
Aditya Bhaskara CS 5968/6968, Lecture notes: Beyond worst case analysis – Models 14 April 2016

Lecture notes: Beyond worst case analysis – Models

Given the hardness of approximation results we have seen, it is natural to ask: are some problems

simply hopeless in terms of getting approximation guarantees? Today we will discuss cases in which we

can still prove some guarantees, as long as the inputs are not “worst-case”.

Disclaimer: These lecture notes are informal in nature and are not thoroughly proofread. In case you find a serious

error, please send email to the instructor pointing it out.

Getting around hardness results

The PCP theorem allows us to understand the approximability of various optimization problems, as we have

seen. For problems such as Independent-Set, it allows us to obtain extremely strong inapproximability results.

Even for natural problems such as graph partitioning, constant factor approximations are not expected to

be possible in the worst case.

While this is great from the point of view of theoretical understanding, it suggests that when instances

of these problems arise in practice, heuristics are all one can obtain, and there is no hope for guarantees.

Recently, researchers have started to repair this rather pessimistic viewpoint. The hardness results do not

say that all instances of a problem are difficult. Indeed, the reductions often give rise to very structured

instances – the kind that we are unlikely to encounter in practice.

Can we formalize this intuition? For different problems, can we come up with heuristic algorithms that

provably work well on realistic instances? Another question we could ask is, can we come up with heuristics

that work well on most instances?

This line of questioning has come to be known as beyond worst case analysis, and is an active research

area. Explaining the practical success of heuristics is another goal of this research. For many natural

problems (e.g., graph partitioning, and several problems in machine learning), known hardness results say

that achieving good approximation ratios is impossible, while useful solutions can be obtained in practice

via heuristics (deep learning is a classic example).

We will study four broad approaches. We also refer to Tim Roughgarden’s lecture notes for a deep dive

into each of these topics: http://theory.stanford.edu/∼tim/f14/f14.html

Generative models

The first and perhaps the most “classic” alternative to worst case analysis is average case analysis, in which

one tries to analyze the performance (running time/approximation quality) of an algorithm assuming data

is drawn from a distribution over inputs (uniform random being the simplest example). A classic example

is the average case running time of quicksort (which is O(n log n) as opposed to O(n2) in the worst case).

However, most interesting problems become trivial if we restrict to a uniformly random distribution over

inputs. For instance, consider the question of finding the size of the maximum independent set in a graph.

If G is drawn indepdently from G(n, 1/2) (every edge is chosen independently with probability 1/2), then it

turns out that the largest indepdent set has size 2 log n with high probability. Thus outputting 2 log n as the

answer is trivially a very good approximation (with high probability). Similarly, if we consider a natural way

of constructing random instances of 3-SAT, in which we pick a certain number m of clauses randomly (i.e.,

each clause is picked uniformly from the set of all 3-literal clauses over a set of n variables, independently of

Getting around hardness results continued on next page. . . Page 1 of 3



Aditya Bhaskara CS 5968/6968, Lecture notes: Beyond worst case analysis – Models 14 April 2016

the other clauses), then it turns out that there is a sharp threshold τ such that if m > τ , then the formula

is unsatisfiable w.h.p., and if m < τ , the formula is satisfiable w.h.p. This makes the question of checking

satisfiability trivial (w.h.p.)

Thus, for many problems, coming up with interesting probabilistic models for data is an art. The goal is

to come up with a model for data that is representative of real life instances. Ideally, we would like algorithms

that work well for the model to also work on real data. The algorithmic task is to design robust algorithms

for data generated from these models. We will study a couple of such models in the next lecture.

Smoothed analysis

For some problems, heuristics always seem to do quite well in practice. The classic example is the simplex

algorithm for linear programming. While instances for which the algorithm takes exponential time are known,

it turns out that in nearly all applications, simplex algorithm competes with, or even performs better than,

sophisticated interior point methods. Is there a theoretical explanation for this?

In their celebrated paper, Spielman and Teng came up with a new formalism to explain this, called

smoothed analysis. They proved that hard instances for the simplex method are extremely rare, in the

following sense. Suppose we denote by T (I) the running time of the simplex algorithm on the instance

I. Spielman and Teng considered perturbations of instances by a quantity σ (for an instance of linear

programming, imagine perturbing every equation that defines a constraint by a Gaussian of variance σ2,

independently at random). Let us call the perturbed instance Ĩ. Their main result then says (informally):

For every instance I, the running time of a σ-perturbation Ĩ satisfies

T (Ĩ) = poly(n/σ)f(1/δ),

with probability at least 1 − δ. The function f() is also at most polynomial (but could often be

much better, even logarithmic).

The key point in the result is the dependence on σ. Even for fairly small perturbations (1/n2, which

could just be measurement errors in the coefficients of the LP), this suggests that the perturbed instance is

easy for the simplex algorithm.

Another way to think about the result above, is as saying that the bad instances are rare, and even in a

small ball around a bad instances, we mostly find good instances. (Thus, in a sense, the bad instances are

not robust.) We will refer to the introductory portion of the paper of Spielman and Teng for more exposition.

In the next lecture, we will see a concrete example.

Stability of the optimum

In many problems (specifically of the clustering type), instances that arise in practice have a ground truth

solution that optimizes the objective. This solution is often unique in a strong sense, and also stable. Let us

formalize these two notions.

• Uniqueness. Consider an optimal solution S to an instance I of some optimization problem. We say

that S is robustly unique, if any solution S′ that is close to S in objective value is also close to S in

terms of some natural metric between solutions.

Getting around hardness results continued on next page. . . Page 2 of 3



Aditya Bhaskara CS 5968/6968, Lecture notes: Beyond worst case analysis – Models 14 April 2016

• Stability. An optimal solution S to an instance I of an optimization problem is said to be stable if it

remains optimal even if we perturb I.

Formal definitions of the two notions (what is ‘close’? how to perturb? etc.) can be found in the lecture

notes linked above. For various clustering objectives, if we know that there exists a stable, or a robustly

unique optimum, it turns out that we can develop algorithms with much better approximation guarantees.

Bi-criteria approximations

We will discuss this formally next week, but here’s an example that illustrates the basic idea. The max k-

coverage problem is the following (is is very similar to the set cover problem we saw early on in the course).

We are given a set of people P , and each person is an expert on a subset of topics T . The goal is to find k

people who collectively are experts on the most number of topics. Alternately, given a collection of sets, we

want to pick k of them so as to maximize the union. (Note the difference to SetCover).

Suppose we denote by OPTk the best possible objective value obtained from picking k people. It turns

out approximating OPTk to a factor better than 1 − 1/e ≈ 0.63.. is NP-hard – i.e., finding a set of k people

with objective value > 0.64 · OPTk is hard. Now, suppose we are allowed to pick a few more than k people.

Can we end up with an objective value say 0.99 · OPTk?

It turns out this is possible, and algorithms of this kind are called bi-criteria approximations. In this

case, it turns out that one can pick ≈ k log(1/ε) people, and obtain an objective value (1− ε)OPTk. This is

sometimes referred to as resource augmentation.

Page 3 of 3


