
Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Lecture 1: Introduction and Review

We begin with a short introduction to the course, and logistics. We then survey some basics about

approximation algorithms and probability. We also introduce some of the problems that we will encounter

over the course of the semester.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Introduction and Background

The goal of the course is to introduce some key ideas in modern algorithm design. We will cover topics such

as spectral algorithms, convex relaxations, random walks, local search, the multiplicative weight update

method, and so on. To illustrate the techniques, we will use graph problems and variants of clustering.

Course Logistics

Office hours will be Wednesday 11AM-Noon. For information about grading, references and course material,

see:

http://www.cs.utah.edu/∼bhaskara/courses/x968/

Approximation Algorithms

As we discussed in class, many interesting optimization problems we encounter turn out to be NP hard. Can

we still give interesting algorithms for these problems?

One natural idea is to come up with algorithms that produce a solution whose objective value is close to

that of the optimal solution. An algorithm that does so for every input is called an approximation algorithm.

Formally, suppose we have a problem P in which the goal is to minimize an objective function, and let

ALG be an algorithm for the problem. For an input I, we denote by OPT(I) the optimal value (of the

objective function), and by ALG(I) the objective value for the solution produced by the algorithm.

The approximation ratio of an algorithm ALG is defined to be

max
inputs I

ALG(I)

OPT(I)
.

Remark 1. Note that the approximation ratio is a worst case quantity – i.e., an algorithm has a large

approximation ratio even if it does badly on one input.

Remark 2. The definition above is tailored towards minimization problems. For maximization problems,

we consider the max value of the ratio OPT(I)
ALG(I) .

Remark 3. From our definition (and the remark above), an approximation ratio is always ≥ 1 – the closer

it is to 1 the better. Many algorithms have approximation ratios that are functions of the input size. In these

cases, the maxinputs means max over inputs of a certain size.

Page 1 of 6

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

Let us now see simple examples of approximation algorithms. First, some basic notations about graphs:

• A graph G is defined by a pair (V,E), where V is the set of vertices and E the set of edges (could be

weighted, or directed).

• The neighborhood of a vertex v is the set of vertices that have an edge to v, and is denoted Γ(v). The

size of Γ(v) is called the degree of v, denoted deg(v).

• For a set of vertices S, we write Γ(S) to be ∪v∈SΓ(v) (union of the neighborhoods of vertices in S).

• For two disjoint sets of vertices V1, V2 ⊆ V , denote by E(V1, V2) the set of edges with one endpoint in

V1 and the other in V2.

Maximum Cut

Definition of the problem:

Given an undirected, unweighted graph G = (V,E), partition V into V1 and V2 so as to maximize

|E(V1, V2)|.

The objective value is thus |E(V1, V2)|. We call the edges in E(V1, V2) the edges that are cut by the

partition. Let us consider the following natural algorithm, which can be thought of as “local search”.

1. Start with an arbitrary partition V1, V2 of V (so every vertex in V is in one of the parts).

2. If there exists a vertex u ∈ V that has > (1/2)deg(u) edges going to vertices in the same part as u,

then move u to the other part. Else, terminate.

3. Repeat step 2 as long as there exists such a vertex u.

Efficiency. Note that whenever step 2 executes (without termination), the number of edges in the cut

strictly increases – this is because the number of edges incident to u that are cut is < (1/2)deg(u) in the

beginning, and > (1/2)deg(u) at the end, and all the other edges remain unchanged. Thus the algorithm

terminates in at most |E| steps.

Approximation ratio. What can we say about the quality of the solution at the end of the algorithm?

Let Cu denote the number of edges incident to u that are cut when the algorithm terminates. Thus we

have

E(V1, V2) =
1

2
·
∑
u

Cu. (1)

The factor 1/2 is because the sum ends up counting every edge precisely twice (once for each end-point).

What do we know about Cu?

By design, when the algorithm terminates, we have Cu ≥ (1/2)deg(u) (else we would have moved u to the

other part). Thus we have
∑

u Cu ≥ (1/2) ·
∑

u deg(u) = |E| (here we used the fact that in any undirected

graph,
∑

u deg(u) = 2|E|, which is true because the summation counts every edge precisely twice).

Combined with (1), we obtain

E(V1, V2) ≥ 1

2
· |E|.

Maximum Cut continued on next page. . . Page 2 of 6

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

This proves that for any input I, ALG(I) ≥ (1/2)OPT(I), because OPT(I) is (trivially) at most |E|. Thus

the approximation ratio is at most 2.

In the Homework, we will see that the approximation ratio is actually equal to 2 (asymptotically), which

means there are inputs for which the ratio between OPT and ALG can be arbitrarily close to 2. This shows

that the analysis above is tight.

In the analysis above, it was easy to compare OPT and ALG, because we had an obvious upper bound on

OPT – the total number of edges in the graph. For many problems, such an easy bound might not exist.

The next example illustrates this. Thus the way in which we analyze the algorithm is significantly different.

Set Cover

Let T be a set of topics (e.g., sports, weather, finance, math, . . .). Formally, let us denote them by

T1, T2, . . . , Tn. Suppose we have m people, denoted P1, P2, . . . , Pm, and suppose that each person is an

expert on a subset of the topics (e.g., P1 could be an expert on T2, T5 and T6, P2 an expert on T1 and T5,

and so on).

The aim is to pick the smallest set of people s.t. among them, there exists an expert on each of the n

topics. I.e., we want the smallest set of people who cover all the topics.

The objective function here is the size of the set of people picked.

Greedy algorithm: A natural idea is to start by picking the person who is an expert on the most number

of topics (break ties arbitrarily). This leaves us with some topics uncovered. The natural thing now is to

pick a person who is an expert on the most number of these (uncovered) topics. This leaves us with a smaller

set of uncovered topics. Now we pick the person who is an expert on the most number of these topics, and

continue this process until there are no uncovered topics.1

How can we bound the number of iterations of this algorithm? One way is to try to quantify the progress

we are making, i.e., can we show that the number of uncovered topics keeps reducing at every step? And if

so, at what rate?

To answer this, let us define k to be the optimal value of the objective, i.e., there exists a set of k people

who cover all the topics. Let us denote them by Pi1 , Pi2 , . . . , Pik . Further, let us denote by Uj the set of

uncovered topics after j steps of the algorithm. Clearly U0 is the entire set of topics (intially, none of the

topics are covered).

The key claim is that for every j ≥ 0, step (j+ 1) in fact covers at least |Uj |/k of the uncovered elements

Uj . Let us first see this for j = 0, in which case step (j + 1) is simply the first step:

We know that Pi1 , . . . , Pik cover the entire set of topics, thus at least one of them must cover at least

n/k topics (by averaging). Our algorithm picks the person who covers the maximum number of uncovered

topics, thus this person covers at least n/k topics.

The exact same argument applies for j ≥ 1, because Pi1 , Pi2 , . . . , Pik cover all the topics, and in particular

all of Uj . Thus the person picked at step (j + 1) must cover at least |Uj |/k uncovered topics. The upshot of

1As long as it is possible to cover all topics, our algorithm will terminate. The approximation problem does not make sense
if it is not possible to cover all topics (it is infeasible).

Set Cover continued on next page. . . Page 3 of 6

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

this is that the number of uncovered topics after step (j + 1) is ≤ |Uj | − |Uj |
k . More precisely:

|Uj+1| ≤
(

1− 1

k

)
|Uj |.

Now suppose the algorithm runs for T iterations. We have

|UT | ≤ (1− 1/k)|UT−1| ≤ (1− 1/k)2|UT−2| ≤ · · · ≤ (1− 1/k)T |U0| = (1− 1/k)Tn.

Thus if we set T = k log n,2 we have (using the inequality (1− x) < e−x for x > 0):

|UT | ≤ n · (1− 1/k)T < n · e−T/k = n · e− logn = 1

Thus the number of uncovered elements is < 1, meaning it is zero. Thus the number of iterations is

at most k log n. Recall that k is the optimal value of the objective. Thus the algorithm is a (log n) factor

approximation.

Remark 4. This is an example of a problem in which the approximation factor depends on the input size n.

In fact, it is known (a paper of Uriel Feige) that approximating set cover to a factor (1− ε) log n is NP-hard,

for any constant ε, so this greedy algorithm is essentially the best possible, in terms of approximation ratio!

Review of Basic Probability

Let us begin by seeing a couple of examples of the so-called Union bound. For any two events A and B in a

probability space, we have

Pr[A ∨B] = Pr[A] + Pr[B]− Pr[A ∧B].

Here A∨B is the event A “or” B, and A∧B denotes A “and” B. This immediately implies that Pr[A∨B] ≤
Pr[A] + Pr[B] (simply because the other term is non-negative).

We can extend this to a collection of events A1, A2, . . . , An. We have

Pr[A1 ∨A2 ∨ · · · ∨An] ≤
∑
i

Pr[Ai].

While very simple, the inequality is rather powerful, and will be useful in many places in the course.

Collecting coupons

Suppose we have n stores, each of which gives out coupons in a newspaper. When a person buys a copy of

the newspaper, he gets the coupon of a random store. The question is, how many newspapers should he buy

to be 99% sure that he gets the coupons of all the stores?

Intuitively, this is how the process should go: initially, the person ends up seeing a lot of distinct coupons.

But once the number of “unseen” coupons becomes small, so does his likelihood of seeing them. As an extreme

2All logarithms we consider will natural logs, i.e., to base e.

Collecting coupons continued on next page. . . Page 4 of 6

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

case, suppose he has seen all but one of the coupons; now the probability that he sees this coupon when he

buys a newspaper is only 1/n, so in expectation, he needs to buy n newspapers to see this one coupon.

One can make this observation semi-formal. Suppose the person has i coupons remaining. Then the

next time he buys a newspaper, he has a probability of i/n of seeing an unseen coupon. Thus the expected

number of newspapers he needs to buy to see an unseen coupon is n/i. After this many newspapers, the

number of unseen coupons drops to i− 1. We can then use this argument again replacing i with (i− 1).

Thus the expected number of newspapers he needs to buy for i to drop from n to 0 is

n

n
+

n

n− 1
+ . . .

n

1
= n

(
1 +

1

2
+ · · ·+ 1

n

)
= Θ(n log n).

How can we make the argument more formal? Furthermore, we want a “success probability” as well

(99%). For this, suppose the person buys T newspapers. Let us analyze the probabilty that he has not seen

all the coupons. If this probability is < 1%, then the success probability is > 99%. Now, not seeing all the

coupons is equivalent to saying that at least one of the coupons was not seen.

Let us denote by Ai the event that coupon i was not seen (after buying T papers). Then we are

interested in getting an upper bound for Pr[A1 ∨A2 ∨ · · · ∨An]. We can apply the union bound, to say that

it is ≤
∑

i Pr[Ai]. But what is Pr[Ai]?

It is precisely the probability that none of the T newspapers ended up giving coupon i. This is exactly(
1− 1

n

)T
(for any i). Thus we have

Pr[A1 ∨A2 ∨ · · · ∨An] ≤ n ·
(

1− 1

n

)T

.

Once again, we can use the inequality 1 − x < e−x to say that (1 − 1/n)T < e−T/n. Now to make the

RHS above < 1/100, we simply need

e−T/n <
1

100n
, or equivalently, T ≥ n log(100n).

This is, of course, n log n+ Θ(n), which is essentially the bound from the heuristic argument.

The main advantage with a union bound is that we reduce the question of computing the probability of a

‘complicated’ event to that of a bunch of ‘simple’ events, which we can directly estimate.

Balls and Bins

Suppose we have n bins, labelled B1, B2, . . . , Bn. Now consider throwing n balls randomly into the bins (i.e.,

for each ball, we throw it randomly into one of the bins, and proceed with the next ball). A natural question

is, how “unbalanced” is the resulting assignment? For instance, could one bin end up getting a lot of balls?

This sort of a question is very useful in applications – imagine a large number of search queries, and we

forward each query to a randomly chosen machine. We do not want any machine to be overloaded with too

many queries.

Formally, if S1, S2, . . . , Sn denote the number of balls that landed in the bins (in order), we are interested

Balls and Bins continued on next page. . . Page 5 of 6

Aditya Bhaskara CS 5968/6968, Lecture 1: Introduction and Review 12 January 2016

in the quantity maxi Si. For what T can we say that maxi Si < T with probability 99%?

Once again, we can use a union bound to argue. If Xi denotes the event Si > T , then we are interested

in bounding Pr[X1 ∨X2 ∨ · · · ∨Xn], which we can analyze as before.

Exercise. Prove that for T = C log n/ log log n for some C, we have maxi Si < T with probability ≥ 99%.

This bound actually happens to be tight! Specifically, with probability at least 99%, there exists a bin j

that gets at least c log n/ log log n balls (for an absolute constant c). This quantity could be quite large for

large n, meaning that random assignment typically produces a fairly unbalanced solution. There are very

elegant ways of dealing with this. The reader is encouraged to look up: the power of two choices.

Page 6 of 6

