
Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming continued 25 February 2016

Lecture 13: Semidefinite programming continued

We present and analyze a rounding algorithm for the SDP relaxation of Max CUT. Then we compare

SDP and LP relaxation of max independent set, and say why SDP could be much better. Finally, we see

how to write SDP relaxations for different kinds of combinatorial problems.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

SDP relaxation for Max Cut

We saw last time the semidefinite programming relaxation for the max cut problem, in which we have a unit

vector for each vertex, and the goal is to maximize
∑

ij∈E
1−〈vi,vj〉

2 . We wanted to show how to round the

obtained vector solution to xi ∈ ±1.

We mentioned that this is equivalent to partitioning the surface of the sphere into two parts – the first

which maps to +1 and the second to −1. We then said that we consider a natural division using a plane

through the origin. How do we select the plane so as to maximize the number of cut edges?

The idea is to pick a uniformly random hyperplane! The analysis of the size of the cut this gives was done

by Goemans and Williamson, who pioneered the SDP approach for Max Cut in their seminal 1994 paper.

For details of the analysis presented in class, please see the following: (be careful with the ∼ in the URL)

http://www.cs.utah.edu/∼bhaskara/courses/x968/notes/williamson.pdf

Key steps:

- How well does this do? What is the probability that one edge is cut?

- Expected value of the total cut. How can we relate it to the objective value of the SDP? The approxi-

mation ratio we get is 0.878..

We also observe that in the case when the SDP value is close to 1, the approximation factor is better

than 0.878. In particular, if the objective value of the SDP is (1− ε)|E|, then the rounding produces a cut

with value (1−O(
√
ε))|E|.

SDP vs LP for Independent Set

Let us consider the independent set problem: given a graph G = (V,E), we wish to find the largest possible

subset S of vertices such that no pair of vertices in S have an edge.

What is the natural LP formulation for this problem? We can start with one variable xi that indicates

if i ∈ S. Then, for every edge ij, we have

xi + xj ≤ 1.

We can think of maximizing
∑

i∈V xi subject to the constraints above, along with 0 ≤ xi ≤ 1.

The issue with this natural linear program is that setting xi = 1/2 for all i is always a feasible solution,

and it gives a value n/2 for any graph. This is particularly bad when the graph is a clique on n vertices. In

this case, the optimal independent set has size 1, while the LP optimum is n/2.

SDP vs LP for Independent Set continued on next page. . . Page 1 of 4

Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming continued 25 February 2016

Now let us give an SDP formulation, which does much better, at least in this case.

The idea is to have a vector vi for every i, which is supposed to be equal to 0 or a fixed unit vector u

(i.e., one that is independent of i). We would like to impose constraints that try to enforce this.

For this, let us start with a simpler question: what is a constraint that forces a real number to be 0 or

1? One answer is x2 = x, or equivalently x · x = x · 1. We can write precisely this for vectors!

〈vi,vi〉 = 〈vi,u〉.

Here u is simply constrained to be a unit vector indpendent of i. Geometrically, this is equivalent to

saying vi lies on the sphere whose center is u/2 and radius 1/2. (This sphere passes through u and 0, as

desired.) Once we have vectors vi, there is a more natural way to represent the constraint xi +xj ≤ 1, which

is to say xixj = 0 for an edge. This can be written as a constraint on the inner products. Thus the overall

SDP we consider is the following:

max
∑
i

〈vi,vi〉 subject to

〈vi,vj〉 = 0 for all ij ∈ E,
〈vi,vi〉 = 〈vi,u〉 for all i,

〈u,u〉 = 1.

It is easy to see that this is a relaxation for the independent set that can be solved efficiently. For the

clique, we claim that the optimum of the relaxation is in fact ≤ 1.

To prove this, consider any solution that satisfies all the conditions. In a clique, every pair i 6= j have an

edge, which means that 〈vi,vj〉 = 0 for all i 6= j (i.e., vi are mutually orthogonal).

Let S denote the vector
∑

i vi. This means that

〈S, S〉 = 〈
∑
i

vi,
∑
i

vi〉 =
∑
i

〈vi,vi〉 = 〈
∑
i

vi,u〉.

(We also used the constraints of the SDP.) Thus ‖S‖2 = 〈S,u〉 ≤ ‖S‖‖u‖. This implies that ‖S‖ ≤ 1, since

‖u‖ = 1. This implies that the objective is ≤ 1.

This is an instance in which an SDP relaxation is much better than an LP. For the independent set

problem, it turns out that there are instances in which even the SDP does very badly – roughly Ω(n) larger

than the true optimum.

SDP for Coloring 3-colorable graphs

Graph coloring is one of the fundamental problems in theoretical CS. Given a graph, the goal is to color the

vertices with as few colors as possible, such that for every edge, the end points are colored with different

colors. In other words, every color class is an independent set.

It turns out that approximating the minimum number of colors needed for a given class is NP hard (it’s

called the chromatic number). In fact, given that a graph is colorable with 3 colors, it is NP hard to find

the coloring.

SDP for Coloring 3-colorable graphs continued on next page. . . Page 2 of 4

Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming continued 25 February 2016

This is referred to as the problem of 3-coloring. Given a graph G that is promised to be 3-colorable, find

a coloring using as few colors as possible. It has gained a lot of interest due to the difficulty in obtaining

algorithms, as well as proving hardness results. The best algorithm colors the graph using roughly n0.2

colors, while the best known hardness results say that it is hard to color using fewer than a constant number

of colors.

The best algorithmic results rely on a semidefinite programming formulation, which we briefly outline.

Our goal is not to study the problem itself, but just give an example of how to write an SDP for a problem

that’s quite different from those we’ve seen so far.

The difference is that it is an optimization problem (minimize the number of colors), but with a promise:

the input graph is guaranteed to be 3-colorable (we just don’t know the coloring). Can a semidefinite program

take advantage of this fact?

The idea is to have vectors vi, one for each vertex, and the intended solution is to use exactly three

vectors, one for each color class, and the vectors are all at an angle 120 degrees from one another (on a

plane). For any edge ij, we know that vi,vj make an angle of 120 degrees, or equivalently, 〈vi,vj〉 = −1/2.

The nice thing about an SDP formulation is that we can enforce it as a constraint (it just involves inner

products). Thus if a graph is 3-colorable, then the following SDP is feasible:

〈vi,vi〉 = 1 for all i, and 〈vi,vj〉 = −1/2 for all ij ∈ E.

Thus, we can start with a collection of vectors that satisfy the constraints, and try to round. In this case,

this means we need to assign vectors to colors, using as few distinct ones as possible, while ensuring that

vertices that have an edge get different colors. This is a bit tricky to do directly, so the known algorithms

proceed by trying to find an independent set that is as large as possible (an independent set of size n/3

exists in the graph). We can then assign one color to all those vertices, remove them from the graph, write

an SDP for the other vertices, and recurse. If we can always find independent sets that are of size ≥ ∆, the

entire graph will be colored with O(n/∆) colors.

We will not go into the formal details.

SDP for ‘Betweenness’

Finally, we consider an ordering problem, and show how SDP formulations are also useful here. The problem

is called betweenness. We have a universe of n elements (called a1, a2, . . . , an, say), and the goal is to arrange

them on a line, subject to constraints of the following form: each constraint is defined by a triple (i, j, k),

and the ordering we obtain is supposed to have aj occurring between ai and ak. Formally, if we denote by

πi the position of ai, we must have either πi < πj < πk, or πk < πj < πi.

Suppose we have m such constraints. It is known that it is NP hard to determine if a set of constraints

are all satisfiable. Thus it is natural to try to maximize the number of satisfied constraints. How could we

write an SDP for such a problem?

The key idea is that a betweenness constraint has a quadratic nature: we can write it as

(πi − πj)(πj − πk) > 0.

Suppose we write an SDP, whose intended solution is a set of unit vectors that are arranged on a semi-circle

SDP for ‘Betweenness’ continued on next page. . . Page 3 of 4

Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming continued 25 February 2016

(assume 2 dimensions), in the correct order (which we do not know, of course). These vectors vi will satisfy

〈(vi − vj), (vj − vk)〉 > 0 for all constraints (i, j, k).

Now the question is, suppose we have a set of vectors that satisfy the constraint above, can we come up

with an ordering πi that satisfies many of the constraints? How can we come up with an ordering, given a

bunch of vectors?

One natural idea is to consider a random direction u (a unit vector), and order the vectors based on

the projection onto u. What is the expected number of constraints that are satisfied by the ordering thus

obtained? As we did for max cut, we can try to analyze the probability that one of the betweenness

constraints is satisfied, and then we can appeal to the linearity of expectation.

Thus consider one constraint, say (i, j, k). Since the projection of vi onto u is simply 〈vi,u〉, the constraint

is satisfied iff

(〈vi,u〉 − 〈vj ,u〉)(〈vj ,u〉 − 〈vk,u〉) > 0 ⇐⇒ sgn(〈u,vi − vj〉) = sgn(〈u,vj − vk〉).

Now, by the constraints in the SDP, we know that the inner product of vi−vj and vj −vk is ≥ 0, which

means these vectors make an angle ≤ π/2. Thus for a random direction u, the probability of the above event

is ≥ 1/2.

This implies that the expected number of satisfied constraints is ≥ m/2. Note that this is non-trivial,

because if we consider a uniformly random ordering, only m/3 constraints are satisfied in expectation. Thus

the SDP allows us to do significantly better.

Page 4 of 4

