
Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming 23 February 2016

Lecture 13: Semidefinite programming

We define semidefinite programming abstractly – as optimizing a linear function over the PSD cone.

Then define the viewpoint as a vector program with constraints being between inner products of the

variables.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Optimization on the PSD cone

In the last class, we defined the PSD cone as a subset of the space of n × n matrices (i.e., of Rn2

), which

consists of all matrices M of the form

M =
∑
i

αiviv
T
i ,

for some non-negative reals αi, and vectors vi ∈ Rn. We also mentioned that this is precisely the set of

symmetric matrices with all non-negative eigenvalues. (It is a simple exercise to prove this.)

Such matrices are called positive semidefinite (or PSD) matrices. We also write this as M � 0.

An alternate definition of a PSD matrix is that xTMx ≥ 0 for all x ∈ Rn. It is easy to see that this

is equivalent to saying that all eigenvalues are non-negative (why? recall the min-max characterization of

eigenvalues). We can also write the constraint xTMx ≥ 0 as M ·X ≥ 0, where X is the matrix xxT . Thus,

a matrix is PSD iff M ·X ≥ 0 for all X = xxT , for x ∈ Rn.

Now, for a given x, the constraint M ·X ≥ 0 is a linear constraint on M . Thus the PSD cone can also

be defined by the infinite set of linear constraints M ·X ≥ 0.

The natural question is now, is there a separation oracle? I.e., given an M which is not in PSD, is it

easy to find a violated constraint? This is equivalent to asking, can we find an x ∈ Rn such that xTMx < 0?

To do this, it suffices to compute minx x
TMx, which is precisely the problem of finding the bottom

eigenvalue of the matrix M ! This can easily be done efficiently, as we saw earlier. Thus, the separation

oracle for the PSD cone is an algorithm that computes the minimum eigenvalue.

This implies that optimizing linear functions over PSDn (with possibly other linear constraints) can be

done efficiently via the ellipsoid algorithm. Such an optimization problem is called a semidefinite program,

or an SDP. Formally, an SDP is an optimization problem of the following form:

maxC ·X subject to

A1 ·X ≤ b1
A2 ·X ≤ b2

...

Am ·X ≤ bm
X � 0

As we will see, SDP’s are a powerful class of optimization problems, and can be used to design several very

interesting approximation algorithms. Before we go into the details, we make a simple observation that helps

us define an SDP in a simpler way.

Page 1 of 2

Aditya Bhaskara CS 5968/6968, Lecture 13: Semidefinite programming 23 February 2016

Vector program formulation

A simple fact is that any PSD matrix M can be written as M = V TV , for some matrix V (this is called the

Cholesky decomposition of M). To see this, recall that we can write M = UTDU , where U is the matrix

with eigenvectors as the columns, and D is the matrix of eigenvalues (which we know are all non-negative);

now simply define V = D1/2U . Furthermore, any matrix of the form V TV is PSD.

What this means is that the (i, j)th entry Mij = 〈vi, vj〉, where vi is the ith column of V . We can rewrite

the SDP above as the problem of maximizing
∑

i,j Cij〈vi, vj〉, subject to an arbitrary set of linear constraints

on the inner products 〈vi, vj〉. The optimization is over all vectors vi (technically, without any restriction on

the dimension, but we can assume that it is at most n, the number of vectors).

This way of viewing an SDP is called the vector programming formulation, which could sometimes give

more intuition.

Example: SDP for the Max CUT problem

SDPs have been used to come up with novel approximation algorithms for problems. We see an example

for the max cut problem, which we encountered before. We have a graph G = (V,E), and the goal is to

divide the vertices into two sets, such that the number of edges going across (from one set to the other) is

maximized.

As we have seen, we can write it as the following optimization problem:

max
xi∈±1

1

4

∑
ij∈E
|xi − xj |2 =

∑
ij∈E

1− xixj
2

.

Now the key idea is, suppose we replaced the condition xi ∈ ±1 with the constraint “vi is a unit vector”,

and replaced the term xixj with 〈vi, vj〉. What would the resultant optimization problem look like? Firstly,

it is clearly a relaxation of the original formulation (because if vi were one-dimensional vectors, we would

get the original formulation). Secondly, this is a semidefinite program, because the constraints ‖vi‖ = 1 can

be written as the constraints 〈vi, vi〉 = 1, and the objective is already a linear function of 〈vi, vj〉. Thus, this

is a relaxation that can be solved efficiently!

The key question is now, does a solution to the relaxation give us a good way solve max cut? I.e., we

would like to round the solution to the relaxation, as we did earlier for LP relaxations.

What does it mean to round a solution for the max cut SDP? Recall that a solution is simply a set

of unit vectors vi, one for each vertex in the graph. The goal is to come up with an xi = ±1, such that∑
ij∈E

1−xixj

2 is not too small compared to
∑

ij∈E
1−〈vi,vj〉

2 .

Abstractly, the question is, how do we map points vi on a sphere to xi ∈ ±1? We need to divide the

surface of the unit sphere (in n dimensions, where n = |V | into two regions, one of which maps to +1 and the

other to −1. One natural way to do it is to break up the surface into two hemispheres (using a hyperplane

through the origin).

In the next class, we show that this idea works! In fact, we show that if we pick a random hyperplane

through the origin, and assign xi as above, the expected size of the obtained cut is not too small.

Page 2 of 2

