
Lecture 9: Stochastic Gradient Descent

Instructor: Aditya Bhaskara Scribe: Mohsen Abbasi

CS 5966/6966: Theory of Machine Learning

February 8th, 2017

Abstract

In the first part of the lecture we will go over the convergence rate of
Gradient Descent for strongly convex functions. Later on, we will cover
another variant of GD called Stochastic Gradient Descent.

1 Introduction

In the last lecture we learned how to minimize convex functions. We showed
that if f is a ρ-Lipschitz function, our starting point is at a distance ≤ B from

the minimum and the learning rate is set to be η = ε
ρ2 , after T = ‖x(0)−x∗‖2ρ2

ε2

iterations:

1
T

T

∑
t=1

(f (w(t))− f (w∗)) ≤ ε

in which ε = B2

2ηT + η
2 ρ2.

Now the question is that can we get a better convergence rate? As it turns
out, if the function is strongly convex, for an error of ε, we need only log(1

ε)
iterations.

1.1 definition. A function f is called γ-strongly convex if ∀x, y:

(1) f (y) ≥ f (x) + 〈∇ f (x), y− x〉+ γ

2
‖y− x‖2

A function f is called β-smooth if ∀x, y:

f (y) ≤ f (x) + 〈∇ f (x), y− x〉+
β

2
‖y− x‖2

The definition of strongly convex functions is similar to that of smooth func-
tions and just the direction of the inequality is reversed. It guarantees a curva-
ture at every point i.e. the function can be lower bounded by a parabola. For
example, a line is smooth and convex but not strongly convex. As shown in
Figure ??, The idea here is that a parabola gives a much better lower bound
for the optimum point compared to a line.

1

1. Introduction

f

(x, f(x))

xt

β

γ

Figure 1: f The lower bound given by the lower parabola is closer to (xt, f (xt))
compared to the gradient.

1.2 claim. If a function is strongly convex, for an error of ε, we need log(1
ε) itera-

tions.

Proof. By definition we know:

∀y : f (y) ≥ f (x) + 〈∇ f (x), y− x〉+ γ

2
‖y− x‖2

To find out where the parabola is minimized, we should see what is the value
of y for which the right hand side of the equation is minimized. This value
would be:

y = x− 1
γ
∇ f (x)⇒ y− x = − 1

γ
∇ f (x)

By plugging this value in the inequality we get:

(2) f (x∗) ≥ f (x)− 1
2γ
‖∇ f (x)‖2

Note that this means if the gradient is small, we’re already close to the mini-
mum and don’t have to make a big progress.
From the last lecture we know that for β-smooth functions:

(3) f (w(t+1)) ≤ f (w(t))− 1
2β
‖∇ f (x(t))‖2

But now we know that this quantity is related to the distance from optimum.
Also, knowing equation ??:

f (w(t+1))− f (x∗) ≤ [f (w(t))− f (x∗)]− 1
2β

[2γ(f (w(t))− f (x∗))]

= (1− γ

β
)[f (w(t))− f (x∗))]

≤ · · · ≤ (1− γ

β
)t[f (w(t))− f (x∗))]

We know that 1− γ
β ≤ e−

γ
β . Therefore, in order to have an error less than ε,

it’s enough to set t = β
γ log(1

ε).

2

2 Stochastic Gradient Descent

Learning is equivalent to empirical risk minimization which is finding a w for
which sum of the losses over training examples is small. For a set of m training
examples x1, . . . , xm with labels y1, . . . , ym, minimizing this loss is defined as:

arg min
w

f (w) = arg min
w

1
m

m

∑
i=1

l(w, xi, yi)

And the gradient of this function would be:

∇ f (w) =
1
m

m

∑
i=1
∇l(w, xi, yi)

The idea behind SGD is that instead of going over all the examples in order
to compute the gradient of f , a random sample is picked from the training set
and the gradient of loss function is computed only at this point. If the training
set is of size m, each iteration of Vanilla Gradient Descent takes O(m) time
while an iteration of SGD would take O(1) time.

Algorithm 1 SGD algorithm
1: procedure SGD
2: Initialize w(0) with any feasible w
3: for t = 1 . . . T do
4: Sample a random training example i :
5: Update w(t+1) = w(t) − η∇l(w, xi, yi)
6: end for
7: Output w
8: end procedure

In order to get an intuition for why SGD works, we should see what is the
expected value of w(t+1).

E[w(t+1)] = E[w(t)]− ηE[∇l(w, xi, yi)]]

The expected value of the loss for a random point is ∑m
i=1

1
m∇l(w(t), xi, yi)

which is ∇ f (w(t)). Therefore, SGD is doing the same thing as GD meaning
it goes to the right direction in expectation. The geometrical interpretation of
this is shown in Figure ??.

Pr = 1
2 Pr = 1

2

w(t) − η∇f(wt)

w(t)

Figure 2: As long as we don’t deviate too much, in expectation w is going to
the right direction.

2.1 claim. Under condition:

∀i, ‖∇l(w(t), xi, yi)‖ ≤ ρ

3

2. Stochastic Gradient Descent

If we set η = ε
ρ2 , after running SGD for T = B2ρ2

ε2 iterations:

E[f (w̄)− f (w∗)] ≤ ε

When ε = B2

2ηT + η
2 ρ2.

Proof. We know from before:

f (w(t))− f (w∗) ≤ 〈w(t) − w∗,∇ f (w(t))〉

We also bounded the sum:

1
T

T

∑
t=1
〈w(t) − w∗,∇ f (w(t))〉 ≈ ‖w(t+1) − w∗‖2 − ‖w(t) − w∗‖2 + . . .

If at time t we make the step w(t+1) = w(t) − ηg(t) in which g(t) is some
chosen gradient then:

E[g(t)] = ∇ f (w(t))

‖w(t+1) − w∗‖2 − ‖w(t) − w∗‖2 = ‖w(t) − ηg(t)− w∗‖2 − ‖w(t) − w∗‖2

= −2η〈w(t) − w∗, g(t)〉+ η2‖g(t)‖2

Setting Dt+1 = ‖w(t+1) − w∗‖2 and Dt = ‖w(t) − w∗‖2:

〈w(t) − w∗, g(t)〉 = 1
2η

[Dt − Dt+1] +
η

2
‖g(t)‖2

⇒
T

∑
t=1
〈w(t) − w∗, g(t)〉 = 1

2η
[Dt − Dt+1] +

η

2

T

∑
t=1
‖g(t)‖2

≤ B2

2η
+

ηT
2

ρ2

It is left to show that

(4) E[
1
T

T

∑
t=1
〈w(t) − w∗,∇ f (w(t))〉] ≤ E[

1
T

T

∑
t=1
〈w(t) − w∗, g(t)〉]

But by the law of total expectation we see:

E[〈w(t) − w∗, g(t)〉|w(t)] = 〈w(t) − w∗,∇ f (w(t))〉

because looking at the expectation over g(t), we can condition on all the values
up to t− 1 (think of them as being fixed) and take the average over the last
one.

4

