
e−n/2k

.

To make this < 1/8, we must have 8
(
n
k

)
< en/2k

. We claim that this holds whenever k < (1/4) log2 n (for

large enough n). The LHS is upper bounded by 8nk, which is 8ek log n, or O(elog2 n). The RHS is at least

en
3/4

. Since n3/4 � log2 n (for n large), the claim follows.

Thus the probability that there exists a set of size (1/4) log2 n that covers all the topics is < 1/8.

The second condition. Consider the solution xi = 4/n for all i. Now consider the constraint correspond-

ing to some topic Tj : ∑
i∼Tj

xi ≥ 1. (1)
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To show that this holds, we only need to prove that for every j, the size of the set {i : i ∼ Tj} is at least

n/4. From our construction, the expected size of the set is n/2. What is the probability that it is < n/4?

We can use Chernoff bounds to show that this probability is at most e−Ω(n). For n large enough, this

quantity is < 1/8n, i.e., the probability that the constraint fails for some j is < 1/8n. Thus the probability

that none of the constraints fail is at least 7/8, which is what we wanted to prove.

This shows that the LP relaxation for the Set Cover problem has an integrality gap of Ω(log n).
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