Aditya Bhaskara CS 5968/6968, Lecture 12: Convex optimization continued 18 February 2016

Lecture 12: Convex optimization continued

Outline of the ellipsoid algorithm, and some links to the details. We then talk about the cone of PSD
matrices and a separation oracle for it.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Efficient algorithms for membership

We saw last class that minimizing a convex function f over a convex domain D can be done if we can simply
find a point z in D N L. (f) for any given 7, where L, (f) is the level set. (We can then perform a binary
search over 7.)

Let us thus see how we can solve the membership problem for a convex set D. The main result is that
in many cases, having a separation oracle A for D suffices to obtain a polynomial time algorithm for the
membership problem. The idea is due to Khachiyan (1979), who used it to obtain the first polynomial time
algorithm for Linear Programming.

Ellipsoid Algorithm

Let us suppose we have a separation oracle A for a convex set D C R™. Further, suppose we know a bounding
ellipsoid Eqy for D that is not too much larger. More precisely, we have D C Ey and

VO](EO) < 2poly(n) ]
vol(D)

(This is not possible when the feasible set is infinite. It turns out that for the proof, we do not need an

vol(Fo) 5 to be bounded as above.)

ellipsoid that fully contains D. We only need to have Tol(DAES)

Then the following iterative algorithm efficiently finds a point x € D:

1. Start with the ellipsoid Ey, and suppose its center is ¢g. Fori =0, ..., T, where T > 4nlog(vol(Fy)/vol(D)),
do the following:*

2. Run the separation oracle on point c;.

3. If it says ¢; € D, then we found a feasible point, so return it.

4. Else, we get a hyperplane (a,z) > b, with the property that the center lies on one side and the entire
set D lies on the other. In this case we construct a new ellipsoid ;1 (described below) that contains
D, and has a volume < (1 — 1/2n)vol(E;).

Theorem 1. Assuming step (4) is efficient (which we will prove momentarily), the algorithm runs in
polynomail time and returns a feasible point.

1The algorithm does not know the ratio of volumes. However, we assumed that there is an upper bound on the log of the
ratio of volumes that we do know, and is polynomial in n.
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Proof. First, note that our upper bound on the ratio of volumes implies that T is polynomial in n. The
efficiency of the separation oracle, and the step (4) implies that the overall running time is polynomial in n.

Now, why does the algorithm always find a feasible point? Suppose it ran for T steps without finding
a feasible point. Then, the final ellipsoid we construct has the property that vol(Er) < (1 — 1/2n)Tvol(Ej),
which by our choice of T is < vol(D). But this cannot happen if Er contains D!

Thus one of the centers in the process must have been contained in D, in which case we would have
returned it. O

The volume reduction step. It now remains to see the key step in the algorithm — step 4 above. l.e.,
we have an ellipsoid F; that contains D, and we have a hyperplane that separates the center from the entire
set D. We may assume that the plane passes through the center (because otherwise we can move the plane
closer to the center, while maintaining the property that the plane separates the center and the set D). Also,
we can shift the axes, so that the center of E; is the origin.

Thus, the problem is now the following: we have an ellipsoid F; centered at the origin, and a hyperplane
(a,z) > 0 such that the set D is entirely contained in E; N {z : (a,z) > 0}. We want to construct an
ellipsoid E;;1 that (a) has volume < (1 — 1/2n)vol(E;), and (b) contains D.

We will, in fact, ensure that E;1; contains the entire set E; N {x : (a,x) > 0}. Let us first pause and
review some basic properties of ellipsoids. In fact, the key novelty in Khachiyan’s algorithm is the use of
ellipsoids — they are easy enough to work with, and still have the property that we can reduce the volume
in every iteration by a multiplicative factor. In fact, the problem itself does not naturally suggest the use
of bounding ellipsoids. (That said, there were occurrences of bounding ellipsoids of convex bodies studied
earlier — e.g. the celebrated John’s theorem.)

Abstractly, an ellipsoid centered at the origin is defined by a positive semidefinite matrix M (a symmetric
matrix all of whose eigenvalues are non-negative), and the ellipsoid is simply {z : 27 Mz < 1}. The sphere
corresponds to the case of M being the identity. A more geometric definition is as follows: an ellipsoid (in n
dimensions) has n orthogonal azes; we can always rotate the coordinates so that they align with these axes,
and once we do so, the ellipsoid can be written as the set of all z that satisfy

2 2 2
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For some non-negative reals ¢; (which are called the principal azes of the ellipsoid — these turn out to be the
inverse of the eigenvalues of M above). The volume of the ellipsoid is ¢145 ... ¢,.

Now, let us provide the details of step 4 in the algorithm above. Suppose we rotate the space so that E;
has a form as above. Further, suppose we rescale the coordinates, so that the ellipsoid simply becomes the
sphere. (This can always be done — simply replace x; by ¢;z} for a new variable z}.)

The key points about these transformations are the following. First, the half-space defined by (a,x) > 0
above, maps to another half-space through the origin. Now by symmetry, we can in fact assume that the
half-space is 1 > 0. Second, invertible linear transforms always preserve the ratio of volumes of objects.
ILe., if we have two convex sets A, B, and we apply a linear transformation 7' to both of them, then we have

vol(TA)  vol(A)

vol(TB)  vol(B)’

This is useful, because our algorithm will produce a new ellipsoid that has a smaller volume, and then
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map it back to the initial space. There, we need the volume ratio to be maintained.

Thus, we have reduced the problem to a simple geometric one. We have a unit sphere in R™, and we
would like to find an ellipsoid that fully contains the hemisphere {x : z; > 0 and ||z|| < 1}. This requires
a bit of calculation. For the details, please take a look at pages 2-4 of:

http: //www-math.mit.edu/~goemans/18433509/ellipsoid.pdf (replace the ~ if you are copy-pasting).

More on separation oracles and the PSD cone

Another interesting convex set that has a non-trivial separation oracle is the so-called PSD cone. This is a
subset of R”Q, and we think of every point in it as an n X n matrix. Formally, it is the cone formed by all
matrices of the form uu?, where u € R" (each matrix is treated as a point in R”Q).Z

Thus the PSD cone contains all the matrices M of the form Y, v;v], for some v; € R™. This is precisely
the set of matrices that have all their eigenvalues being nonnegative.

We discuss more on this in the next class.

2A cone formed by a set of points v; is the set of all non-negative linear combinations of v;, i.e., {35, vyt oy > 0}
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