
Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

Lecture 2: Review, Linear Programming Relaxations

Today we will talk about expressing combinatorial problems as mathematical programs, specifically

Integer Linear Programs (ILPs). We then see what happens if we relax the integrality condition, obtaining

linear programs (LPs). Then, we introduce the paradigm of designing approximation algorithms by

rounding LP relaxations, i.e., obtaining a “good” solution to the ILP from a solution to the LP.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Integer Linear Programs

Consider the following optimization problem in n variables x1, x2, . . . , xn:

maximize f(x1, x2, . . . , xn) subject to

g1(x1, x2, . . . , xn) ≤ 0,

g2(x1, x2, . . . , xn) ≤ 0,

...

gm(x1, x2, . . . , xn) ≤ 0,

xi ∈ {0, 1} for all i.

We call such an optimization problem an Integer Program (IP).1 Integer programs are highly expressive,

even for a restricted class of functions f, gi. One particular sub-class of IPs we study are the so-called Integer

Linear Programs (ILP), in which the functions f and gi are all linear.

In this case each constraint gi(x1, . . . , xn) ≤ 0 can be written as ATi x ≤ bi, for some Ai ∈ Rn. If we

denote by A the m × n matrix whose ith row is Ai and by b the vector whose ith entry is bi, we can write

the constraints in the matrix form

Ax ≤ b.

(Throughout the course, inequality for vectors simply means entry-wise inequality).

Expressibility. Despite the linearity restriction, many interesting problems are easily expressible as ILPs.

We will see below how to write the Set Cover and Max-Cut problems (defined in the last class) as ILPs. An

implication of this is that solving ILPs is NP-hard in general.

If it is NP-hard, why do we care about formulating problems as ILPs? There are two answers. The first

is that there are many heuristics for solving ILPs (there is an extensive literature, comparable to that on

SAT solvers), and readily available software that can solve ILPs with 1000s of variables in a few seconds.

Thus in many practical applications, it is useful to formulate a problem as an ILP and try using a solver.

The second reason, from the theory side, is that some formulations can lead to approximation algorithms.

This is the focus of today’s lecture.

1Some authors prefer to replace the constraints xi ∈ {0, 1} with somewhat more general ones.

Page 1 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

Example: Set Cover

Recall the set cover problem, we have topics T1, . . . , Tn, and people P1, . . . , Pm, and each person is an expert

on a subset of the topics. The goal is to pick the smallest number of people, among whom there is an expert

on every Ti.

This can easily be phrased as an ILP. Suppose we have 0/1 variables x1, . . . , xm, where xi indicates if

person Pi is picked. Then for any j, the constraint that at least one expert on Tj is picked, can be written

as ∑
i:Pi expert on Tj

xi ≥ 1.

The solution must satisfy this constraint for all j ∈ [n].2 Subject to these constraints, we wish to minimize∑m
i=1 xi. This is the objective function for the ILP.

Formulation as an ILP need not always be so straight-forward, as we illustrate now.

Example: Max-Cut

Recall that in the Max-Cut problem, we have a graph G = (V,E), and the goal is to partition V into V1 and

V2 so as to maximize the number of edges in the cut, E(V1, V2).

We need to partition V into two sets, thus a natural choice of variables is to have one for each vertex,

xu = 0 if u ∈ V1, and 1 otherwise. All partitions are allowed, so we do not have any constraints other that

xu ∈ {0, 1} for all u.

How do we now write the objective value? For an edge uv, we need some way of figuring out if xu and xv
are unequal. This is easy to do if we allow quadratic functions – (xu− xv)2 captures precisely this. However

it is not possible to write it as a linear function of xu and xv. Can we have other choices of variables using

which we can express the objective as a linear function?

There are a couple of ways. The first is to introduce new variables, yuv, one for each pair of vertices. The

goal is to add linear constraints on yuv such that for any xu, xv that are 0/1, yuv is forced to take the value

xu · xv. (Again, we are only allowed to use linear constraints.) In the homework, we see that the following

conditions suffice:

yuv ∈ {0, 1}; yuv ≤ xu; yuv ≤ xv; 1− xu − xv + yuv ≥ 0.

In fact, these type of constraints are a simple example of the so-called lift and project methods, which we

will see later in the course.

Now, once have such variables yuv, we can write the objective function as xu+xv−2yuv (this is precisely

the same as x2u + x2v − 2xuxv, since x2u = xu for 0/1 variables).

2Note the standard notation [n] = {1, 2, . . . , n}.

Example: Max-Cut continued on next page. . . Page 2 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

An aside. (not absolutely necessary to follow this) For the Max-Cut problem, it turns out there is

another way to write an ILP relaxation. We can have variables yuv that are supposed be 1 if the vertices

u, v are on different sides of the cut, and 0 if they are on the same side. With this choice of variables, the

objective is easy, we maximize the sum over edges uv of yuv. But what constraints do we place on the yuv?

It turns out that the so-called triangle constraints, along with metric constraints suffice:

for all u, v, w, yuv + yvw + yuw ≤ 2,

for all u, v, w, yuv + yvw ≥ yuw.

For a solution of the intended form (as described above), these condition hold. The first condition holds

because if we pick any three vertices, at least two of them are on the same side, so at least one of the three

terms on the LHS is 0. The second constraint can also easily be verified. The tricky thing is to show that

any 0/1 variables yuv that satisfy the constraints are actually of the intended kind (for some partition).

Linear Programs

Finally, we turn to a more tractable set of problems, called linear programs, or LPs. These are optimization

problems in which we have have linear constraints and objective (as in ILPs), but we do not have any binary

constraints (i.e. the xi are allowed to be arbitrary real numbers, as opposed to xi ∈ {0, 1}).

To be more precise, a linear program is the following problem:

maximize cTx subject toAx ≤ b,

where as before, x ∈ Rn, b ∈ Rm, and A is an m × n matrix. Once the binary restriction on the xi’s is

removed, the problem has a very geometric interpretation.

Geometric interpretation. Let us think about the set of feasible points, i.e., the points in x ∈ Rn that

satisfy the constraints Ax ≤ b. For any constraint Aix ≤ bi, the set of feasible points x is a half-space (as

a simple example, think of the n = 2 case, and the constraint x1 + 2x2 ≤ 1). Thus if we want points that

satisfy all the constraints, we are interested in the intersection of the m half-spaces given by Aix ≤ bi, for

i ∈ [m]. Such an intersection is called a polytope.

For details, we refer to Section 7.1 in: https://www.cs.berkeley.edu/∼vazirani/algorithms/chap7.pdf

The chapter also contains a brief history of LPs, and a short description of the simplex algorithm. The

main fact we will use about LPs is that they can be solved efficiently (i.e., in polynomial time). The first

efficient algorithm was given by Khachiyan [1979] — considered one of the big achievements of modern

algorithms research.

Linear programs as a proxy for ILP

Let us now get back to our main focus of designing approximation algorithms. For the remainder of the

lecture, let us focus on the Set Cover problem.

Recall the ILP relaxation for Set Cover:

Linear programs as a proxy for ILP continued on next page. . . Page 3 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

minimize
∑
i

xi subject to

for all j ∈ [n]:
∑

i expert on Tj

xi ≥ 1, and

xi ∈ {0, 1}.

What is a natural LP that one could use as a proxy for this ILP? The simplest idea is to replace the

constraints xi ∈ {0, 1} with 0 ≤ xi and xi ≤ 1 for all i! Such a transformation is generally referred to as

relaxation (we are relaxing the integer constraints).

Suppose we denote the feasible set of the ILP by FILP (i.e., it is the set of x that satisfy all the constraints

of the ILP). Similarly, denote the feasible set of the relaxation by Frelax. Since the only difference between

the ILP and the relaxation are the constraints xi ∈ {0, 1} (which are replaced by 0 ≤ xi ≤ 1), we have

FILP ⊆ Frelax.

Thus the minimum value of the objective over FILP (called OPT (FILP)) is greater than or equal to the

minimum value of the objective over Frelax (called OPT (Frelax)).

The integrality gap of an ILP formulation of a problem (in our case, Set Cover) is defined to be the

maximum over all inputsa of the ratio:
OPT (FILP)

OPT (Frelax)
.

aAs was the case for the approximation ratio, sometimes the integrality gap is a function of the input size, in which case the
maximum is over inputs of that size.

Let us see a simple input for Set Cover in which OPT (FILP) is strictly larger than OPT (Frelax). Consider

the following:

• We have 3 topics: A,B,C, and three people.

• The first person is an expert on A,B, the second on B,C, and the third on C,A.

Now, in the ILP formulation, we have three variables x1, x2, x3 for the three people. The constraints are

now:

x1 + x3 ≥ 1; x2 + x3 ≥ 1; x1 + x2 ≥ 1; xi ∈ {0, 1}.

It is easy to see that to satisfy the constraints, we must set at least two of the xi to 1. Thus the min value

of x1 + x2 + x3 is 2.

Now let us see what happens to the relaxation. Here, the constraint xi ∈ {0, 1} is replaced with 0 ≤ xi ≤ 1.

Let us set xi = 1/2 for all i. Now, it is easy to see that all the constraints are satisfied! And for this solution,

we have x1 + x2 + x3 = 3/2, thus the objective value is only 1.5.

Thus the integrality gap, just considering this instance, is at least 2/1.5 = 4/3. As we increase the

number of topics n, we can construct examples in which the gap is larger – in fact the integrality gap can

be as bad as Ω(log n).

Page 4 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

“Rounding” fractional solutions

In summary, the relaxation of an ILP always gives an efficiently solvable optimization problem. The catch

is that the solution we get could be fractional, so it might not help us solve the ILP we started with.

However, in some cases, it is possible to round the fractional solution to the relaxation, and get a feasible

solution to the ILP without much change in the objective value. This is a general, and a powerful paradigm

in approximation algorithms.

LP relaxations for approximation algorithms

• Start with an ILP formulation for the problem

• Relax the integrality constraints, obtaining a linear program

• Solve it to obtain a (possibly fractional) solution x (this is polynomial time)

• “Round” the solution x into a solution for the ILP. Two things need to be ensured:

1. the resulting solution satisfies all the constraints of the ILP

2. the objective value does not change too much (the factor it changes by determines the approxi-

mation factor)

The last step, i.e., how we round the fractional solution x, is where all the ingenuity lies. We will now

see a very simple procedure, which works for the set cover problem.

Randomized rounding

Recall the ILP for Set Cover (start of Page 4 of the notes). In the relaxation, we replace the constraint

xi ∈ {0, 1} with 0 ≤ xi ≤ 1 for all i. Now suppose we start with a solution x for the relaxation. The goal is

to come up with a solution to the ILP, such that the two conditions above are satisfied (solution satisfies all

constraints and objective value does not increase too much).

We consider the following rounding procedure. For some α ≥ 1 (to be picked shortly), we set:

Yi =

{
1 with probability min{αxi, 1}
0 otherwise

.

Note that this is a randomized procedure that comes up with a 0/1 valued vector Y . Note also that each

i is rounded independently of the other i. Y is now our candidate solution to the ILP. Let us evaluate the

probability of it satisfying all the constraints, and the cost of the solution.

Constraints. We want to show that none of the constraints are violated with high probabililty. As in the

coupon collector analysis, we can start by showing that the probability that any single constraint is violated

is � 1/n, and then take a union bound.

Consider the constraint corresponding to some topic Tj :∑
i expert on Tj

Yi ≥ 1. (1)

Page 5 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

For convenience, let us write i ∼ Tj to denote “i expert on Tj”. Now, by assumption, the fractional

solution x satisfies the above constraint, i.e.,
∑
i∼Tj

xi ≥ 1. What is the probability that (1) is not satisfied?

It is precisely the probability that none of the Yi is 1. Because the rounding is done independently for

different i, this probability is: ∏
i∼Tj

(1−max{αxi, 1}).

If one of the αxi terms is ≥ 1, the probability is zero, so the constraint is certainly satisfied. Thus we

may assume that 0 ≤ αxi < 1. In this case, we can use the inequality 1− z ≤ e−z as in the last lecture, to

conclude that the probability above is at most∏
i∼Tj

e−αxi = e
−α

∑
i∼Tj

xi ≤ e−α.

In the last step, we used the fact that
∑
i∼Tj

xi ≥ 1. We would like to make this quantity 1/n2. Thus it

suffices to pick α = 2 log n. Now we can use the union bound, to conclude that the probability that none of

the constraints are violated is at most n times the above, which is still < 1/n.

Objective value. Now we need to see what the rounding above does to the objective value, namely∑m
i=1 Yi. In expectation, we have (since for each i, E[Yi] = αxi, and expectation is linear)

E[
∑
i

Yi] =
∑
i

αxi = α ·
∑
i

xi.

The last term is the objective value of the fractional solution, which as we have seen (since we have a

minimization problem), is smaller than or equal to the optimum solution to the ILP. Thus if we denote by

OPT the optimum objective value for the ILP, we have

E[
∑
i

Yi] ≤ α ·OPT.

So in expectation, the objective value of the solution we produced is at most an α factor larger than

the optimum objective value. We would like to say that our algorithm does well with high probability, not

simply in expectation. Here is where we use one of the standard probability inequalities.

Theorem 1 (Markov’s Inequality). Let X be a random variable that always takes non-negative values. Then

for any t > 0, we have

Pr[X > t · E[X]] ≤ 1

t
.

The proof is very simple, and is left as an exercise.

Using this inequality with t = 4, we obtain that

Pr[
∑
i

Yi > 4α ·OPT] ≤ 1/4.

Overall success probability. We have shown that the probability that none of the constraints is violated

is at least 1− 1
n , and that the probability that

∑
i Yi ≤ 4α ·OPT is at least 3/4. Thus, the probability that

both these events occur is at least 1 −
(
1
4 + 1

n

)
> 2/3, for n > 12. Thus the rounding procedure gives a 4α

Page 6 of 7



Aditya Bhaskara CS 5968/6968, Lecture 2: Review, Linear Programming Relaxations 12 January 2016

approximate solution, with probability > 2/3.

This gives an alternate way to obtain an O(log n) approximation algorithm for the Set Cover problem.

Page 7 of 7


