LECTURE 8: ANALYZING GRADIENT DESCENT

Instructor: Aditya Bhaskara Scribe: Pruthuvi Maheshakya Wijewardena

CS 5966/6966: Theory of Machine Learning

February 6™, 2017

Abstract

Assuming that objective function is p-Lipschitz, we show that the num-
ber of iterations GD algorithm requires to achieve error < € is O(1/¢€?).
We also explore obtain a better bound when the function is -smooth. In
this case, the number of iterations needed to achieve error < € is O(1/¢).

1 REVIEW AND INTRODUCTION

In the last lecture, we started the discussion of optimization in learning. Fur-
ther, we defined convex functions and sets and discussed properties of gradi-
ents of convex functions.

Recall that a function f : R4 = R is defined to be p-Lipschitz if

Vx| f(x) = fy)] < pllx =yl

This implies that the gradient of the function at any point is < p.

(7 f()] <p).
A function f : R? = R is defined to be f-smooth if 5/ f is B-Lipschitz.

Y,y | v f(x) = f W) < Bllx —yll

We outlined the gradient descent algorithm in the last lecture. In this algo-
rithm, in each iteration f, we do the following weight update to the vector:

Xt = xO) g F(x)
In this lecture we analyze the bounds of number of iterations this algorithm

requires when the function f is p-Lipschitz and B-smooth.

2 ANALYZING GRADIENT DESCENT ALGORITHM

When analyzing the GD algorithm, we make the following assumptions:

1. Objective function f is p-Lipschitz

2. Value of the function at starting point is at a distance < B from the
optimal value of the function.

The result we want is, after a while we come to a point where f(w(*)) — f(w*)
is small where f(w(")) is the value at #" iteration and f(w*) is the optimal
value. In this analysis, we prove something stronger.

2. ANALYZING GRADIENT DESCENT ALGORITHM

~5l =

T 2 2
L)~ f@) < g+ 5

This is, the difference between average value of the function over T iterations
and the optimal value is small (¢). We need to pick 7 small enough so that we
take small steps that it is guaranteed to converge and large enough T.

In this analysis we argue about the following quantity.
1<)
7 L @) = f@)

By definition of a convex function we know that

(@) = f@)+ < vf (@), w —w® >

\,.,

F XU @) - fw) < 13 < vt o - >

T Ragls

Consider the distances from iterations f + 1 and ¢ to w*.

||w(t+1) _ w*”Z _ ”w(t) w*HZ

= ot 4 v f(@) " ~ |lu'? —w*|?
= -2 <o —w", v f(@) > +7?|| v f(@)]?
(by Lipschitz property)

< -2 <w® —w*, 7 f(w?) > +42p?

Let Dy q = [|w*1) — w*|? and D; = ||w®) — w*||2. By substituting and rear-
ranging the above expression, we get

<w® —w*, v f(wh) >< —[D; — Dyyq] + £~

Now we look at the inequality

=
1=

Il
—_

" np
: <vf(w(t)),w —w >§f¥{ZU[Dt—Dt+1]+T}

From series sum of (D — Dyy1)
1 2 2

L1 1o 1 1o
T;{E[Dt—Dtﬂ]ﬂLT} 277T(D1 DT+1)+7

D; — Dy41 < Dy and we know that D; = B2. Therefore we can write
1< B?

- Y _ f(w* B e

7 L (@)~ flwt) < 5t T8

2
By setting the terms zlfi—zT = ¢/2 and - = €/2, we obtain 77 = F% and T =

2.2
Be—zp. From this we can conclude that to have e- accuracy at the end, we need
O(1/¢€?) iterations when the function is p-Lipschitz.

We know that once the weight is updated, x(!*1) may not be in the valid set.
In that case we project the vector back into the set.

x(2) = 2 — iy 7 f(x")
K (1) — Hx(t+%)

We know that [|x(t+2) — x*|| > ||x(+1) — x*||. It can be proved that with this
projection, a similar result on the number of iterations can be obtained (full
proof can be found in the book).

Next we explore the number of iterations required to have e- accuracy when
the function is B-smooth as well. We do not prove this, but the result can be
obtained by setting # = 1/ in the weight update step of GD algorithm.

1
x(t+1) — xt _ E Vf(xt)

We know that when a function is B-smooth it has the following property.
g property.
FUD) < FEO)4 < gf(0), 2 0 5 4 Betsn ooz

By substituting x(+1) from the weight update rule, we get

FHD) < (20 — ;ﬁn v Fx0)|2

Using this property, we can show that after T iterations, difference between
function value and the optimal is small.

2BB?
f) -) < 22
2
By setting 2/5%3 =€ wegetT = . Therefore, we can conclude that to
have e-accuracy at the end, we need O(1/¢) iterations when the function is
B-smooth.

2BB>
€

3 SuB-GRADIENTS

Sometimes we may be interested in functions that are convex, but not differ-
entiable at every point. e.g: absolute value function at 0.

We define sub-gradient of a function at point (x, f(x)) as any direction v, that
satisfies Vy

fy) > flx)+ <y—x0>

For example in |x|, any of v1, v2, v3 can be considered as a sub-gradient of |x|
at point 0 (figure 1).

4. NESTEROVS ACCELERATED GRADIENT DESCENT

Il

Figure 1: Sub-gradients of absolute value function at o

4 NESTEROVS ACCELERATED GRADIENT DESCENT

This algorithm gives the optimal convergence for smooth functions.

Fl®) - flw) < 0BT
According to this, if we want e-accuracy, we need O(1/+/€) iterations.

The weight update rule is a slight variant of GD in this algorithm.

£+1)

XD = xt e 7 () — v f(ax)

(t+ 1) term depends on both (t) and (¢ — 1) terms. The constants ¢; and
¢ needs to be carefully chosen. This is the best possible guarantee for a GD
algorithm.

	Review and Introduction
	Analyzing gradient descent algorithm
	Sub-Gradients
	Nesterovs accelerated Gradient Descent

