CS 5968/6968: Mid-term examination

Date: March 8, 2016, Duration: 1hr, 20 min

NAME: [solutions]

UID :

Rules: You are allowed to reference any course material that you bring with you, but using a
laptop is not allowed (ask instructor if you want to use it only to look up course notes). Please
write down the solutions in the space provided below the questions. Attaching a rough sheet with
your name/UID is OK, but shouldn’t be necessary.

Problem 1 (15 points)

Please answer each of the following questions in a couple of lines each.

(a) (3 points) Let X, Xs,...,X,, be 0/1 random variables that take value 1 with probability p. If
p < 1/n, show that the probability that none of the variables is 1 is non-zero.

By a union bound, Pr[(X; =1)V(Xo=1)V---V (X, =1)] <> Pr[X; =1] < L.
Thus the probability that none of the X; is 1 is > 0.

(b) (3 points) In the above question, suppose the X; are all independent. Then show that for any
p < 1, the probability that none of the variables is 1 is non-zero.

Because of independence, we have

Pr((X; = 0) A (Xg =0) A+ A (X, = 0)] = [[Pr[(X; = 0)] = (1 - p)" > 0.
=1

(c) (3 points) Consider a complete binary tree with 2¥ nodes (figure on the board for k = 3). All
nodes have degree 1,2, or 3. Show that for any subset S of the vertices with |S| < n/2,
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The graph is connected, so for any subset of the vertices S, E(S,S) > 1. Thus for
|S| < n/2, we have B
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Figure 1: Cycle on 7 vertices, and its SDP solution.

(d) (6 points) Consider the max-cut problem when the graph is a cycle of length 7, and consider
the solution to the semidefinite program shown in Figure 1. (The vectors are all unit length, in
two dimensions.) Consider any hyperplane through the center (in this case, it is simply a line
through the center). How many edges does this cut? What is the maximum cut in the graph?

Every line through the origin will cut exactly 6 edges. This is because it will split
the graph into two sets of vertices, one of size 4 and the other of size 3. The smaller
side will not have any edges, while the larger has precisely one. Since there are 7
edges total, the cut size is 6.

The max cut cannot have size 7 (odd cycle), thus it has size < 6. The above shows
it’s equal to 6.

Problem 2 (10 points)

Let G be a graph on n vertices, with every vertex having degree d. Let us show, via the probabilistic
method, that there exists an independent set of size n/9d. Suppose we sample every vertex inde-
pendently with probability 1/3d, and consider the induced subgraph G’ on the sampled vertices.
(Le., the vertex set is V'’ — the set of sampled vertices, and the edge set is £’ — all the edges in G
both of whose end points are in V'.)

(a) (2 points) What is the expected size of V'?

Let X; be an indicator for ¢ being picked. Then E[X;] = 1/3d. Thus

E[[V'|] = E[Z Xi] = ZE[XA =n/3d.

(b) (2 points) What is the expected size of E’'?



Every edge 77 exists in the sample iff both the end points ¢, j are picked. This happens
with probability 9#. Let X;; be the indicator for this event. Then, as before,
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We used the fact that the total number of edges is nd/2 in a d-regular graph.

(¢) (4 points) Show that there exists a subgraph that satisfies
V| - 2|E'| > 9% (Bonus: point out the mild subtlety.)

Putting together the two expectations above, we have

n n 2n
E[|V’| 2|E’|] 3q @ 9 > n/9d.

Thus there exists a subgraph (V’, E’) such that |V'| — 2|E’| > n/9d.

(The subtle point is that we cannot use parts (a) and (b) to ‘directly’ conclude that
there exists a graph in which |V’| > n/3d and |E’| < n/18d. Taking the difference
is a trick to do that.)

(d) (2 points) Conclude that there exists an independent set of size n/9d.

Consider the graph (V', E’), and simply remove all the vertices that have an edge
incident to them. The number of vertices removed is at most 2|E’|. Thus there are
at least |V'| — 2|E’| vertices remaining, and they form an independent set.

Part (c) then gives the size bound.

Problem 3 (15 points)

Consider a dumb-bell graph D,,, which is a graph on n vertices, that are divided into two subsets
L and R of n/2 vertices each. Every two vertices in L are connected by an edge, as are every two
vertices in R. Additionally, there is one edge between L and R, that goes between two vertices
which we call £ and 7.

Consider a particle that starts at some vertex in the graph, and does a simple random walk for
T + n steps, where T is large (> n®, say, so we assume that the walk has mixed completely). Let
us denote by X; the random variable that is 1 if at time step T + ¢, the particle is at some vertex
in L, and 0 if it is at a vertex in R.

Let us consider X = X7 + Xo +--- 4+ X,,.

(a) (3 points) What is E[X]?



We assumed that the walk has mixed completely by time 7. Thus by symmetry, we
have that for each 4, the probability of the particle being at one of the L vertices is
the same as it being in one of the R vertices. Thus E[X;] = 1/2 for all 4. Thus

E[X] = ZE[Xi] =n/2.

(b) (6 points) How does the distribution of X look like? In particular is it concentrated around
E[X]? Argue intuitively.

The key observation is that if X; = 1, then it is extremely likely that Xo =1 (i.e.,
if the particle was at an L vertex at time T + 1, even if it is at the vertex /¢, it’s
likelihood of taking the edge to r is < 2/n. In fact, if X; = 1, the expected number
of steps needed to move to R is roughly n?. Thus Xo, X3,..., X, will all be 1, with
good probability. Thus X will be n.

Similarly, if Xy = 0, then with good probability, X; will be 0 for all ¢ < n. Thus
X is essentially distributed as n with probability 1/2 and 0 w.p. 1/2. It is not
concentrated around n/2.

(¢) (6 points) Let us make the above more formal. Suppose Y; = X; — E[X;]. Then give a lower
bound for E[(Y; + Y2 +...Y,)?] (note that this quantity is the variance of X).
(HINT: find a way to lower bound Y;Yj for i # j.)

We have
B Vi = SOEV + 2 By
i i i<j
Since E[X;] = 1/2, we have Y; = X; — 1/2. Thus, each Y; is either 1/2 or —1/2,
and each occurs w.p. 1/2. Thus the first term is O(n). The second term is more
interesting. Fix some ¢ < j and consider E[Y;Y}].

E[Y;Y;] = (1/2EN.Y; | Y = 1/2] + (1/2)EY.Y; | Y; = —1/2).

We will show that each of the E[Y;Y; | Y; = ---] terms is > 1/4 — O(1/n). Let us
denote n’ = n/2, for convenience, and let us condition on Y; = 1/2, i.e., X; = 1.
(The other case is symmetric.) Let pos, denote the position of the particle at time
T + r. The key definitions are following: (for r > 1)

Ary1 = Pr[pOSrJrl €L \ {E} A (Xl = XiJrl =...=X, = 1)], and
bry1 = Pr[posr+1 =/A (XZ =Xip1=--=X, = 1)]

It is easy to see that we have the recurrences:
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Thus, we can inductively show that for any j > i (a) b; < —*, and (b) a; + b; >

a; + bi — Ty



Part (a) is easy, from (1). To see part (b), note that a,+1 + by41 = ar + b, — % >
ar + by — =)

If we condition on Y; = 1/2, or equivalently X; = 1, we get a, + b, > 1 — Tn' — 1,
which for » < n, says that a, + b, > 1 — O(1/n). Thus for j —i¢ < n (as in our
setting), we have Pr(X; =1 | X; = 1] =1 — O(1/n). This gives E[Y;Y;|Y; = 1/2] >
1/4—0(1/n), as claimed.

Problem 4 (10 points)

Let us develop an algorithm that approximately computes the minimum distance from a convex set
K to a point p. Denote this minimum distance by d(p, K). Suppose we have an efficient separation
oracle A for K, and suppose we are given an R, with the guarantee that R < d(p, K) < 10R.

The goal is to compute d(p, K) to within a (1 + €) factor, for any constant e > 0.

(a) (4 points) Show a seemingly unrelated observation: if two convex sets K, K’ C R™ have efficient
separation oracles, then K N K’ has an efficient separation oracle.

Given a point z, we can simply run the two separation oracles. If both of them say
x € K (and z € K'), we can return that 2 € K N K’. Else we return the separating
plane output by either of the oracles (that is a valid separator because K' N K is a
subset of both K and K’.

(b) (6 points) Give the outline of an efficient algorithm to compute d(p, K) using this idea (you do
not need to go into the full details of the proof).

The observation is that Ball(p,r) N K is non-empty iff d(p, K) > r. For any given
r, we can use the ellipsoid algorithm to check non-emptiness (because there is an
efficient separation oracle, by the above).

How do we make a small number of checks? We just use binary search: we know that
R < d(p,K) < 10R to start with. At some point, if we know A < d(p, K) < B, we
can run the check above with r = (A4 B)/2, and if d(p, K) > (A+ B)/2, we recurse
with the bounds ((A + B)/2, B), and if not, with (A, (A+ B)/2). We always reduce
the length of the candidate interval by 1/2, thus in log(9/¢) iterations, we will obtain
an interval of length < eR.

This means we have a good approximation.



