
Lecture 8: Analyzing Gradient Descent

Instructor: Aditya Bhaskara Scribe: Pruthuvi Maheshakya Wijewardena

CS 5966/6966: Theory of Machine Learning

February 6th, 2017

Abstract

Assuming that objective function is ρ-Lipschitz, we show that the num-
ber of iterations GD algorithm requires to achieve error ≤ ε is O(1/ε2).
We also explore obtain a better bound when the function is β-smooth. In
this case, the number of iterations needed to achieve error ≤ ε is O(1/ε).

1 Review and Introduction

In the last lecture, we started the discussion of optimization in learning. Fur-
ther, we defined convex functions and sets and discussed properties of gradi-
ents of convex functions.

Recall that a function f : <d ⇒ < is defined to be ρ-Lipschitz if

∀x, y : | f (x)− f (y)| ≤ ρ‖x− y‖

This implies that the gradient of the function at any point is ≤ ρ.
(‖ 5 f (x)| ≤ ρ).

A function f : <d ⇒ < is defined to be β-smooth if 5 f is β-Lipschitz.

∀x, y : ‖ 5 f (x)−5 f (y)‖ ≤ β‖x− y‖

We outlined the gradient descent algorithm in the last lecture. In this algo-
rithm, in each iteration t, we do the following weight update to the vector:

x(t+1) = x(t) − η5 f (x(t))

In this lecture we analyze the bounds of number of iterations this algorithm
requires when the function f is ρ-Lipschitz and β-smooth.

2 Analyzing gradient descent algorithm

When analyzing the GD algorithm, we make the following assumptions:

1. Objective function f is ρ-Lipschitz

2. Value of the function at starting point is at a distance ≤ B from the
optimal value of the function.

The result we want is, after a while we come to a point where f (w(t))− f (w∗)
is small where f (w(t)) is the value at tth iteration and f (w∗) is the optimal
value. In this analysis, we prove something stronger.

1

2. Analyzing gradient descent algorithm

1
T

T

∑
t=1

(f (w(t))− f (w∗)) ≤ B2

2ηT
+

ρ2η

2

This is, the difference between average value of the function over T iterations
and the optimal value is small (ε). We need to pick η small enough so that we
take small steps that it is guaranteed to converge and large enough T.

In this analysis we argue about the following quantity.

1
T

T

∑
t=1

(f (w(t))− f (w∗))

By definition of a convex function we know that

f (w∗) ≥ f (w(t))+ < 5 f (w(t)), w∗ − w(t) >

1
T

T

∑
t=1

(f (w(t))− f (w∗)) ≤ 1
T

T

∑
t=1

< 5 f (w(t)), w(t) − w∗ >

Consider the distances from iterations t + 1 and t to w∗.

‖w(t+1) − w∗‖2 − ‖w(t) − w∗‖2

= ‖w(t) − η5 f (w(t))− w∗‖2 − ‖w(t) − w∗‖2

= −2η < w(t) − w∗,5 f (w(t)) > +η2‖ 5 f (w(t))‖2

(by Lipschitz property)

≤ −2η < w(t) − w∗,5 f (w(t)) > +η2ρ2

Let Dt+1 = ‖w(t+1) − w∗‖2 and Dt = ‖w(t) − w∗‖2. By substituting and rear-
ranging the above expression, we get

< w(t) − w∗,5 f (w(t)) >≤ 1
2η

[Dt − Dt+1] +
ηρ2

2

Now we look at the inequality

1
T

T

∑
t=1

< 5 f (w(t)), w(t) − w∗ >≤ 1
T

T

∑
t=1
{ 1

2η
[Dt − Dt+1] +

ηρ2

2
}

From series sum of (Dt − Dt+1)

1
T

T

∑
t=1
{ 1

2η
[Dt − Dt+1] +

ηρ2

2
} = 1

2ηT
(D1 − DT+1) +

ηρ2

2

D1 − Dt+1 ≤ D1 and we know that D1 = B2. Therefore we can write

1
T

T

∑
t=1

(f (w(t))− f (w∗)) ≤ B2

2ηT
+

ηρ2

2

By setting the terms B2

2ηT = ε/2 and ηρ2

2 = ε/2, we obtain η = ε
ρ2 and T =

2

B2ρ2

ε2 . From this we can conclude that to have ε- accuracy at the end, we need
O(1/ε2) iterations when the function is ρ-Lipschitz.

We know that once the weight is updated, x(t+1) may not be in the valid set.
In that case we project the vector back into the set.

x(t+
1
2) = x(t) − η5 f (xt)

x(t+1) = ∏ x(t+
1
2)

We know that ‖x(t+ 1
2) − x∗‖ ≥ ‖x(t+1) − x∗‖. It can be proved that with this

projection, a similar result on the number of iterations can be obtained (full
proof can be found in the book).

Next we explore the number of iterations required to have ε- accuracy when
the function is β-smooth as well. We do not prove this, but the result can be
obtained by setting η = 1/β in the weight update step of GD algorithm.

x(t+1) = xt − 1
β
5 f (xt)

We know that when a function is β-smooth it has the following property.

f (x(t+1)) ≤ f (x(t))+ < 5 f (x(t)), x(t+1) − x(t) > +
β

2
‖x(t+1) − x(t)‖2

By substituting x(t+1) from the weight update rule, we get

f (x(t+1)) ≤ f (x(t))− 1
2β
‖ 5 f (x(t))‖2

Using this property, we can show that after T iterations, difference between
function value and the optimal is small.

f (wt))− f (x∗) ≤ 2βB2

T

By setting 2βB2

T = ε, we get T = 2βB2

ε . Therefore, we can conclude that to
have ε-accuracy at the end, we need O(1/ε) iterations when the function is
β-smooth.

3 Sub-Gradients

Sometimes we may be interested in functions that are convex, but not differ-
entiable at every point. e.g: absolute value function at 0.

We define sub-gradient of a function at point (x, f (x)) as any direction v, that
satisfies ∀y

f (y) ≥ f (x)+ < y− x, v >

For example in |x|, any of v1, v2, v3 can be considered as a sub-gradient of |x|
at point 0 (figure 1).

3

4. Nesterovs accelerated Gradient Descent

Figure 1: Sub-gradients of absolute value function at 0

4 Nesterovs accelerated Gradient Descent

This algorithm gives the optimal convergence for smooth functions.

f (w(t))− f (w∗) ≤ O(
βB2

T2)

According to this, if we want ε-accuracy, we need O(1/
√

ε) iterations.

The weight update rule is a slight variant of GD in this algorithm.

x(t+1) = xt − c15 f (xt)− c25 f (xt−1)

(t + 1)th term depends on both (t)th and (t− 1)th terms. The constants c1 and
c2 needs to be carefully chosen. This is the best possible guarantee for a GD
algorithm.

4

	Review and Introduction
	Analyzing gradient descent algorithm
	Sub-Gradients
	Nesterovs accelerated Gradient Descent

