
Lecture 10 (short summary)

Date: Tuesday, 11th February, 2016

Application: ranking web pages
Perhaps the most direct application of random walk techniques in a practical setting is in
ranking web-pages. Consider the ​search engine problem​: given a collection of web pages
that have links to one another, come up with an “importance ordering” of the pages. This is
useful because, given a query, one can then return the top-10 or so (by importance) pages
that match the query.

The most natural way to measure the importance of a page is by the number of pages that
link to it, or its ​in-degree.​ This is a natural measure, easy to compute, but it has the issue that
all the incoming links are ​treated equally. ​In particular, suppose a restaurant’s page has two
incoming links -- one from a “best-of-SLC” page, and another from a “list of restaurants”
page. We would want to treat the first edge higher than the second. One way to do so is to
weight the edge by the inverse of the out-degree of the ‘from’ page, and then compute the
weighted in-degree. Thus the rank is now

In matrix notation, the rank vector is simply

where ​ is the all-one vector, as before. This is a better notion of ranking than the in-degree,
but it still treats all the vertices with same outdegree similarly. Intuitively, we want the rank to
be higher if there are many “important” pages that link to a given page. This suggests a
recursive definition of the rank. From the above, a natural one would be so as to make

This is precisely the stationary distribution of the random walk corresponding to the directed
graph. As we saw last class, such a distribution always exists and is unique if the graph is
strongly connected. There are many issues though. For graphs of interest (e.g., the web
graph), we might not have strong connectedness. Even if we do, computing the distribution
could take exponential time, as we saw earlier.

http://www.codecogs.com/eqnedit.php?latex=%20rk(u)%20=%20%5Csum_%7Bv%20:%20(v,%20u)%20%5Cin%20E%7D%20%5Cfrac%7B1%7D%7B%5Ctext%7Bdeg%7D(v)%7D.%20
http://www.codecogs.com/eqnedit.php?latex=%20rk%20=%20A%20D_%7Bout%7D%5E%7B-1%7D%20%5Cmathbf%7B1%7D,
http://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7B1%7D
http://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7B1%7D
http://www.codecogs.com/eqnedit.php?latex=%20rk%20=%20A%20D_%7Bout%7D%5E%7B-1%7D%20rk.

The PageRank walk
The page-rank walk is an elegant way to fix both the issues above. Consider the walk in
which at every step, we either move to a random out-neighbor, or with some probability, to a
random vertex​ in the graph. This is called the ​random surfer​ model, where a surfer either
follows random links, or with some probability ‘gets bored’ and goes to a completely random
page, and continues the process.

The transition matrix for the page-rank walk is thus ​, where ​ is the
 matrix with all entries being 1. Here ​ is the probability of moving to a random vertex

-- this is typically referred to as the ​teleport probability​. Let us denote the transition matrix
. The definition of the walk naturally makes the underlying graph strongly connected, and

thus we are guaranteed to have a unique stationary distribution.

How quickly can we compute this distribution? Here, it turns out that performing power
iteration a small number of times suffices. This is essentially because for constant ​, the

terms involved decay very quickly. Think of ​, for now. Then suppose we start with

any distribution ​ and consider ​. Denoting ​, we have

, which implies

Continuing this, we see that

Now, the terms ​ drop very quickly. After ​, the contributions become

negligible. This is why computing the page-rank takes only around ​ iterations.

Suggested reading:​ the original paper of Page, Brin, Motwani and Winograd.

Recap of walks in undirected graphs
Before moving on, let us recap our discussion of lazy walks on undirected graphs. The

matrix for a lazy walk (with laziness parameter 1/2) is ​. We saw last time

that the stationary distribution is simply the vector whose ​i​th entry is ​, where ​ is
the number of edges in the graph. If the graph is connected, any walk converges to this
distribution, and the time for convergence is related to the gap between the two largest
eigenvalues of the normalized adjacency matrix (​).

http://www.codecogs.com/eqnedit.php?latex=%20%5Calpha%20%5Cfrac%7BJ%7D%7Bn%7D%20+%20(1-%5Calpha)%20A%20D_%7Bout%7D%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=%20%5Calpha%20%5Cfrac%7BJ%7D%7Bn%7D%20+%20(1-%5Calpha)%20A%20D_%7Bout%7D%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=J
http://www.codecogs.com/eqnedit.php?latex=J
http://www.codecogs.com/eqnedit.php?latex=n%20%5Ctimes%20n
http://www.codecogs.com/eqnedit.php?latex=%5Calpha
http://www.codecogs.com/eqnedit.php?latex=%5Calpha
http://www.codecogs.com/eqnedit.php?latex=M_%7B%5Calpha%7D
http://www.codecogs.com/eqnedit.php?latex=%5Calpha
http://www.codecogs.com/eqnedit.php?latex=%5Calpha%20=%201/4
http://www.codecogs.com/eqnedit.php?latex=%5Calpha%20=%201/4
http://www.codecogs.com/eqnedit.php?latex=p
http://www.codecogs.com/eqnedit.php?latex=p
http://www.codecogs.com/eqnedit.php?latex=M_%7B%5Calpha%7D%20p,%20M_%7B%5Calpha%7D%5E2%20p,%20%5Cdots
http://www.codecogs.com/eqnedit.php?latex=W%20=%20A%20D_%7Bout%7D%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=W%20=%20A%20D_%7Bout%7D%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=%20M_%7B%5Calpha%7D%20p%20=%20%5Calpha%20%5Cmathbf%7B1%7D/n%20+%20(1-%5Calpha)%20W%20p
http://www.codecogs.com/eqnedit.php?latex=%20M_%7B%5Calpha%7D%5E2%20p%20=%20%5Calpha%20%5Cfrac%7B%5Cmathbf%7B1%7D%7D%7Bn%7D%20+%20%5Calpha%20(1-%5Calpha)%20W%20%5Cfrac%7B%5Cmathbf%7B1%7D%7D%7Bn%7D%20+%20(1-%5Calpha)%5E2%20W%5E2%20p.%20
http://www.codecogs.com/eqnedit.php?latex=%20M_%7B%5Calpha%7D%5Er%20p%20=%20%5Cleft(%20%5Csum_%7Bj=0%7D%5E%7Br-1%7D%20%5Calpha%20(1-%5Calpha)%5Ej%20W%5Ej%20%5Cfrac%7B%5Cmathbf%7B1%7D%7D%7Bn%7D%20%5Cright)%20+%20(1-%5Calpha)%5Er%20W%5Er%20p.
http://www.codecogs.com/eqnedit.php?latex=(1-%5Calpha)%5Ej
http://www.codecogs.com/eqnedit.php?latex=(1-%5Calpha)%5Ej
http://www.codecogs.com/eqnedit.php?latex=j%20%5Capprox%20%5Clog%20n
http://www.codecogs.com/eqnedit.php?latex=j%20%5Capprox%20%5Clog%20n
http://www.codecogs.com/eqnedit.php?latex=%5Clog%20n
http://www.codecogs.com/eqnedit.php?latex=%5Clog%20n
http://www.codecogs.com/eqnedit.php?latex=%20(1/2)I%20+%20(1/2)%20AD%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=%20(1/2)I%20+%20(1/2)%20AD%5E%7B-1%7D
http://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bdeg%7D(i)/2m
http://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bdeg%7D(i)/2m
http://www.codecogs.com/eqnedit.php?latex=m
http://www.codecogs.com/eqnedit.php?latex=m
http://www.codecogs.com/eqnedit.php?latex=D%5E%7B-1/2%7D%20A%20D%5E%7B-1/2%7D

Now, this gap is precisely equal to the gap between the two ​smallest​ eigenvalues of the
normalized ​Laplacian​, which is ​. (Since the eigenvalues are just one minus
the eigenvalues of the other.) This quantity, as we saw, is related to the ​expansion​ of the

graph, ​, by Cheeger’s inequality. For ​d​-regular graphs, recall that we defined

For general graphs, the right way of defining this is:

where the ​volume​ of a set ​S​ is simply the sum of the degrees of the vertices the set, and ​m​ is
the number of edges. Verify that when the graph is ​d​-regular, this becomes the same as the
earlier definition.

Cheeger’s inequality basically says that if the gap between the eigenvalues (described
above) is ​, then

Now consider a graph in which ​ (or any small constant). Cheeger’s inequality

implies that ​ for such a graph. Thus the convergence time of a lazy random walk is

.

This is one reason such graphs are very interesting. To generate a random vertex in the

graph, one can start at any vertex, and perform a lazy random walk for ​ steps, and

return the obtained vertex! Graphs with the property above, i.e., ​ are called
expander graphs​.

Is a given graph an expander?
Given the property above (and several other nice properties) that expander graphs have, one
natural question is to ​prove​ that some graph of interest is an expander. One way to prove is
to compute the eigenvalue gap of the graph, and use the connection between the two.
However, it might be difficult to reason about the eigenvalue gap as well.

A technique that works for many graphs is the so-called ​canonical paths​ method. Let us

illustrate this technique for ​d​-regular graphs. Recall that the goal is to prove that ​ is

large, i.e., for every set ​ of vertices, ​, for some ​c. ​The main
“philosophical” difficulty with such a question is to prove it ​for all​ sets (there are

exponentially many candidates ​S​). Showing that ​ is small is relatively easy -- we simply

http://www.codecogs.com/eqnedit.php?latex=I%20-%20D%5E%7B-1/2%7D%20A%20D%5E%7B-1/2%7D
http://www.codecogs.com/eqnedit.php?latex=I%20-%20D%5E%7B-1/2%7D%20A%20D%5E%7B-1/2%7D
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)%20=%20%5Cmin_%7B%7CS%7C%20%5Cle%20n/2%7D%20E(S,%20%5Coverline%7BS%7D)/d%7CS%7C.
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)%20=%20%5Cmin_%7BS%20:%20%5Ctext%7Bvol%7D(S)%20%5Cle%20m%7D%20E(S,%20%5Coverline%7BS%7D)/%5Ctext%7Bvol%7D(S),%20
http://www.codecogs.com/eqnedit.php?latex=%20%5Cdelta%20
http://www.codecogs.com/eqnedit.php?latex=%20%5Cdelta%20
http://www.codecogs.com/eqnedit.php?latex=%20%5CPhi(G)%20%5Cle%20%5Csqrt%7B2%5Cdelta%7D.%20
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)%20%5Cge%201/4
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)%20%5Cge%201/4
http://www.codecogs.com/eqnedit.php?latex=%5Cdelta%20=%20%5COmega(1)
http://www.codecogs.com/eqnedit.php?latex=%5Cdelta%20=%20%5COmega(1)
http://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n/%5Cdelta)%20=%20O(%5Clog%20n)
http://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)
http://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)%20%5Cge%201/4
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)
http://www.codecogs.com/eqnedit.php?latex=S
http://www.codecogs.com/eqnedit.php?latex=S
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)%20%5Cge%20c.%20d%7CS%7C
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)%20%5Cge%20c.%20d%7CS%7C
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)
http://www.codecogs.com/eqnedit.php?latex=%5CPhi(G)

have to exhibit one set ​S​ such that ​ is small. (This is an instance of the “NP vs
co-NP” question.)

So how does the canonical paths method work? The idea is roughly what we saw in Lecture
3. Suppose for every pair of vertices ​u, v ​in the graph, we give a path ​, with the
additional condition that the number of paths going through ​any ​edge is at most ​M, ​for some
parameter ​M​. Then for any set ​S​ of size at most ​n/2​ we must have

, which implies,

Thus if we can come up with a collection of paths such that ​M​ is small, then we get a good
bound for the expansion. Can this be done for a given graph?

To illustrate, we consider the ​d​-dimensional hypercube. This is a graph with ​ vertices.
Every vertex corresponds to a string of length ​d. ​ Two strings have an edge if they differ in
exactly one bit. E.g., with ​d=4​, the strings 0011 and 0010 have an edge, while 0011 and
1001 do not (because they differ in two bits). For d=2, the graph corresponds to a square,
for d=3, it corresponds to the 3-dimensional cube, and for higher ​d​, it is the natural extension
of a cube (and hence the name).

Note that the ​d​ dimensional hypercube has degree precisely ​d​ (one corresponding to each
bit that could be different). The question we ask is, what is the expansion of this graph? We

will show that for every subset of vertices ​S​ of size at most ​n/2​, ​ is big. From the
discussion above, it suffices to come up with a path ​ for every pair of vertices in the
graph, such that no edge has too many paths going through (i.e., the max ​congestion​ is
small).

For two strings ​ and ​, consider the path that moves from left
to right, ​correcting​ one bit at a time. For instance, to go from string 0000 to 1011, it takes the
path 0000 -> 1000 -> 1010 -> 1011. The number of edges in the path is exactly the number
of bits that need to be flipped to go from ​u ​to ​v​.

Now, for this collection of paths, what is the number of paths that go through a single edge?
Consider the edge ​. What paths ​ use
this edge? A little thought reveals that for a path to use the edge, we must have

 (because the first ​i-1​ bits have already been “corrected”).
Furthermore, we must have ​, because the last bits have not been
touched yet! Thus the total number of (​u, v​) pairs is exactly ​. Thus we have a set of
paths with each edge being part of at most ​ paths.

http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)
http://www.codecogs.com/eqnedit.php?latex=P_%7Buv%7D
http://www.codecogs.com/eqnedit.php?latex=P_%7Buv%7D
http://www.codecogs.com/eqnedit.php?latex=%20M%20%5Ccdot%20E(S,%20%5Coverline%7BS%7D)%20%5Cge%20%7CS%7C%7C%5Coverline%7BS%7D%7C
http://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7BE(S,%20%5Coverline%7BS%7D)%7D%7B%7CS%7C%7D%20%5Cge%20%5Cfrac%7Bn%7D%7B2M%7D.%20
http://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7BE(S,%20%5Coverline%7BS%7D)%7D%7B%7CS%7C%7D%20%5Cge%20%5Cfrac%7Bn%7D%7B2M%7D.%20
http://www.codecogs.com/eqnedit.php?latex=2%5Ed
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)/%7CS%7C
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)/%7CS%7C
http://www.codecogs.com/eqnedit.php?latex=P_%7Buv%7D
http://www.codecogs.com/eqnedit.php?latex=P_%7Buv%7D
http://www.codecogs.com/eqnedit.php?latex=u%20=%20u_1%20u_2%20%5Cdots%20u_d
http://www.codecogs.com/eqnedit.php?latex=u%20=%20u_1%20u_2%20%5Cdots%20u_d
http://www.codecogs.com/eqnedit.php?latex=v%20=%20v_1%20v_2%20%5Cdots%20v_d
http://www.codecogs.com/eqnedit.php?latex=v%20=%20v_1%20v_2%20%5Cdots%20v_d
http://www.codecogs.com/eqnedit.php?latex=a_1%20a_2%20%5Cdots%20a_%7Bi-1%7D%200%20a_%7Bi+1%7D%20%5Cdots%20a_d%20,%20a_1%20a_2%20%5Cdots%20a_%7Bi-1%7D%201%20a_%7Bi+1%7D%20%5Cdots%20a_d
http://www.codecogs.com/eqnedit.php?latex=a_1%20a_2%20%5Cdots%20a_%7Bi-1%7D%200%20a_%7Bi+1%7D%20%5Cdots%20a_d%20,%20a_1%20a_2%20%5Cdots%20a_%7Bi-1%7D%201%20a_%7Bi+1%7D%20%5Cdots%20a_d
http://www.codecogs.com/eqnedit.php?latex=P_%7Buv%7D
http://www.codecogs.com/eqnedit.php?latex=v_1%20v_2%20%5Cdots%20v_%7Bi-1%7D%20v_i%20=%20a_1%20a_2%20%5Cdots%20a_%7Bi-1%7D%201
http://www.codecogs.com/eqnedit.php?latex=u_i%20u_%7Bi+1%7D%20%5Cdots%20u_d%20=%200%20a_%7Bi+1%7D%20%5Cdots%20a_d
http://www.codecogs.com/eqnedit.php?latex=u_i%20u_%7Bi+1%7D%20%5Cdots%20u_d%20=%200%20a_%7Bi+1%7D%20%5Cdots%20a_d
http://www.codecogs.com/eqnedit.php?latex=2%5E%7Bd-1%7D
http://www.codecogs.com/eqnedit.php?latex=2%5E%7Bd-1%7D
http://www.codecogs.com/eqnedit.php?latex=%20M%20=%202%5E%7Bd-1%7D
http://www.codecogs.com/eqnedit.php?latex=%20M%20=%202%5E%7Bd-1%7D

Thus, from the reasoning earlier, we have ​ for all subsets ​S​. This implies

that the expansion is at least ​. This in fact turns out to be tight, for the hypercube, as we
will see.

http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)/%7CS%7C%20%5Cge%201
http://www.codecogs.com/eqnedit.php?latex=E(S,%20%5Coverline%7BS%7D)/%7CS%7C%20%5Cge%201
http://www.codecogs.com/eqnedit.php?latex=1/d
http://www.codecogs.com/eqnedit.php?latex=1/d

