
Lecture 10  (short summary) 
 

Date: Tuesday, 11th February, 2016 
 

Application: ranking web pages 
Perhaps the most direct application of random walk techniques in a practical setting is in 
ranking web-pages.  Consider the ​search engine problem​: given a collection of web pages 
that have links to one another, come up with an “importance ordering” of the pages.  This is 
useful because, given a query, one can then return the top-10 or so (by importance) pages 
that match the query.  
 
The most natural way to measure the importance of a page is by the number of pages that 
link to it, or its ​in-degree.​ This is a natural measure, easy to compute, but it has the issue that 
all the incoming links are ​treated equally. ​In particular, suppose a restaurant’s page has two 
incoming links -- one from a “best-of-SLC” page, and another from a “list of restaurants” 
page. We would want to treat the first edge higher than the second. One way to do so is to 
weight the edge by the inverse of the out-degree of the ‘from’ page, and then compute the 
weighted in-degree. Thus the rank is now 

 
In matrix notation, the rank vector is simply 

 
where ​ is the all-one vector, as before.  This is a better notion of ranking than the in-degree, 
but it still treats all the vertices with same outdegree similarly.  Intuitively, we want the rank to 
be higher if there are many “important” pages that link to a given page.  This suggests a 
recursive definition of the rank.  From the above, a natural one would be so as to make 

 
 
This is precisely the stationary distribution of the random walk corresponding to the directed 
graph.  As we saw last class, such a distribution always exists and is unique if the graph is 
strongly connected.  There are many issues though.  For graphs of interest (e.g., the web 
graph), we might not have strong connectedness.  Even if we do, computing the distribution 
could take exponential time, as we saw earlier.  
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The PageRank walk 
The page-rank walk is an elegant way to fix both the issues above.  Consider the walk in 
which at every step, we either move to a random out-neighbor, or with some probability, to a 
random vertex​ in the graph.  This is called the ​random surfer​ model, where a surfer either 
follows random links, or with some probability ‘gets bored’ and goes to a completely random 
page, and continues the process.  

The transition matrix for the page-rank walk is thus  ​, where ​ is the 
 matrix with all entries being 1.  Here ​ is the probability of moving to a random vertex 

-- this is typically referred to as the ​teleport probability​.  Let us denote the transition matrix 
.  The definition of the walk naturally makes the underlying graph strongly connected, and 

thus we are guaranteed to have a unique stationary distribution. 
 
How quickly can we compute this distribution? Here, it turns out that performing power 
iteration a small number of times suffices.  This is essentially because for constant ​, the 

terms involved decay very quickly.  Think of ​, for now.  Then suppose we start with 

any distribution ​ and consider ​.  Denoting ​, we have 

, which implies 

 
Continuing this, we see that  

 
 

Now, the terms ​ drop very quickly.  After ​, the contributions become 

negligible.  This is why computing the page-rank takes only around ​ iterations.  
 
Suggested reading:​ the original paper of Page, Brin, Motwani and Winograd. 

Recap of walks in undirected graphs  
Before moving on, let us recap our discussion of lazy walks on undirected graphs.  The 

matrix for a lazy walk (with laziness parameter 1/2) is ​.  We saw last time 

that the stationary distribution is simply the vector whose ​i​th entry is ​, where ​ is 
the number of edges in the graph.  If the graph is connected, any walk converges to this 
distribution, and the time for convergence is related to the gap between the two largest 
eigenvalues of the normalized adjacency matrix  ( ​). 
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Now, this gap is precisely equal to the gap between the two ​smallest​ eigenvalues of the 
normalized ​Laplacian​, which is ​.  (Since the eigenvalues are just one minus 
the eigenvalues of the other.)  This quantity, as we saw, is related to the ​expansion​ of the 

graph, ​, by Cheeger’s inequality.  For ​d​-regular graphs, recall that we defined 

 
 

 
For general graphs, the right way of defining this is:  

 
where the ​volume​ of a set ​S​ is simply the sum of the degrees of the vertices the set, and ​m​ is 
the number of edges.  Verify that when the graph is ​d​-regular, this becomes the same as the 
earlier definition. 

 
 
Cheeger’s inequality basically says that if the gap between the eigenvalues (described 
above) is ​, then  

 
 

Now consider a graph in which ​ (or any small constant).  Cheeger’s inequality 

implies that ​ for such a graph.  Thus the convergence time of a lazy random walk is 

. 
 
This is one reason such graphs are very interesting.  To generate a random vertex in the 

graph, one can start at any vertex, and perform a lazy random walk for ​ steps, and 

return the obtained vertex!  Graphs with the property above, i.e., ​ are called 
expander graphs​.  

Is a given graph an expander? 
Given the property above (and several other nice properties) that expander graphs have, one 
natural question is to ​prove​ that some graph of interest is an expander.  One way to prove is 
to compute the eigenvalue gap of the graph, and use the connection between the two. 
However, it might be difficult to reason about the eigenvalue gap as well. 
 
A technique that works for many graphs is the so-called ​canonical paths​ method.  Let us 

illustrate this technique for ​d​-regular graphs.  Recall that the goal is to prove that ​ is 

large, i.e., for every set ​ of vertices, ​, for some ​c.  ​The main 
“philosophical” difficulty with such a question is to prove it ​for all​ sets (there are 

exponentially many candidates ​S​).  Showing that ​ is small is relatively easy -- we simply 
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have to exhibit one set ​S​ such that ​ is small.  (This is an instance of the “NP vs 
co-NP” question.) 
 
So how does the canonical paths method work? The idea is roughly what we saw in Lecture 
3.  Suppose for every pair of vertices ​u, v ​in the graph, we give a path ​, with the 
additional condition that the number of paths going through ​any ​edge is at most ​M, ​for some 
parameter ​M​.  Then for any set ​S​ of size at most ​n/2​ we must have 

, which implies,  
 
Thus if we can come up with a collection of paths such that ​M​ is small, then we get a good 
bound for the expansion.  Can this be done for a given graph? 
 
To illustrate, we consider the ​d​-dimensional hypercube.  This is a graph with ​ vertices. 
Every vertex corresponds to a string of length ​d. ​ Two strings have an edge if they differ in 
exactly one bit.  E.g., with ​d=4​, the strings 0011 and 0010 have an edge, while 0011 and 
1001 do not (because they differ in two bits).  For d=2, the graph corresponds to a square, 
for d=3, it corresponds to the 3-dimensional cube, and for higher ​d​, it is the natural extension 
of a cube (and hence the name). 
 
Note that the ​d​ dimensional hypercube has degree precisely ​d​ (one corresponding to each 
bit that could be different).  The question we ask is, what is the expansion of this graph?  We 

will show that for every subset of vertices ​S​ of size at most ​n/2​, ​ is big.  From the 
discussion above, it suffices to come up with a path ​ for every pair of vertices in the 
graph, such that no edge has too many paths going through (i.e., the max ​congestion​ is 
small). 
 
For two strings ​ and ​, consider the path that moves from left 
to right, ​correcting​ one bit at a time. For instance, to go from string 0000 to 1011, it takes the 
path 0000 -> 1000 -> 1010 -> 1011.  The number of edges in the path is exactly the number 
of bits that need to be flipped to go from ​u ​to ​v​. 
 
Now, for this collection of paths, what is the number of paths that go through a single edge? 
Consider the edge ​.  What paths ​ use 
this edge?  A little thought reveals that for a path to use the edge, we must have 

 (because the first ​i-1​ bits have already been “corrected”). 
Furthermore, we must have ​, because the last bits have not been 
touched yet!  Thus the total number of (​u, v​) pairs is exactly ​.  Thus we have a set of 
paths with each edge being part of at most ​ paths.  
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Thus, from the reasoning earlier, we have  ​ for all subsets ​S​.  This implies 

that the expansion is at least ​.  This in fact turns out to be tight, for the hypercube, as we 
will see. 
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